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a b s t r a c t

Tracking objects in videos using the mean shift technique has attracted considerable attention. In this
work, a novel approach for global target tracking based on mean shift technique is proposed. The pro-
posed method represents the model and the candidate in terms of background weighted histogram
and color weighted histogram, respectively, which can obtain precise object size adaptively with low
computational complexity. To track targets whose displacements between two successive frames are rel-
atively large, we implement the mean shift procedure via a coarse-to-fine way for global maximum seek-
ing. This procedure is termed as adaptive pyramid mean shift, because it uses the pyramid analysis
technique and can determine the pyramid level adaptively to decrease the number of iterations required
to achieve convergence. Experimental results on various tracking videos and its application to a tracking
and pointing subsystem show that the proposed method can successfully cope with different situations
such as camera motion, camera vibration, camera zoom and focus, high-speed moving object tracking,
partial occlusions, target scale variations, etc.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Real-time visual tracking is the critical task in many computer
vision applications such as driver assistance [1,28], aerial surveil-
lance and exploitation [2,3], etc. The cameras used in these circum-
stances move with the carriers and may vibrate frequently. This
demands a global search for target localization and tracking. More-
over, only a small percentage of the on-board processor’s resources
can be allocated for tracking, the rest being required for high-level
tasks such as recognition, trajectory interpretation and threaten
estimation, etc. Therefore, it is desirable to keep the computational
consumption of a tracker as low as possible.

An abstract approach treats tracking as an inference problem
[4]. The information characterizing the object is typically defined
by the state sequence fxkgk¼0;1;..., whose evolution in time is spec-
ified by the dynamic model fk. The available measurements and
its models can be represented by fzkgk¼0;1;... and hk, respectively.
Then a Bayesian method is employed to predict the next state
and update the state when new measurements arrive. When
fk and hk are linear functions, the optimal solution is provided by
the Kalman filter (KF). When they are nonlinear, various tech-
niques have been proposed. A direct approach linearizes the two
models and this yields the Extended KF (EKF). A recent alternative
to EKF is the Unscented KF (UKF) [5,6], which uses a set of
weighted points by deterministic sampling rules to parameterize
the mean and covariance of the posterior density. UKF has second
ll rights reserved.
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order approximation and real-time performance on personal com-
puter (PC), but it does not meet the sparse tracking need for on-
board surveillances. The particle filter (PF), also known as the Con-
densation algorithm, constructs the probability density function in
terms of a set of weighted particles through sequential importance
sampling [7]. The main disadvantage of PF is the high computa-
tional complexity. A Markov chain Monte Carlo (MCMC) sampling
step is developed by Khan et al. [8,9] to reduce the number of re-
quired particles to speed up PF for tracking multiple targets. An-
other trick for PF is to marginalize out the linear dynamics in the
models to further accelerate it and this results in Rao-Blackwel-
lized PF (RBPF) [10]. However, few PF meets the sparse tracking
needs even under PC conditions.

Mean shift (MS) has been applied to image segmentation, visual
tracking, nonparametric density analysis, etc. [11–14]. MS is a fixed
point iteration procedure and is essentially a gradient ascent algo-
rithm with an adaptive step size [15]. Fashing and Tomasi [16]
indicate that MS is actually a quadratic bound optimization prob-
lem for both stationary and evolving sample sets. Since Comaniciu
et al. [14] first introduce MS-based target tracking method, it has
proven to be a promising alternative to popular UKF or PF trackers
due to its low computational complexity, adaptive scale attribute,
and immune to partial occlusions for various sequences. However,
robustness for MS to copy with clutter scenes, to track objects of
various sizes and to keep up with extremely fast moving objects
still needs to be improved.

The basic MS tracker describes the targets with spatial masking
color histograms or background weighted ones in RGB space [14].
In [17], features that perfectly discriminate object and background
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are selected online to improve tracking effectiveness. Edge density
and orientation features may also be integrated into the feature
vector to make MS immune to illumination changes [18]. Recently,
Jeyakar et al. [34] integrated color and edge histogram cues into
the marginal mean shift framework. The over-all mean shift vector
is obtained by weighting each of the partial mean shift vectors
with the other Bhattacharyya coefficient. Furthermore, four local
kernels are employed to copy with drift in tracking when the ob-
ject undergoes partial occlusion. In [35], color likelihood ratio
and boundary-related score are integrated to get better weight im-
age for MS tracking. These tricks increase the computational com-
plexity, approaching about 50 frames per second (fps) processing
capability on common PC. However, for on-board surveillance
applications, the algorithm is expected to run as fast as possible
to reserve more process resources for high level operation. Differ-
ent from previous works which describe the target model and can-
didate with the same expressions, we try to represent them by
different ones. A complex and stable feature is selected for the
model as it is computed only when the model is updated, while
a feature with low computational complexity is adopted for the
candidate. This strategy is able to achieve higher object localization
precision than standard MS without increasing the computational
complexity.

Scale selection is a difficult problem for algorithms like MS,
which use a global color model of the target. A traditional way
adapts window size by a fixed percentage and evaluates it using
Bhattacharyya coefficient [14,20,35]. Although this does stop the
window from growing too big, it is not sufficient to keep the win-
dow from shrinking too much. To overcome this problem,
researchers tend to create a ‘‘likelihood” image (called weight im-
age), with pixels weighted by similarity to the desired color (or
other cues). Collins [13] proposes a method to generate a combined
model which captures features at different scales. Then, MS is ap-
plied in the spatial and scale dimensions to the weight image,
hence tracking blobs through scale space. Georgescu et al. [11] em-
ploy a pilot learning procedure to determine the optimal parame-
ters of the clustering data structure. Jiang et al. [36] prove that the
kernel bandwidth can be determined by maximizing the lower
bound of log-likelihood function of Bhattacharyya coefficient, and
the adaptive bandwidth is finally calculated by weighted standard
deviation along the x- and y-directions, respectively. A similar ap-
proach is adopted in [34] with a different weight exploiting both
foreground and background information. In this paper, we explore
the response curve to scale changes to overcome the shrinking
problem of the traditional way. Different thresholds for the scale
incremental and reductive stages are applied. Together with the
feature selection method, this scale selection method can track ob-
jects of varying sizes while the complexity remains unchanged.

Another important inherent drawback for MS is the local opti-
mization. Standard MS tracker assumes that the initialization point
falls within the basin of attraction of the desired mode, but this
assumption may not hold when the displacement between succes-
sive frames is relatively large or when the camera vibrates. Shen et
al. [19,20] proposed a global MS based tracker termed annealed MS
as it shares similarities with annealed importance sampling proce-
dure. This method gradually smoothes the cost function surface
based on the idea of simulated annealing and annealed importance
sampling and gently reaches the global peak. Recently, Jiang et al.
[36] use multiscale images to localize target. For the low computa-
tional cost, they only use the images at level 0 and maximal level.
We solve this problem by pyramid decomposition for efficient
analysis. Moreover, a novel method is developed to determine
the decomposition level adaptively to decrease the computational
complexity, while in simulated MS or in [36] the level is fixed and
is determined according to specific applications based on experi-
ences [20]. The proposed method is termed as adaptive pyramid
MS because it uses pyramid analysis with adaptive levels and
scales. Comparing to simulated MS, adaptive pyramid MS is faster
and more robust.

In summary, our key contributions comprise the following:

1. The effects of using different model and candidate expressions
are proposed and analyzed, and the corresponding revised MS
tracker is developed. This leads to high computational speed,
adaptive object size, improved model stability and adaptive
scale, which is described in detail in Section 2.3.

2. A novel adaptive pyramid MS tracker is developed which can
efficiently and reliably cope with high-speed moving object,
camera motion and vibration during tracking process as dis-
cussed in Section 3.

3. The adaptive pyramid MS and a mechanical stabilization board
are integrated to implement a tracking and pointing subsystem
where the camera moves fast and oscillates frequently, which is
presented in Section 4.2.

The remaining contents include experimental results on several
video clips in Section 4.1, and the conclusion of the paper is stated
in Section 5 with a discussion of some significant issues.
2. MS tracker analysis

We first review the basic concepts of MS algorithm and MS
tracker for completeness, and then show that the MS iteration pro-
cedure is independent of the target model expressions. This allows
us to change model expressions properly, while the computational
complexity remains unchanged if the same candidate expressions
are employed. The background weighted histogram is selected
for model and the color weighted histogram is adopted for candi-
date. Then the effects of this trick are analyzed. A corresponding
revision to standard MS tracker about the adaptive scale decision
rule is also presented below.

2.1. MS analysis

Let kðxÞ be a profile (see [16] for definition), the density estima-
tor can be expressed by [12]:

bf KðxÞ ¼ C �
Xn

i¼1

wik
x� xi

h

��� ���2
� �

; ð1Þ

where wi is the weight for sample xi, h is the bandwidth, and C is a
normalization constant. The optimization procedure of seeking the
local modes is carried out by setting the gradient be zero:

rfKðxÞ ¼ C1 �
Xn

i¼1

wig½riðxÞ� �mGðxÞ ¼ 0; ð2Þ

where

mGðxÞ ¼
Pn

i¼1wixig½riðxÞ�Pn
i¼1wig½riðxÞ�

� x; ð3Þ

riðxÞ ¼
x� xi

h

��� ���2
; ð4Þ

and gðxÞ ¼ �k0ðxÞ. Here, kðxÞ is called a shadow of gðxÞ [16], C1 is a
constant and mGðxÞ is the MS vector. Clearly, Eq. (2) holds if and
only if:

x ¼
Pn

i¼1wixig½riðxÞ�Pn
i¼1wig½riðxÞ�

: ð5Þ

The MS procedure can be considered as a fixed point problem as
shown in Eq. (5) and various incremental iteration schemes can be
employed to solve it. Direct iteration [14], Over-Relaxed iteration
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[20] or Aitken iteration [21] can be employed to solve the problem
at different convergence rates. In [16,20], the authors indicate that
MS is a first order algorithm except for piece-wise profile for which
the convergence rate is of order 2. A piece-wise profile called
Epanechnikov profile [16] is adopted through this paper due to
its low computational complexity and fast convergence rate:

kðxÞ ¼
1
2 c�1

d ðdþ 2Þð1� xÞ; x 6 1;
0; otherwise:

(
ð6Þ

Here, cd and d are constants which actually do not affect the itera-
tions. In this case, gðxÞ is constant and Eq. (5) reduces to the follow-
ing incremental iteration:

x 
Pn

i¼1wixiPn
i¼1wi

: ð7Þ
Fig. 1. An illustration to target model and target candidate selection effects.
2.2. MS tracker

Two popular features used for target model q ¼ fqugu¼1;...;m and
target candidate p ¼ fpugu¼1;...;m in MS tracker are color weighted
histogram ðpc;qcÞ and background weighted histogram ðpb;qbÞ
[14]. Specifically, pc or qc can be computed as:

Ic
uðxÞ ¼ Cc

Xnh

i¼1

k½riðxÞ�d½bðxiÞ � u�; I ¼ fp; qg; ð8Þ

where Cc ¼ 1=
Pnh

i¼1k½riðxÞ� is the normalization constant, d is the
Kronecher delta function, bðxiÞ denotes the serial number of histo-
gram bin for xi. The RGB space is quantized into 16� 16� 16 bins
and each pixel contributes a vote for its bin number with a kernel
weight. Similarly, the representation for pb or qb is:

Ib
uðxÞ ¼ CbðxÞvu

Xnh

i¼1

k½riðxÞ�d½bðxiÞ � u�; I ¼ fp; qg; ð9Þ

where CbðxÞ ¼ 1=
Pnh

i¼1

Pm
u¼1k½riðxÞ�vud½bðxiÞ � u� is the normalization

constant, vu is the background weight for voting and can be calcu-
lated by: (1) get the normalized histogram of the background
fougu¼1;...;m in a region around the target (usually 3 times of the ob-
ject scale); (2) denote o� be the minimum value between e (i.e.
e = 0.1) and the smallest nonzero entry of the normalized back-
ground histogram; (3) vu takes the minimum value between o�=ou

and 1.
Let p(x) represent the target candidate at location x. Given an

initial point x0, the problem of tracking is to estimate an optimal
displacement Dx so that the similarity measurement between q
and p(x) at the new location best matches the target model q:

Dx� ¼ arg max
Dx
fq½q;pðx0 þ DxÞ�g; ð10Þ

where qðq;pÞ is the similarity function between q and p, and the
Bhattacharyya coefficient is used in this paper as in [14]:

qðxÞ � q½q;pðxÞ� ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qupuðxÞ

p
: ð11Þ

Using Taylor expansions around the value pðx0Þ, the maximiza-
tion problem in Eq. (10) can be expressed as:

x� ¼ arg max
x

Xm

u¼1

puðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qu

puðx0Þ

r( )
: ð12Þ

It can be seen from Eq. (12) that different representations of q
impose different weights on histogram bins and thus affect the
optimal value of it, while the iteration procedure as well as the
computational cost remains unchanged. This allows us to use
sophisticated techniques to construct accurate model since it is
computed only when updated. Meanwhile, features that need
low computational complexity are selected for candidates to save
processing resources. Inserting Eqs. (8) and (9) into (12), the track-
ing problem can be viewed as a MS procedure as shown in Eq. (1)
with different weights for different expressions of p:

xc
i ¼

Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu

pc
uðx0Þ

r
d½bðxiÞ � u�; ð13Þ

xb
i ¼ CbðxÞ

Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu

pb
uðx0Þ

r
vud½bðxiÞ � u�: ð14Þ
2.3. Target model and target candidate analysis

Most available methods [13,14,20,34,36] use color weighted
histogram for p and q instead of background weighted histogram,
though the latter can better characterize the model itself. However,
there is little work to reveal the reasons and to overcome it. Since
the iteration procedure does not depend on the expression of q, we
try to represent the target model and target candidate with differ-
ent expressions and exploit the benefits from this trick. There are
four possible combinations between p and q: (1) pc and qc; (2)
pc and qb; (3) pb and qc; and (4) pb and qb. We now discuss the
model stabilization, adaptive object size, adaptive object scale
and computational complexity of the above four combinations
with a simple real-world example as shown in Fig. 1. More com-
plex objects and cluttered backgrounds also produce similar re-
sults as shown in Section 4. The image size is 240� 240, the
location of the interested target ðx0; y0Þ is (122,122), and the value
of actual radius R0 is about 35.

2.3.1. Model stability
Let q0 be the true target model, which can be approximately

computed by using color weighted histogram at ðx0; y0Þwith radius
R0. We use the Bhattacharyya coefficient qðq;q0Þ as the similarity
measure between the acquired target model q and the ground
truth model q0. Let qc represents the similarity between
qc and q0, and qb represents the similarity between qb and q0.
The influences of different initial object scales (denoted as R0 þ r,
as shown in Fig. 1) are examined as shown in Fig. 2(a). It can be
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seen that target model qb has a good approximation to q0 when the
value of r is larger than 0:2R0 because the background regions in-
side the initial scale are suppressed. This is very suitable for prac-
tical applications because a larger scale is always selected to get
comprehensive descriptions of the target. A suitable value of r for
background weighted histogram lies between 0:2R0 and 0:4R0,
which is easy to be generated by human or by detection process.
On the other hand, qc decreases quickly with respect to r and has
good approximations when the initial scale is relatively small,
which is a rather strict constraint sometimes.

The affects of different initial location errors (denoted as e, as
shown in Fig. 1) are examined as shown in Fig. 2(b). Based on
the above scale analysis, the initial object scale changes with e
according to the rule R ¼ R0 þ r þ e to include the whole object in-
side the circle. The curves of qb and qc with respect to e when r
equals to 0:2R0 or 0:4R0 are shown. It can be indicated that the
estimation precision of qb due to locating errors in this common-
use initialization manner is always higher than that of qc . In addi-
tion,qb is robust against scale changes while qc decrease with re-
spect to r. As a whole, the stability of qb is quite high, while that
of qc is rather normal.

2.3.2. Adaptive object size
Denote the similarities between the above four possible combi-

nations as q1; q2; q3; and q4, respectively. At this point, the target
model is fixed with a certain initial scale value and the scale values
of candidates are modified. Then, the similarity measures between
the model and candidate when the initial scale takes the value of
Fig. 2. Modal stability analysis
1:2R0 or 1:4R0 are calculated, as shown in Fig. 3(a) and (b), respec-
tively. It can be seen that no matter how much the value of object
scale is initialized, the tracker of combination (2) ðq2Þ will reach
the maximum of the curve where the ground truth scale lies, while
the tracker of combination (1) ðq1Þ tends to converge to the initial
scale and the other two trackers ðq3 and q4Þ have inflexions near-
by the initial scale. This indicates that the tracker of combinations
(1), (3) and (4) will converge to the initial scale with different pre-
cisions and are blind to the actual object scale. By exploiting the
benefits from representing the target model and candidate with
different expressions, the tracker of combination (2) have a trend
to converge to ground true object scale, and we term this ability
as adaptive object size ability.

2.3.3. Adaptive scale
Adaptive scale refers to the ability that the scale of target can-

didate can change along with the variation of image resolution.
This can be reflected by the responses to scale changes as shown
in Fig. 3 too. It can be observed that the curve of combination (1)
or combination (2) has a single peak which indicates good adaptive
scale ability, while the abilities of combination (3) and (4) are
rather poor. For combinations (1) and (2) which have single peaks,
the scale which gets the highest similarity measure can be adopted
to update the object scale as is used in [14]. However, this may fail
when the object model drifts due to illumination and view angle
changes, or when the user initializes a tight bounding box. Fig. 4
shows the similarity measure to scale changes with several initial
scale values of target model. When the initial scale becomes smal-
of the four combinations.
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ler, the peak gradually gets weak and eventually disappears. By
experiences, the candidate scale has more likely to shrink than to
enlarge because a smaller area contains less noises. So a corre-
sponding adaptive scale rule is proposed and presented below.

Let hprev denote the bandwidth in the previous frame. We mea-
sure the bandwidth h in the current frame by running the target
tracking algorithm three times, with bandwidths hl ¼ ð1þ aÞ
hprev; h2 ¼ hprev; and h3 ¼ ð1� aÞhprev where the default value for
a is 0.05. Let the similarity measure values of these trackers be
Fig. 4. Illustration of adaptive scale ru
q1; q2 and q3, respectively. The decision rule can be expressed as
below.

h ¼
h1; Dq1 P 0; Dq1 P Dq3;

h3; Dq3 P 0; Dq3 P Dq1;

h2; others;

8><>: ð15Þ

where

Dq1 ¼ q1 � q2 � e1; Dq3 ¼ q3 � q2 � e2; ð16Þ
le selection for combination (2).
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and e1; e2 are constants. The proper values for them are �0.005 and
0.05 in our experiments. Different thresholds for the scale incre-
mental and reductive stages are applied because the response curve
to scale changes has distinct characteristics between the shrinking
and the enlarging processes.

2.3.4. Computational complexity
Now that the model is computed merely when updated and its

expression does not affect the MS iteration, the computational
complexity difference mainly lies in the calculation of pc and pb.
From Eqs. (8) and (9), the cost of the two candidates is approxi-
mately determined by:

Cc ¼ nhðck þ cm þ caÞ þ nf cm; ð17Þ
Cb ¼ nhðck þ 2cm þ caÞ þ 8nhca þ 3nf cm; ð18Þ

where nh is the number of sample set, nf is the number of histogram
bins, ck; cm; and ca are the cost of profile calculation, a multiplica-
tion and an addition, respectively. Cc and Cb are the approximate
costs for calculating pc and pb. The middle term in Eq. (18) indicates
background histogram cost and the last term represents the cost of
histogram normalization. From Eq. (6), we know that ck is approx-
imately 3cm þ 4ca, and this implies

Cc

Cb
¼ nhð4cm þ 5caÞ þ nf cm

nhð5cm þ 13caÞ þ 3nf cm
: ð19Þ

In DSP applications where the cost of cm and ca are the same,
the ratio of the cost of pb to that of pc is reduced to

Cb

Cc ¼
18nh þ 3nf

9nh þ nf
; ð20Þ

which indicates that the cost of pb is approximately 2 times to that
of pc .

Table 1 summarizes the above four properties of the possible
combinations of p and q. As can be seen, the overall performances
of combination (2) which we use in this paper are superior to that
of the other three combinations. This conclusion coincides with the
experience that more sophisticated methods for target model (e.g.
qb) can get stable object features while simple ones for target can-
didate (such as pc) can run efficiently at the same time. In addition,
since the model has little disturbances, the target candidate has the
trend to discard redundant regions and thus has the adaptive ob-
ject size ability. This property relaxes the precision of the initial
bounding box, resulting in more convenient and efficient object
tracking.

3. Adaptive pyramid MS

Let Im ðm ¼ 0;1; . . . ;MÞ be the pyramid image sequence with
sampling frequency factor a and maximum level M. The default va-
lue of a is 2, and M depends on the maximum displacement be-
tween two successive frames in domain fields. Then profile kðxÞ
with bandwidth h as in Eq. (6) is applied to the image sequence
to get similarity image sequence fmðxÞ ðm ¼ 0;1; . . . ;MÞ using Eq.
(11), and the tracking process can be expressed to be the maximum
value seeking problem of f0ðxÞ given initial point x0. In aerial video
Table 1
Performance comparison for the four possible combinations.

Combination
index

Model
stability

Adaptive object
size

Adaptive
scale

Speed

1 Normal Bad Good Fast
2 Good Good Good Fast
3 Normal Bad Bad Normal
4 Good Bad Bad Normal
surveillance applications, f0ðxÞ usually has many local modes and
the gradient based seeking algorithm (e.g. MS) will be trapped into
a local mode when x0 does not fall within the basin of attraction of
the desired mode.

In density estimation and target tracking fields, it has been
proved that with a sufficiently large bandwidth h for profile kðxÞ,
the similarity function in this case is strictly uni-model [20,22]. An-
other fact is that increasing the bandwidth h for kðxÞ is equivalent
to decreasing the resolution of the original image called pyramid
analysis. This implies that fMðxÞ will be uni-model with a large M
value, and the start point will not affect the mode detection of
fMðxÞ. We first evaluate the local mode xk in a higher level image,
and get xk�1 initialized from xk in the lower level image. Then x0

is the final global mode. This coarse-to-fine strategy results in glo-
bal visual trackers, which are appropriate for tracking objects un-
der different conditions such as high-speed moving targets,
camera vibrations, etc.

Fig. 5 illustrates an example of the proposed global tracking
algorithm. The white circle in the image center is the object of
interest, while the initial point A is rather far away. The MS tracker
will be trapped into the small white circle if it is directly used. In
our algorithm instead, the object is first tracked in the highest le-
vel, and then the MS tracker is applied again for the lower level
with the tracking result in the higher level as the initial point.
The procedure iterates until we get the mode of level 0, as shown
in the bottom row of Fig. 5. The pyramid MS tracker locates the ob-
ject correctly and achieves the global tracking performances.

Another global MS tracker termed annealed MS is proposed in
[20] recently. Annealed MS has similar performances to ours when
their bandwidths are selected with a scale factor a. But we achieve
the goal in a different way by pyramid analysis, while theirs are
stimulated by annealed sampling. Further, the proposed method
operates on fixed bandwidth rather than enlarged ones as in An-
Fig. 5. Pyramid MS tracking procedure example. (Top) Pyramid image sequence
fI0; I1; I2g, the white circle in the image center is the object of interest, and points A,
B, and C are possible tracking results in the previous frame. (Bottom) Similarity
function image sequence ff0ðxÞ; f1ðxÞ; f2ðxÞg, the white box and the black small box
indicate the initial and the mode point, respectively.



Fig. 6. Level measures for adaptive level decision of points A, B, and C in the top-left
image in Fig. 5.
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nealed MS, resulting in relatively lower computational complexity.
In addition, we propose a method for determining the pyramid
decomposition level on-line first time in the following to decrease
the iteration times, while annealed MS operates on fixed levels. We
discuss adaptive level method bellow, followed by a summary of
the adaptive pyramid MS algorithm.

3.1. Adaptive level

Let q represents the object model qb for short, and pl represents
the histogram within bandwidth h for image level l by:

pl;h
u ðxÞ ¼

Xnh

i¼1

d½blðxiÞ � u�; ð21Þ

where blðxiÞ denotes the serial number of histogram bin for xi in im-
age level l, and nh is the number of pixels within band h. The histo-
gram is not weighted because the object could be in any direction
and possibly be distant from the center. If the image consists of
piece wise constant objects and backgrounds before sampling, after
simple manipulations we can get:

pl;h
u ðxlÞ ¼ a2plþ1;h2

u ðxlþ1Þ 6 a2plþ1;h
u ðxlþ1Þ: ð22Þ

The above relationship usually holds even if the image contains
complicated scenes. Thus we get a monotonously incremental
function which is appropriate for determining the adaptive level
for pyramid MS:

cðlÞ ¼ a2ðl�1Þ hpl;qi
nhhq;qi

; ð23Þ

where hp;qi denotes the inner product between p and q. The first
term is used to compensate level changes and the denominator of
the second term is normalized constants for model characteristics
and object size. The monotonously incremental property of cðlÞ
can be derived from the linear property of inner product and Eq.
(22) directly. Another property is that when the object lies within
the bandwidth, cðlÞ is approximate to or even larger than 1. A rigor-
ous method for determining the pyramid level can be achieved by
analyzing the value difference of Eq. (23) between level l and level
lþ 2, because the object definitely enters the bandwidth entirely
Fig. 7. Summary of the prop
within two levels. However, due to the monotonously incremental
and normalized properties, a hard threshold is usually enough to
determine the adaptive level for pyramid MS. Our experimental re-
sults indicate that cðlÞ which is larger than 0.6 is enough in most
cases, and for more robust target tracking, we determine the adap-
tive level by:

L ¼min
l
fcðlÞ > 0:8 : l 6 Mg: ð24Þ

Fig. 6 shows the measures under different levels for points A, B,
and C in the top-left image as shown in Fig. 5. The algorithm selects
pyramid levels adaptively, and we term this ability as adaptive le-
vel. Though the measure is not unique, this measure does work
well in our experiments as shown in Section 4.

3.2. Adaptive pyramid MS algorithm

The adaptive pyramid MS algorithm is summarized in Fig. 7.

4. Experimental results and applications

Concerning the function of adaptive pyramid MS algorithm, the
method is applied to several video clips and a tracking and pointing
subsystem. The images are captured by a Sony EVI-D70P P/T/Z
camera with image card MV-U2000. The image resolution is
osed tracking algorithm.
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640� 480 of RGB format. We first discuss and analyze the experi-
mental results on several video clips, and then apply the algorithm
to tracking and pointing (T&P) subsystem for hand-held or UAV-
carried cameras.
Fig. 8. Focus and zoom sequence. The frames 2, 52, and 62 are shown. The green box in
current frame.

Fig. 9. Results to illustrate tracking accuracy for MS, AMS and APMS. The frames 12, 32, an
box is the tracking result of the current frame.
4.1. Experimental results on video clips

We apply adaptive pyramid MS to several video clips and pres-
ent some representative results in this section. The experimental
dicates the state in the previous frame, and the red box is the tracking result of the

d 72 are shown. The green box indicates the state in the previous frame, and the red
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results on adaptive scale ability, target tracking accuracy, adaptive
object size ability, global tracking ability and computational speed
of the proposed method compared with classical MS and annealed
MS are discussed below.

4.1.1. Adaptive scale ability
In this case, the maximum pyramid level for adaptive pyramid

MS (APMS) and the simulated level for annealed MS (AMS) are
set to be 1. APMS then degenerates to MS with the only difference
on the model and candidate selection strategy as discussed in Sec-
tion 2.3 and AMS becomes the same as MS. Fig. 8 shows an exam-
ple of tracking a car. The camera focuses on a white car first, and
then zooms out. APMS locks the car successfully while traditional
MS or AMS fails after the frame number 62. The reason is that
APMS employs an improved adaptive scale selection strategy.
Additional experiments on several videos exhibit similar results.
It can be concluded that, the adaptive scale ability of APMS is bet-
ter than that of MS or AMS.

4.1.2. Target tracking accuracy
Another sequence is shown in Fig. 9 to illustrate the tracking

accuracy for MS, AMS and APMS. The initial bounding box is care-
fully toned to include most foreground pixels and exclude clutters
in background at the same time for MS and AMS. However, MS or
AMS locks the interested object with a relatively large location er-
ror (frame 32) or scale error (frame 72). On the contrary, APMS can
get the accurate object position and scale throughout the whole se-
quence and other tested sequences. This is because that APMS has
high model stability and employs an improved adaptive scale
selection rule, resulting in an overall better tracking accuracy of
APMS than that of MS or AMS.

4.1.3. Adaptive object size ability
A good tracker must provide a convenient way to be initialized,

either by hand or by a detection process. For this purpose, a tracker
Fig. 10. Results to illustrate adaptive object size ability. The frames 2, 12, and 22 are sho
tracking result of the current frame.
is desired to be immune to initial errors in both location and scale
spaces and is expected to converge to the true state at the same
time. Fig. 10 shows a tracking example when the initial bounding
box is obviously larger than the object scale. The bounding box
of MS or AMS remains almost unchanged and the tracking result
is sensitive to surroundings as shown in frame 22, while that of
APMS shrinks fast until it becomes close to the object boundary
due to its adaptive object size ability as described in Section 2.3.
As a result, the performances of MS or AMS are highly depended
on the initial bounding box while APMS is relatively robust against
it and easy to use in practices.

4.1.4. Global tracking ability
At this point, we set the maximum level to be 3 for APMS and

annealed MS (AMS) to copy with different situations like high-
speed moving objects, serious occlusions, camera vibrations, etc.
Fig. 11 shows a barrow tracking example. It is indicated that MS
loses the object after frame 274 when serious occlusions occur,
while AMS and APMS track it successfully. The difference between
AMS and APMS lies in the model stability and tracking accuracy as
described above. Another difference is the computational speed
which will be discussed in the following item.

Fig. 12 displays the tracking results of ‘‘egtest04” sequence.
There are occlusions (frame 80), camera vibrations (frame 188)
and illumination changes (frame 200) in this clip and these make
the task very difficult. It can be seen that MS losses the target on
frame 188 when the movement between successive frames is large
due to camera vibrations while APMS can cope with these
difficulties.

Fig. 13 shows another two tracking examples for APMS. In ‘‘eye-
ball” sequence, the eyeball moves very fast and may disappear
when the boy blinks his eyes. In the ‘‘plane2” clip, the pose of
the target plane changes and there exists clutters due to mirages.
As is revealed by the results, APMS is able to track these targets
successfully with high tracking accuracy.
wn. The green box indicates the state in the previous frame, and the red box is the
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Fig. 14 shows the tracking results of ‘‘egtest02” sequence. There
are two other cars that have similar color in this example. The
tracker locked the interested car correctly when it encounters the
first similar car (frame 547), but fails when meeting the second car
which has almost the same color (frame 668). This is because that
APMS (or MS, AMS) tends to select the target which has the most
similar color to the model. So, when the neighboring vehicles are
of similar color, it will select the more likely one and may track
the other object. The data association method or a more complex
image model can be incorporated into the algorithm to address
these situations in future work.
4.1.5. Computational speed
Since MS fails frequently in our experimental circumstances, we

merely compare the computational speeds between AMS and
APMS. It is noticed that the computational speeds of the two meth-
ods only depend on the iteration times because they employ the
same candidate features and MS procedure. So only the average
iteration times for tracking a specific target in each video sequence
are compared. The maximum level for APMS is set to be 3, while
that for AMS is set to be 3 or 2 according to specific tracking video
Fig. 11. Results to illustrate global tracking ability. The frames 245, 274, and 332 are sho
tracking result of the current frame.
clips. This indicates that the level parameter for AMS needs to be
carefully toned, while APMS is easier to use in practices.

Fig. 15 shows the average iteration times for 12 testing se-
quences. The iteration times for sequence number 6 between
AMS and APMS is close to each other because the target appear-
ances change at the very beginning due to illumination changes,
resulting in a low value of cðlÞ in Eq. (23). This can be improved
by selecting appropriate model updating strategy. The average iter-
ation times to achieve convergence are approximately 11 for
APMS, and are about 23 for AMS. This indicates that the computa-
tional speed of APMS is about 2 times to that of AMS due to using
an adaptive level decision strategy, which greatly improves the
real-time tracking performances.

We tested APMS on a 2.4 GHz PC with 512 MB memory. The
algorithm is written in C++ code in the frame of Visual C++ 6.0.
In these conditions, the cost for tracking a 50 by 50 object in a sin-
gle iteration is about 0.5 ms, which indicates that a rate of 150 fps
can be achieved for APMS.

Table 2 summarizes the above results for MS, AMS and APMS.
As can be seen, APMS has better or similar performances compared
to MS or AMS, resulting in more efficient and effective object
tracking.
wn. The green box indicates the state in the previous frame, and the red box is the



Fig. 12. Results of ‘‘egtest04” sequence for MS and APMS. The frames 2, 80, 188, and 200 are shown. The green box indicates the state in the previous frame, and the red box is
the tracking result of the current frame.

Fig. 13. Additional results are shown to illustrate the tracking performances for APMS. The green box indicates the state in the previous frame, and the red box is the tracking
result of the current frame.

Fig. 14. Results of ‘‘egtest02” sequence for APMS. The frames 461, 547, and 668 are shown. The green box indicates the state in the previous frame, and the red box is the
tracking result of the current frame. We can see that the tracker may fail when the surrounding object has similar color.
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Fig. 15. Average iteration times for AMS and APMS.

Table 2
Performance comparison for MS, AMS and APMS.

Adaptive
scale
ability

Target
tracking
accuracy

Adaptive
object size
ability

Global
tracking
ability

Computational
speed

MS Normal Normal Bad Bad Fast
AMS Normal Normal Bad Good Slow
APMS Good Good Good Good Fast
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4.2. Application to T&P subsystem

In this section, we examine T&P subsystem for an integrated
aerial video surveillance (AVS) system. The camera vibrates fre-
quently due to engine quivers and poses may change abruptly be-
cause of external forces such as sudden gales. Thus the object may
be out of view and the tracking process could be interrupted. When
UAV flies at high altitudes, merely a small angle change caused by
vibrations can introduce large movements of view on the ground.
Fig. 16. Components of

Fig. 17. Camera stab
For example, if the UAV flies at a height of 2000 m and the camera
rotates 1� because of vibrations, this brings in a displacement of
about 34.9 m for the view of the ground. So a fast global tracking
algorithm as well as camera stabilization mechanics are needed
to get robust tracking and pointing tasks for AVS system.

Fig. 16 illustrates the T&P subsystem which includes a tracking
component and a camera stabilization component. The camera sta-
bilization mechanics employ three gyros for the X-, Y- and Z-axis,
respectively, to obtain the angle velocities at any instant. Then a
method called quaternion is employed to get the angle changes
at a short time interval [23–25]. An Atmel AVR MCU is adopted
to compute the angle changes which are then transferred to the
camera control center to adjust the poses of the camera for X-
and Y-axis with two LCG50 gyros. This component is implemented
and integrated into a custom-built circuit as shown in Fig. 17.

As for the tracking component, a fast global tracking algorithm
is needed. Fast trackers are required because the computational
ability on board is limited and parts of the resources are expected
to be left for high level use. The target displacements between two
successive frames may be relatively large during the camera stabil-
ization process or due to high-speed movements, so only global
trackers are competent for this application. APMS satisfies all these
needs and so exhibits good performances in the T&P subsystem.

A difference between video tracking and T&P subsystem lies in
the initial manners for the trackers. The difficult problem of object
detection and localization for UAV is under considered, so fully
automatic initialization is still not available. For video tracking,
we have enough time to initialize the object before tracking, for
example drawing a bounding box. However, it is quite difficult
for T&P subsystem to initialize in this manner because the on-line
tracked object moves very fast and little time is left. Instead, a
point generation algorithm is employed to get the bounding box
a T&P subsystem.

ilization board.



Fig. 18. Typical result sequence of the T&P subsystem is shown. The green box indicates the state in the previous frame, and the red box is the tracking result of the current
frame.
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from a single point which is easier to operate. First, target model is
generated using the method described in Section 2 by selecting a
small region around the given point as object and a large area away
as backgrounds. Then the block surrounding the point is seg-
mented using the acquired target model by choosing a proper
threshold (0.01 in our experiments). Connected component analy-
sis (CCA) [4] is followed to get the bounding box of the largest ob-
ject. Finally, a larger version of the bounding box (1.4 times of the
original) is used to initialize the tracker to compensate localization
errors. This method works well in our T&P subsystem.

The subsystem is tested on roof of a 13th floor building to sim-
ulate the AVS circumstances. The P/T/Z camera is held by hand.
Once the object is initialized by selecting a point, the system can
generate the bounding box and keep the object in the center of
the view using the above localization and tracking algorithms to-
gether with the camera control units. When the object is around
the center, the camera zooms out automatically to get fine details.
Fig. 18 shows a typical output sequence of the proposed T&P sub-
system. The system locks the car successfully and gets fine details
of it for high level use such as object recognition.
5. Conclusions and discussion

In this paper, adaptive pyramid analysis as well as a feature
selection trick is employed for MS based target tracking, termed
APMS. Improvements over normal MS include global seeking abil-
ity, better model stability, and adaptive object size. Comparing to
annealed MS, APMS is more efficient and accurate. Promising re-
sults are obtained in video tracking and T&P subsystem.

A problem for APMS may exist when illumination changes seri-
ously. Model drifts influent the iteration times as discussed in Sec-
tion 4.1, and the process may be interrupted when illumination
changes seriously. There are two possible ways to solve it. One is
to select features that are invariant to illumination and view angle
changes as target model and candidate, and the other is to employ
appropriate model updating strategy. Edge orientation histograms
[18,29], corners calculated by FAST [30], multi-feature [31,34,35]
or multi-sensor [32] fusing techniques for feature selection, as well
as adaptive weighted average [33], weighted composite reference
function (WCRF) [26] or ensemble update [27] techniques for mod-
el updating will be explored in future work. Consideration will also
be given to exploring the application of the proposed method to
other surveillance systems.
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