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ABSTRACT. Automatic generation control (AGC) is one of the most profitable ancillary
services of power systems. The main goal of AGC is to maintain zero steady state errors
for frequency deviation and good tracking of load demands in a power system. However,
the system performance is often constrained by governor dead band nonlinearity. This
paper addresses a sliding mode controller for a single area power system with governor
dead band. Two RBF neural networks are employed in this presented method, where one
network is designed to compensate the dead band and the other network is designed to
approximate the output of the dead band. The weight update formulas of the two RBF
networks are derived from Lyapunov direct method. Finally, simulation results show the
feasibility of the presented method for the AGC problem of a single area power system.
Keywords: Sliding mode control, Automatic generation control, Dead band nonlinear-
ity, Neural networks

1. Introduction. The successful operation of power systems requires matching the total
generation with the total load demand and with the associated system losses. However,
the operating point of a power system changes with time, which may yield undesirable
effects [1]. Automatic generation control (AGC) is one of the most important issues in
electric power system design and operation for supplying sufficient and reliable electric
power with good quality. The primary objectives of AGC are to adjust the power output
of the electrical generator within a prescribed area in response to changes in system
frequency, tie-line loading (for interconnected areas), so as to maintain the scheduled
system frequency and interchange with the other areas with predetermined limits.

In the last two decades, many control methods concerning the problem of AGC have
been published, e.g., optimal control [2], variable structure control [3,4], adaptive con-
trol [5], robust control [6] and intelligent control [7]. In most of the mentioned references,
small signal analysis is justified for studying the systems response for small perturbations.
However, implementation of an AGC strategy based on a linearized model of an essen-
tially nonlinear system does not necessarily ensure the stability of the systems. Thus,
considerable attention has been paid by researchers to consider the system nonlinearities.
For the problem of AGC, the nonlinearities of governor dead band (GDB) and generation
rate constraint (GRC) are usually involved. As Tripathy [8] has pointed out, the effects
of these nonlinearities tend to produce continuous oscillations in the area frequency and
tie line power transient response.
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FiGURE 1. Diagram of a single area power system with dead band nonlinearity

It is proven that the methodology of neural networks (NNs) is a universal approxi-
mator [9]. The tool provides a good choice to deal with the nonlinearities of the AGC
problem. Although the GDB problem of AGC was mentioned in [10,11], there are rare
publications about employing NNs to solve the GDB problem. In this paper, a sliding
mode controller is developed for the problem of AGC of a single area power system with
governor dead band nonlinearity. One RBF-network-based compensator is designed to
compensate the dead band nonlinearity. The other RBF-network-based approximator is
designed to approximate the output of the dead band. The update formulas of the two
networks are deduced from the Lyapunov direct method. Finally, simulation results show
the feasibility of the presented method for the AGC problem of power systems.

2. System Model. The power system for the AGC problem under consideration is ex-
pressed only to relatively small changes so that it can be adequately represented by the
linear models of governor, turbine and power system in Figure 1. Figure 1 represents the
block diagram of a single area power system with governor dead band nonlinearity. Note
that the generating unit in Figure 1 means all units in the prescribed area are lumped to-
gether. The symbols in Figure 1 are explained as Laplace operator s, speed regulation due
to governor action R (Hz/p.u.MW), governor time constant 7 (s), turbine time constant
T; (s), electric system time constant 7}, (s), electric system gain K, incremental frequency
deviation Af(¢) (Hz), incremental change in generator output AP,((¢) (p.u.MW), load
disturbance AP,(t) (p.u.MW), incremental change in governor valve position AX,(t),
control input produced by the designed AGC controller u(¢). In state space, to force the
steady state of Af(t) to tend to zero, the integral of Af(¢) is used as an additional state,
defined as

ZIAB()] = "L [Af() )

where K, is gain of the additional state, .Z’[-] means Laplace transform. It is obvious that

the system consists of three parts:

e Turbine with dynamics Gy(s) !

- Tis+l
e Generator with dynamics G4(s) = Tl
e Electric power system with dynamics G,(s) = le{’H.
p

3. Control Design.

3.1. Design of sliding mode controller. Sliding mode control is a kind of state feed-
back control method, its total control law usually is made up of two parts, equivalent
control and switching control [12]. The closed-loop system in Figure 1 involves four state
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variables, i.e., AP, AX,, Af and AF, if there is no dead band nonlinearity. The state
space expression of the system with no nonlinearity can be depicted as:
x(t) = Ax(t) + Bu(t) + Fd(t) (2)

where x = [Af AP, AX, AE]" is state vector, A is a 4 x 4 system matrix, B is a 4 x 1
input matrix, F'is a 4 x 1 disturbance matrix.

% 7 0 0 0 X
A=| O -5 7 0 —| " r=| 0
_ L 0 S T 0
RT, Ty Ty Ty
K. 0 0 0 0 0

Since the control objective in the AGC problem is to keep the change in frequency
Af as close to 0 as possible when the system is subjected to a load disturbance d by
manipulating the input u, we employ the sliding mode control law to achieve this goal.
At first, a sliding surface is defined as:

S =c'x (3)

Adopting the methodology of equivalent control [12], we differentiate S with respect to
time ¢ and let S = 0. The equivalent control law u., can be gotten as:

Uy = — (CTB)f1 ' Ax (4)
Further, substituting (4) to (2), we can have ¢ by placing the system poles. Define a
Lyapunov function V' = %2, define the total control law u as ue, + g, Where ug, is the

switching control law, differentiate V' with respect to time #, substitute (2) — (4) into V/,
then we are able to obtain ug, from V < 0 as:

Ugy = —(c"' B) 1 [KS + nsgn(S)] (5)

where K and 7 are positive constants, sgn(-) means sign function. On the aspect of

system stability, we choose n > ¢ F'd, here d = supd(t). Then, the final control law u
can be obtained by u., plus .

3.2. Design of RBF neural networks. Due to RBF networks owning the ability to
approximate complex nonlinear mapping directly from input-output data with a simple
topological structure [13], we will adopt such the kind of neural networks to achieve our
purpose. In Figure 2, RBF NN1 is employed to approximate the output of the dead band
nonlinearity. Its output A7 is used as the estimated value of the output of the nonlinear
component A7, and its inputs are Au* and A7*. The other network with the input u*
and the output Au*, RBF NN2, is utilized to compensate the dead band of the system.
Here, ©v* and A7* are defined as u — AFE — % and u* + Au*, respectively.

Define a nonlinear function D(-) as A7 = D (A7*) to depict the dead band nonlinearity
in Figure 2, then, the inverse of the dead band nonlinearity D! is able to be obtained as

D! (u*) = u* + Au* (6)
here Au* is the desired output of the neural networks. From (6), Au* can be obtained as
Au* = D7 (u*) — u*. These cases inspire us to approximate D and Au* by utilizing the
properties of neural networks. In Figure 2, it is obvious that Au* and A7 are the estimated
value of Au* and D, respectively. Thus, the NN1 and NN2 outputs are determined as:

At =w, d, (ATY) AU =w. D, (u¥) (7)

here, w, C R"*! and w, C R™*! are the weight vectors of the RBF NN1 and NN2
networks, where n, and n. are the number of their hidden neurons, ®, (A7*) = [¢a1 (AT*),
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FIGURE 2. Diagram of RBF-network-based compensator and approximator
for dead band nonlinearity

baz (AT*), -, bany (ATH)]" and @, (u*) = [der (u*), Gez (u*), -+, ben,(u*)]" are radial
basis function vectors, where the k-th RBF function of the NN1 and NN2 networks is
determined as:
* AT — Y 2 % u* — Y 2
Gar (AT") = exp <_|| 52 at]| > Ger (u*) = exp <_|| 52 ] (8)
ak ck

here, vor & 0ur and Ve, & 0o depict the center and width of the k-th hidden neuron of
the NN1 and NN2 networks, respectively. To deduce the update formulas, we make the
following assumption [14].

e Al: There exist optimal weight vectors w,, and w,, so that the outputs of the NN1
and NN2 networks satisfy |[w,,7® (AT*) — w,J® (AT*)| < €, and |we,T @ (u*) —
w. L ® (u*)| < e., respectively, where €, and e, are positive constants.

Define w, = Wgo — Wy and \f\'fc = W, — W, as the weight error of the two networks, so

that we have w, = —w, and w, = —w,.. Then, we re-define another Lyapunov function
(9) to deduce the update formulas of the two networks.

S?2 o 'wliw BIwlw
V= — e 2 e ° 9
2 + 2 + 2 )
Here, o and [ are positive constants. Differentiating V,, with respect to time ¢ yields
V, =89S +a 'Wiw, + 8 'W'w, =55 — o 'Wiw, — 8w w, (10)

Substituting (2) — (5) into (10), we have
V,=5 [—KS — nsgn(S) + cTFd(t)] —a! (waTo - waT) w, — ! (WZ; - WCT) W,
= —KS?—n|S|+"Fd(t)S — o™ (W), —wl) W, — 87 (W), —w]) w,
Let
w, = aS?®, (AT*) W, = BS?®, (u*) (12)
Substituting (12) into (11), we can obtain
V, = —KS*—1|S|+"Fd(t)S — S? (Wi, = wi) @q (AT) = S* (W), — w]) @, (u*)
(13)
Further, there exists the following inequation in light of our Assumption Al.
V, < — KS? —n|S| — €,5% —e.5%? + " Fd(t)|S|
(14)
< —KS”— €5 — €5~ (n—c"Fd) |S]|

In the sense of Lyapunov stability scheme, (14) indicates V, < 0 so that both the
update formulas in (12) of the two RBF NNs are able to ensure the asymptotic stability
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of the control system with dead band nonlinearity by employing the sliding mode control
law.

4. Simulation Results. In this section, the presented control method will be applied
on automatic generation control of a single-area power system with governor dead band
constraint, shown in Figure 1. Typical values of the system parameters of the single
area power system [15] are determined as K, = 120, 7, = 20, T, = 0.3, T, = 0.08,
R =24 and K, = 0.1. Typical dead band constrait of AGC problem [8] is 0.06%. The
parameters of the sliding surface S are gotten as ¢ = [0.04 0.50 — 0.15 1.88]7 from Acker
command of MATLAB by placing the pole of Ackermann’s formula in the specified vector
[-1 —2+2i —2—2i —9]T. The switching control parameters are picked up as K = 7,
n = 0.10 after trial and error. Both ~,; and 7., the center of the k-th hidden neuron of
the two RBF networks, are set as random number in the interval [0, 1]. Both J,; and
Oak, the width of the £-th hidden neuron of the two RBF networks, are set as 10. Other
parameters o, 3, n, and n, are set as 10, 107!, 10 and 10, respectively. Both the initial
weights of the two networks are set as random number in the interval [0 107*]. Load
disturbance d(t) is set as 1%.

Simulation results in Figure 3 and Figure 4 illustrate the feasibility of the presented
control method, where the black solid depicts the results with RBF NNs compensating
the dead band constraint and the blue solid illustrates the results with no RBF NNs
compensator. Both the simulation results are executed by the same sliding mode controller
and load disturbance. The solitary difference between the two simulations is that one
is with compensator and approximator and the other is without any compensator or
approximator.
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FIGURE 3. Simulation results: (a) frequency deviation Af, (b) change of
generator output AP, (¢) change of governer valve position AX, (d) extra
state, (e) control input u, (f) sliding surface S

As displayed in Figure 3 and Figure 4, the presented approach with the RBF NNs
compensator and approximator updateing the network weights as (12) is able to ensure
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the asymptotic stability of the control system in the sense of Lyapunov. In Figure 3(b)
and Figure 3(c), the curves of change of governor output AP and change of governor
valve position AX almost make no difference. However, the curve of frequency deviation
Af in Figure 3(a) demonstrates the superiority of the presented method on the aspect of
decreasing overshoot. In Figure 4, the blue solid indicates the outputs of the two RBF
NNs and the black solid means the actual value during the simulations. From Figure 4, the
designed compensator and approximator are able to partly compensate and approximate
the dead band nonlinearity of power systems.

5. Conclusions. This paper has presented an approach for automatic generation control
of power systems. In the approach, a controller based on sliding mode methodology is
developed and two RBF neural networks are employed to deal with governor dead band
nonlinearity, where one network is utilized to compensate the dead band nonlinearity and
the other is utilized to approximate the output of the dead zone. The update formulas
of the two RBF neural networks are deduced from Lyapunov direct method to ensure
the asymptotic stability of the control system. Simulation results show the validity of
the presented method through a single area power system. The main contribution of
this presented approach is to be able to solve automatic generation control problem with
governor dead band nonlinearity of power systems.
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