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Detection and delineation of lines is important for many applications. However, most of the existing algo-
rithms have the shortcoming of high computational cost and can not meet the on-board real-time pro-
cessing requirement. This paper presents a novel method for curvilinear structure extraction and
delineation by using kernel-based density estimation. The method is based on efficient calculation of
pixel-wise density estimation for an input feature image, which is termed as local weighted features
(LWE). For gray and binary images, the LWF can be efficiently calculated by integral image and accumu-
lated image, respectively. Detectors for small objects and centerlines based on LWF are developed and the
selection of density estimation kernels is also illustrated. The algorithm is very fast and achieves 50 fps on
a PIV2.4G processor. Evaluation results on a number of images and videos are given to demonstrate the

Centerline detector

satisfactory performances of the proposed method with its high stability and adaptability.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Detection and delineation of lines, also called curvilinear struc-
tures, is important for many applications, such as biometric trait
detection for personal authentication, human computer interac-
tion, and road detection in aerial images for UAV (Unmanned Aer-
ial Vehicles) navigation. So far, many line detection algorithms
have been developed for various applications, which can be catego-
rized into three groups based on the characteristics of detection re-
sults: (1) edge based method; (2) centerline based method and (3)
region based method. Edge based method is based on edge extrac-
tion and treats lines as objects with parallel edges [1-4]. An edge
extraction algorithm is usually used to get the edge image, which
is then analyzed to find the particular lines. The main weakness
of this method lies in the fact that the line thickness is not consid-
ered. As a result, the detection result only contains edges, not the
required regions or centerlines of curvilinear structures. To over-
come this problem, Koller et al. [5] presented an edge based line
finder for extracting curvilinear structures as well as their widths
by iterating in scale space. It selects the line width as the scale that
yields the maximum of a scale normalized response. However, due
to the iterative scale space analysis, this approach is too computa-
tional expensive for real-time applications.

Centerline based method intends to get the delineation of cur-
vilinear structures, which mainly includes three aspects: (1) ridge
detection; (2) region thinning and (3) line delineation. Ridge detec-
tion uses differential geometric properties to extract centerline im-
age as ridges and valleys in the input gray image [6-7]. Eberly et al.
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[8] proposed a method to extract the ridges as points for which the
intensities are maxima or minima in the direction of the maximum
eigenvalue of the Hessian matrix. Nevertheless, due to the use of
second order of derivatives, this approach is sensitive to noise. A
DoG (Difference of Gaussian) operator which is originally used in
SIFT (Scale Invariant Feature Transform) feature detector [9] can
solve this problem to some extent, but we leave it for further inves-
tigation because the DoG operator cannot meet our on-board pro-
cessing requirement either. Aggarwal et al. [10] employed
regularized Hough transform to determine the location and orien-
tation of straight lines in gray images. This method combines all
the three aspects to one stage and this makes it easy to use in prac-
tices. The main disadvantage is the high computational cost and its
restriction on straight lines.

Region thinning utilizes thinning techniques to get one-pixel-
wide centerlines from the input region image of curvilinear struc-
tures. A classical approach is based on edge distance transform
map by using iterative morphological analysis [11] and non-max-
imum suppression technique. The iteration times depend on the
maximum line width in the region image and this makes it rela-
tively slow. Moreover, this approach is also sensitive to noise. So
a closing operation is usually executed to remove holes in the
pre-processing step, which further increases the computational
cost. Zhang and Couloigner [12] presented a method to detect
accurate centerlines and estimate line widths using the Radon
transform. They proposed a mean filter to locate the true peak
in the Radon image and a profile analysis technique to refine
the line parameters. This approach combines the later two as-
pects, which makes it convenient to use. However, the method
can only deal with straight lines and is not fast enough for real-
time applications.
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Line delineation refers to get line parameters from the input cen-
terline image. The Hough transform [13-15] and the RANSAC
(RANdom Sample Consensus) theory [16-17] are good tools for de-
fined curvilinear structure parameter estimation in discrete cen-
terline images. Ballard [18] proposed the generalized Hough
transform to detect arbitrary lines in the centerline image, but it
requires a complete specification of the exact line shape which is
very difficult and even unfeasible to get for complex curvilinear
structures in practices. For continuous centerline image, incremen-
tal line fitting by TLS (Total Least Squares) [17] or by ADSS
(Approximate Digital Straight line Segments) [19], which is fast
and easy to be implemented, can be employed to get the vector
representations of arbitrary lines. Once the continuous centerline
image is available, these algorithms work well and can meet most
requirements in practical applications.

Region based method aims at extracting all the pixels of curvilin-
ear structures which correspond to salient regions from the input
gray image. Wavelet transform [20], morphological top-hat and
bottom-hat operators [21] are good tools for high frequency com-
ponent extraction. Liu et al. [22] presented a wide line detector
based on the isotropic responses via circular masks using the idea
of the SUSAN (Smallest Uni-value Segment Assimilating Nucleus)
corner detector [23], which they call INF (Isotropic Nonlinear Fil-
tering). This approach is robust against noise because the detection
is not based on derivatives of images. It also works well for a range
of images containing lines of different widths, especially when the
width of lines varies greatly. However, this algorithm is slow since
it involves large mask comparison operations for every image pix-
el. Background estimation from a single image is another tool for
detecting salient regions through background subtraction. Chao
et al. [24] proposed an anisotropic diffusion scheme to detect de-
fects in low-contrast surface images. This approach can simulta-
neously carry out the smoothing and sharpening operations so
that a simple threshold can be used to segment the intensified de-
fects in the result image. The main shortcoming of this algorithm is
the high computational cost due to the iterative filtering scheme.

In this paper, we present a fast line detection and delineation
method which is suitable for on-board real-time processing. The
real-time performance is due to using the idea of fast kernel-based
density estimation, which is termed as LWF (Local Weighted Fea-
tures). Fundamentals of LWF including definition and calculation
methods are discussed extensively. The proposed method subse-
quently extracts the whole region pixels, centerlines and parameters
of curvilinear structures from input images. It mainly consists of two
components: small object detector and centerline detector. Our
small object detector is implemented by employing LWF based
background estimation techniques followed by a noise removal
scheme. We also design a performance evaluation criterion of esti-
mated background image for selecting LWF kernel. The proposed
centerline detector utilizes LWF based evidence map estimation
method, followed by non-maximum suppression and incremental
line fitting to get one-pixel wide centerlines and line parameters,
respectively. The estimated line parameters, as well as centerlines
and line regions, are all useful in many applications. Compared to
existing line detectors, the LWF based method is faster and more ro-
bust. In summary, our main contributions comprise the following:

e Kernel-based density estimation is first introduced to line detec-
tion and accumulated image is developed to efficiently compute
the LWF for binary images;

e Detectors for small objects and centerlines based on LWF are pro-
posed and the selection of density estimation kernels is discussed;

e The fast line detection and delineation method for on-board
real-time visual applications takes shape since the LWF with
selected kernels can be efficiently computed by using the tools
of integral image and accumulated image, respectively.

This paper is outlined as follows. We give a thorough discuss of
the definition and calculation methods for LWF in Section 2. The
selection of the LWF kernel for background estimation and the
LWF based small object detector are described in Section 3. Section
4 presents the centerline extraction and delineation method based
on LWF and incremental line fitting. In Section 5, detection results
and evaluations are presented. Conclusions are summarized in Sec-
tion 6.

2. Fundamentals of LWF

Let I(x) denote the input image where x is the 2-D pixel posi-
tion. The problem for object detection can be viewed as a back-
ground estimation problem:

I(X) = In(X) + Io(X) + In(X) (M

where I,(X), I,(X) and I,(x) are background image, object image, and
noise image, respectively, and the goal is to estimate I,(x) from the
single input image I(x) which can be viewed as a classical density
estimation problem in 2-D image space.

Another problem that we usually confront is object centerline
extraction from the input region image, in which the central task
is to estimate the evidence map. The value of evidence map at each
pixel corresponds to the “distance” from the edges, indicating that
the ridges of it are the centerlines. The estimation of evidence map
is actually a density estimation problem too.

In this section, we will discuss the definition and applicable cal-
culation methods of a special density estimation problem, which is
termed as LWF. This is the basic for the proposed small object
detector and centerline detector. It can also provide guidelines
for applying LWF to other applications.

2.1. Definition of LWF

LWEF uses feature values of neighborhood pixels to estimate the
density of the current pixel, which can be expressed as:

) @)

where Iwr (Xc) is the estimated LWF value of the current pixel X, h
is the bandwidth (a value of 10 means a 21 x 21 window), Ny, is the
pixel numbers in bandwidth h, and k(x) is a profile function [25] to
generate the density estimation template. The “local”, “weighted”
and “features” correspond to bandwidth h, profile function k(x)
and the input feature images I(x), respectively. Similar expressions
have been applied in image segmentation [26] and object tracking
[27] in a gradient decent manner, but the definition and application
to small object detection and centerline extraction in an exhaustive
manner are original. Additionally, we give a thorough discussion on
the calculation methods of LWF. Three candidate profile functions
we may use frequently are:

X, — Xc

h
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Lwr(Xe) = Z I(x;)k(

i=1

e CPF (Constant Profile Function)
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Fig. 1. Illustration of accumulated image for LWF.
e GPF (Gauss Profile Function) where (xg, yo) and (x;, y;) are the 2-D positions of the rectangle’s
top-left and bottom-right corners, respectively. The cost of LWF
Ce™ ™, x<1 with CPF by using integral image is appropriately 8c, + C.
ke(X) = { cpetliex 1<x<14¢ (5) Since EPF can be expressed as sequential convolutions of CPF,
0, ¢ Xx>14e the cost with EPF of LWF using integral image is appropriately

where d, cq4, and c,, are normalization constants. o is the cut coeffi-
cient. Cut values of 1% and 10% correspond to values of 4.6 and 2.3
for o, respectively, and we set o be 2.3 in this paper. Since a profile
function should keep continuous, we add a term containing ¢ which
is a sufficient small positive number. However, this term actually
does not influence the calculation process in image domain.

2.2. Calculation methods

A novel approach for calculating LWF which is termed as accu-
mulated image and is especially useful for binary images is
exploited in this subsection. For completeness, we also summarize
the existing methods such as 2-D template, sequential 1-D tem-
plate, and integral image below.

e 2-D Template

2-D template is the direct calculation for LWF. Let c, and ¢, be
the cost of an addition and a multiplication, respectively. The cost
with EPF or GPF of LWF using 2-D template is appropriately
(2h +1)? (ca + ¢y), while that with CPF is appropriately (2h+1)? c..

e Sequential 1-D Template

Sequential 1-D template is feasible due to the use of profile
functions which makes 2-D convolutions separable. The cost
with EPF or GPF of LWF using sequential 1-D template is appro-
priately 2(2h+1) (c3 + cy), while that with CPF is appropriately
2(2h +1) c..

o Integral Image

The concept of integral image is proposed by Viola and Jones
[28] and has been widely used in rectangle feature extraction
[28-29]. It can efficiently sum the values over a rectangle region.
Integral image is defined as:

i<x j<y

(6)
and can be computed iteratively:

I xy) =1xy) + Iy (x=1y) + s>y = 1) = Is>x =T,y = 1)
(7)
Then, LWF with CPF can be calculated iteratively:

CPF
I

Txy) = - [l + o — 10— 1) = s = 1.yy)

I35 = 1)] ®)

16¢; + c,,. However, this method is unsuitable for GPF.

e Accumulated Image

The above three methods get LWF values pixel by pixel except
for the acquirement of integral image which involves iterative
process. Here, we introduce a novel method for computing LWF
employing totally batch process. This method is based on the con-
cept of accumulated image and can be expressed as:

N
Lwr = Z I(Xi)li (9)

i=1

where I; is the image generated by the template placed at x;. Fig. 1
shows an example of the calculation process for this method. It adds
the generated image I; at each non-zero pixel x; to an image termed
as accumulated image. Let k be the ratio of non-zero pixel numbers
to the total pixel numbers in the image. The cost with EPF or GPF of
LWF using accumulated image for a gray image is appropriately
k(2h +1)? (ca + cm), while that with CPF is appropriately k(2h + 1)?
c,. For binary images, this method needs no multiplications and
the cost for all profile functions is k(2h + 1)? c.. Since the value of
k is usually sufficiently small for binary images (e.g. 0.05) and is
about 1 for gray images, this method is especially suitable for calcu-
lating LWF of binary images.

Table 1 summarizes the costs for calculating LWF with CPF, EPF
and GPF. The computing strategy can be generated from the com-
parative results directly. However, the actual costs are also influ-
enced by some other factors such as data type, truncation error
and the frequency of reading and writing datum. In many applica-
tions, we are more concern about the consumption time of the
algorithm with specific profile functions and parameters. The
above algorithms have been implemented in C++ code with opti-
mization and tested on a PIV 2.4G processor. The test image size
is 640 x 480. Some useful conclusions are given below.

2.3. Calculation strategy for gray images

Since the computational time of LWF for gray images using 2-D
template and accumulated image is comparable as shown in table

Table 1
Costs for different methods and profile functions.
CPF EPF GPF
2-D Template (2h+1)%c, (2h+1)? (2h+1)?
(Ca*Cm) (Ca*Cm)
Sequential 1-D template 2(2h+1)c;  2(2h+1) 2(2h+1)
(€a+cm) (€a+cm)
Integral image 8Ca+ Cm 16¢, + unsuitable
Accumulated image for gray k(2h+1)>  k(2h+1)? k(2h +1)?
images Ca (€a+cm) (€a+Cm)
Accumulated image for binary k(2h+1)*>  k(2h+1)?c, k(2h+1)% c,
images €
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1, we only present the test results using 2-D template, sequential
1-D template and integral image for different profile functions as
shown in Fig. 2(a-c). Though there are some unavoidable distur-
bances in the test environment, the increase rates of consumption
time with respect to bandwidth h for these methods are in general
of order 2, 1, and 0, respectively, which are consistent with the the-
oretical analysis results in the above subsection. In addition, the
curve of CPF by using integral image consists of two constant parts
as shown in Fig. 2(c). This is due to using different data types and
substitution strategies for division operator during the optimiza-
tion process with respect to different values of h. For a fixed value
of h, the minimum cost called hybrid cost is selected to generate
the calculation strategy for gray images as shown in Fig. 2(d). Some
useful conclusions drawn from Fig. 2 are:

1. For the same value of h by using 2-D template or sequential 1-D
template, the calculation time with CPF is smaller than that
with EPF or GPF, while the cost with EPF is comparable to that
with GPF.

2. The calculation time with CPF by means of integral image is
about 6 ms when h is smaller than 10 and is about 9 ms when
h is larger than 10. For EPF, the bound value for h is 20 and
the costs are 12 ms and 18 ms, respectively.

3. The costs by using 2-D template and sequential 1-D template
are unbearable for real-time applications when the values of h
are larger than 2 and 6, respectively, while integral image based
method is applicable for arbitrary values of h.

4. The hybrid method with CPF gets LWF utilizing 2-D template
when h equals to 1 and integral image when h is larger than 1.

5. The hybrid method with EPF gets LWF by using 2-D template
when h equals to 1 and sequential 1-D template when h takes
the value of 2 or 3. When the value of h is larger than 3, integral
image based method is employed.

6. The hybrid method with GPF adopts 2-D template when h equals
to 1 and uses sequential 1-D template when h is larger than 1.

7. For applications when the selected value of h is smaller than 4, the
profile function which gets the best performance can be employed.
But for larger values of h, CPF and EPF are more preferred.

Computational time using 2-D template {(ms)

600
500
400 [
300 F
200 =5
100

0 | = L 5 5 1 L g |
1 2 3 4 5 6 T 8 9 10
[-=—6rF  EPF——crF| k

C Computational time using integral image {(ms)

1 3 5 7 9 11 13 15 1T 19
EPF—— CPF h

2.4. Calculation strategy for binary images

The computational time of LWF for binary images, which are
special cases of gray images, obeys the hybrid cost as shown in
Fig. 2(d) in the worst cases. However, accumulated image based
method, which is very fast with a small value of k, may be more
efficient. Fig. 3(a and b) show the calculation time with different
profile functions when k equals to 0.01 and 0.03, respectively.
The cost with CPF is only a bit smaller than that with EPF or GPF,
so we only present the average costs by means of accumulated im-
age with different values of k as illustrated in Fig. 3(c). Only typical
values of k are examined because they usually lie below 0.1 and in
most cases are around 0.01. For a fixed value of h, the minimum
cost between accumulated image based method and that com-
puted as gray images, which is called hybrid cost, is selected to
generate the calculation strategy for binary images as shown in
Fig. 3(d-f). Some useful conclusions drawn from Fig. 3 are:

1. The cost of LWF by means of accumulated image is applicable
when k and h are smaller than 0.03 and 10, respectively, which
occurs rather frequently in practices. This method can also meet
the real-time requirement when the values of k and h are below
0.09 and 7, respectively.

2. The hybrid method with GPF gets the LWF by means of accumu-
lated image for all values of k and h that are smaller than 0.09
and 10, respectively.

3. The hybrid method with EPF adopts accumulated image when k
and h are smaller than 0.03 and 10, respectively. When values of
k are larger than 0.05, accumulated image is utilized for small
values of h, followed by integral image based method for larger
values of h.

4. The hybrid method with CPF calculates LWF using accumulated
image when k and h are smaller than 0.01 and 10, respectively.
When values of k are larger than 0.03, accumulated image is uti-
lized for small values of h, followed by integral image based
method for larger values of h.

. For applications when the values of k and h are smaller than
0.05 and 10, respectively, the profile function which gets the

w

b

Computational time using sequential 1-D template (ms)
35

30

[-s=—cPF  EPF — CPF |

d hybrid computational time for gray images (ms)

[—=—cpF  EPP -

Fig. 2. Calculation time of LWF for gray images with GPF, EPF and CPF by means of (a) 2-D template, (b) sequential 1-D template and (c) integral image, respectively, on a PIV
2.4G processor. The resolution of test images is 640 by 480. The hybrid cost for gray images is shown in (d).
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Fig. 3. Calculation time of LWF for binary images with GPF, EPF and CPF by means of accumulated image when (a) k=0.01 and (b) k = 0.03, respectively, on a PIV 2.4G
processor. The test image size is 640 by 480. (c) Shows the average computational time by using accumulated image for different values of k. (d)-(f) are the hybrid

computational time for binary images with GPF, EPF and CPF, respectively.

best performance can be selected. But for larger values of k and
h, CPF and EPF are more preferred.

3. LWF based small object detector

In this section, we first propose a criterion to determine back-
ground estimation performance by using LWF with different pro-
file functions and then describe details of the proposed small
object detector.

3.1. Profile function selection

The quality of estimated background image, which is critical to
object detection, should reflect large differences in object areas and
similar values in background regions with respect to the input im-
age. This can be characterized by:

No Ny

> Mwr(Xio) —I(Xio)l > Mwr(Xip) — I(Xip)]

i=1 i=1

Calh) N, Nocl) 1o
where X;, and N, are pixel locations in object regions and the num-
ber of pixels in them, x;;, and N, are pixel coordinates in background
areas and the corresponding number of pixels, Np(h) is the number
of pixels surrounding object regions in background areas within
bandwidth h, and Cy4(h) is the quality value of the estimated back-
ground image. The first term at the right hand of Eq. (10) reflects
the differences between estimated background image and input im-
age in object regions, and the second term represents the similarity
in background areas surrounding object regions within bandwidth
h. In addition, this criterion is normalized with respect to object

size, valid background size and bandwidth of profile functions,
and so it's appropriate for characterizing the quality of estimated
background images.

Fig. 4 shows the quality measure value C4(h) of the estimated
background image acquired by LWF for different profile functions
with respect to bandwidth h. The test image contains a curvilinear
object whose width is about 5 pixels, indicating that the object
bandwidth hg equals to 2. The brightness value of the object is
255 and that of background is 0 in the test image. The local distur-
bances in the quality curves in Fig. 4 are due to data truncations,
data types and optimization strategies in implementation of LWF.
It can be indicated that the quality measure can achieve a consid-
erable value of about 150 when the bandwidths for calculating
LWF are approximately above 4hg, 6h; and 7hg for CPF, EPF and
GPF, respectively. In practices, the quality measures are usually

250

—50 2 4 5 6 7 8 0 10

=100"

——CPF - - PF— GFF b

Fig. 4. Quality analysis of estimated background images with respect to bandwidth
h for profile function selection.
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not monotonously incremental with respect to bandwidth h be-
cause of the disturbances in background areas and nearby object
regions. A larger value of bandwidth h indicates that the quality
of the estimated background image is more dependent on the sur-
rounding circumstances. This implies that LWF using CPF with the
bandwidth of about twice the maximal curvilinear structure
widths can get the best performance for background estimation
among these three profile functions. This conclusion coincides with
the experience that flat profile functions can smooth out objects
better and thus can estimate the background image with higher
quality compared to sharp ones. In addition, LWF with CPF is more
efficient than those with EPF and GPF as described in Section 2, and
so is most appropriate for background image estimation and object
detection tasks.

3.2. Proposed small object detector

Small objects in this paper refer to targets with at least one
small scale in image space, which mainly include point features
and curvilinear structures. Detecting small objects effectively and
efficiently is very important for motion estimation, point feature
extraction, personal authentication and UAV navigation. In this
section, a novel small object detector is proposed. It consists of
the following two steps:

3.2.1. Background subtraction

Denote the estimated background image as I;wg(X), which can
be efficiently computed by using LWF with CPF of bandwidth h,.
The default value of h, is 20 in this paper, which means that we
are only interested in objects whose widths are less than 10 pixels.
Once the background image is available, the candidate object re-
gions can be acquired by the following simple manipulations:

1 7I(Xi) > ILWF(Xi) + T
Iy(xi) = { 0 ,otherwise (11)
1 ,I(Xi) <ILWF(X1)—T
la(xi) = { 0 ,otherwise (12)
Lo (Xi) = Ip(Xi) + Ia(Xi) (13)

where I,,(X) or I4(X) is candidate object regions that are brighter or
darker than surroundings, and I,(X) represents points that are dis-
similar from the estimated background values. T is the segmenta-
tion threshold, which can be determined by the standard
deviation of input images as is used in reference [22]. However, a
constant threshold is employed more often in practices because it
can meet the needs for most applications and can reduce the com-
putational cost at the same time. A default value of 15 for T is com-
petent for all the test images and sequences used in this paper.

3.2.2. Noise removal

The detection results acquired by background subtraction
scheme include point features, curvilinear structures, wide borders
of large objects and background regions, and some other noises.
Point features and curvilinear structures, which are termed as
small objects in this paper, are the intention of the detector. So a
noise removal process must be put forward to eliminate the wide
borders generated by large objects and background areas. Circular
analysis, which has been successfully used in LBP (Local Binary Pat-
terns) based texture analysis [30-31] and FAST (Features from
Accelerated Segment Test) corner extraction [32-33], is adopted
and extended to remove the wide borders in the candidate object
or background regions. This noise removal strategy is based on
the fact that pixels on the test circle in background areas or large
object regions contain more points which have similar brightness
values to the nucleus, while pixels in small object regions have

Fig. 5. Circular analysis for noise removal is illustrated. Five points and their
circular parts which have similar brightness values to the nucleus are shown.

fewer ones as shown in Fig. 5. For efficiency, a number of N pixels
equally spaced on the test circle with radius h, are selected to test
the validity of the acquired candidate pixels. The default value for
Nis 8 in this paper. A value of N above 8 might slightly improve the
performance with the expense of increasing computational cost.
Meanwhile, the number of pixels among the N test locations whose
intensities differ from that of the nucleus by less than threshold T,
denoted as n, is recorded. Finally, candidate pixels which does not
satisfy n < 0.3 N are considered as noises and are removed from the
candidate regions.

Fig. 6 shows a typical process of the proposed small object
detector. The input image in Fig. 6(a) contains curvilinear struc-
tures with different widths and brightness, point features, and a
larger object on a non-uniform background. To detect the small ob-
jects in the original image, background image must be estimated
firstly. The estimated background image by using LWF with CPF
is presented in Fig. 6(b). Fig. 6(c) displays the detected candidate
object regions through background subtraction, which contains
wide borders of the large object and certain background regions
near it. A noise removal strategy by using the idea of circular anal-
ysis is then employed to discard these noises and the final detec-
tion result is shown in Fig. 6(d). It can be seen that the proposed
small object detector can extract the interested object regions with
high precision.

4. LWF based centerline detector

Delineation of curvilinear structures efficiently and effectively
is also an important task for many applications. Take UAV naviga-
tion using vision and GIS (Geographical Information System) as an
example. Lines such as roads and rivers are represented as vectors
in GIS. As a result, vector representations for curvilinear structures
are expected to be extracted from the input image to achieve con-
venient and successful matches for UAV navigation. The key diffi-
culty to delineate curvilinear structures from binary images is
how to get the evidence map efficiently. In this section, a novel fast
centerline detector is presented, which consists of the following
three steps:

4.1. A. Evidence map acquisition

The evidence map for centerline detector, which should have
large values on centerlines and gradually decreases along with
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Fig. 6. Illustration of detection process of the proposed small object detector: (a) input image; (b) estimated background image by using LWF with CPF; (c) detected candidate

regions through background subtraction; (d) detection result after noise removal.

the distance between the current point and its nearest centerline,
can be efficiently estimated by means of LWF with GPF of band-
width h¢, which takes half value of maximum interested line width.
The default value of h. is 5 in this paper according to the default
setting of h,. For binary images, the value of k is usually very small
and this operator takes less than 5 ms to estimate evidence maps
from line region images sized of 640 x 480 in most cases.

4.2. B. Centerline generation

Centerlines of curvilinear structures correspond to ridges in the
evidence map. The centerline extraction algorithm, which is similar
to the idea of Canny edge detector [34], mainly consists of two steps:
seed generation and line following. Seed generation utilizes non-
maximum suppression techniques to acquire candidate seed pixels
of centerlines. Pixels whose evidence values are above threshold T;
and are not smaller than those of their 4-neighbors are selected as
seeds. The default value of T; is 60 in this paper to avoid the influence
of noisy pixels and background regions. For lines with even widths,
two-pixel width seed sets may be acquired and a further suppres-
sion strategy has to be employed. For current seed which has more
than one candidate seed in its 4-neighbors, we only keep the seed
pixel which is furthest from the head of this seed sequence. Through
this step, seed image which consists of isolated seeds and 4-neigh-
borhood connected seed sequences is available.

Line following refers to acquire the 4-neighborhood connected
centerlines from seed image and evidence map. A centerline be-

gins with a seed pixel which has not been processed. The 4-
neighborhood pixel, which is not on the centerline and has the
largest value in the evidence map among these neighbors, is
added to the centerline gradually. For candidates with same evi-
dence values, the candidate which is further from the head of the
centerline is selected. This process ends until the evidence value
of the added pixel is below threshold T,. Our experiments on sev-
eral video clips show that a value between 1 and 25 for T, works
well and a smaller value results in more week lines. This param-
eter can be specified by users and we set it be 20 to get relatively
strong lines in this paper. Once a candidate centerline takes
shape, seeds with a distance less than 2 pixels from the centerline
are suppressed, and then a new centerline is expected until there
is no candidate seed to be processed. Finally, we discard candi-
date centerlines which not only contain less than 10 seeds but
also have a length of less than 50 pixels because they usually cor-
respond to noises or point features.

4.3. C. Incremental line fitting

Vector representations of the available 4-neighborhood con-
nected centerlines, which are directly utilized in many applica-
tions, can be estimated by incremental line fitting efficiently. For
sequential points {(x;, y;),i=0, 1, 2, ..., t} on part of a centerline,
they can be represented by a single vector pointing from (xq, yo)
to (X, y¢) if both the absolute mean error e and the maximum error
€max Satisfy:
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e<E, emax <Emax (14)
l t

€= ;(axi +by;+0c) (15)

emax = Mmax{|ax; + by, +¢c|,i=0,1,---,t} (16)

where a, b, and c are the normalized parameters of the vector, E and
Emax are employed to control the average and maximum distance
apart from the current fitted line, respectively. Smaller values of E
and Eq.x will result in more line vectors to represent the details
while the macrostructure becomes lost at the same time. They are
user specified constants and we set them be 1.6 and 3 in this paper.
The sequential point for each initialized vector on the centerline is
gradually added to the vector if the relation (14) holds. The process
continues until the added point breaks down the rule in (14) and
then a new vector is generated from the end point of the usher vec-
tor. Since this operation runs only on centerline points the size of
which is usually very small, this algorithm can get desired vector
representations efficiently.

Fig. 7 illustrates a typical process of the proposed centerline
detector and an example-based analysis of the profile function
selection strategy. The input image in Fig. 7(a) contains line regions
as well as some disturbances resulted from LWF based small object
detector. The result images acquired by evidence map acquisition,
centerline generation and incremental line fitting with GPF, EPF

a

and CPF are presented in Fig. 7(b-d), respectively. We can see from
these images that the detector with GPF gets the best result among
these profile functions. In addition, due to the relatively small va-
lue of k and bandwidth h, evidence maps with any profile function
can be estimated efficiently by means of accumulated image as de-
scribed in Section 2. This stimulates us to select GPF as the profile
function in the proposed centerline detector. By experience, profile
functions like CPF which are too flat or those like delta function
which are too sharp are all unsuitable for evidence map generation
and there may be a balance between them which can get the best
estimation quality. Our experimental results indicate that GPF out-
performs EPF and CPF. The analysis of GPF compared to any other
profile functions, the task of constituting appropriate criterion to
evaluate the quality of estimated evidence map by different profile
functions, and the issue whether GPF is the best profile function for
evidence map acquisition in centerline detection are left as our fu-
ture work. However, the proposed centerline detector with GPF can
get 4-neiborhood connected centerlines and their vector represen-
tations efficiently with satisfactory precision in our experiments.

5. Experimental results

In this section, we first present the experimental results
achieved by using synthesized and real images in several applica-
tions for small object detector, and compare them with existing

Fig. 7. lllustration and analysis of centerline detection by means of LWF with different profile functions: (a) input binary image generated by LWF based small object detector
from the gray image on the top; (b)-(d) results of evidence map by using LWF, centerline by means of non-maximum suppression and seed following, and vector
representations of curvilinear structures generated by incremental line fitting with GPF, EPF, and CPF, respectively. Vector representations, which are composed of control
points shown as white dots connected by white lines, are imposed upon the original gray image to make evaluations convenient.
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algorithms: a recently proposed wide line detector [22] and mor-
phological based operators [21]. Then, several aerial image se-
quences are employed to test the validity of the proposed linear
structure extraction and delineation algorithm. Some representa-
tive results are reported below.

5.1. Small object detection

Fig. 8 shows some detection results by using the proposed LWF
based small object detector and wide line detector [22], respec-
tively. The wide line detector employs segment test with a circular
mask and its parameters are carefully toned to get the best results.
The top row of Fig. 8 is a synthesized image including straight lines,
curves, points, and large regions with different widths and intensi-
ties. It can be seen from the detection results that the perfor-
mances using these two methods are comparable for detecting
curvilinear structures and point features. However, at edges of
large regions, the result by using our method is better than that ob-
tained by the wide line detector. The reason is that there is usually
a transition of intensities at edges and this makes the edges be dif-
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ferent from both objects and background. These edges which are
undesired satisfy the segment test criterion of the wide line detec-
tor and are therefore detected. Instead, our method solves this
problem because the background values acquired by density esti-
mation are similar to the pixel intensities at these edges since dif-
ferent values at both sides of them are counteracted as illustrated
in Fig. 6(c).

The second row in Fig. 8 is another example in vision based shot
detection. This example is selected because point features and lines
are all expected in this application to determine the positions, ori-
entations and circles of shots. We can see that the result of our
method is better than that generated utilizing the wide line detec-
tor especially inside the inner circle and around the shoulder. The
above properties of these methods are some of the main reasons. In
addition, our method combines density estimation scheme and cir-
cular analysis technique which are both insensitive to noises, and
this makes the detection result smoother than that by using the
wide line detector.

A road detection example is illustrated in the last row of Fig. 8.
Detection of curvilinear structures such as roads and rivers from

a

b

Cc

Fig. 8. Experimental results for small object detectors: (a) original images; (b) result images utilizing the wide line detector; (c) result images by means of the proposed small
object detector based on LWF. The dotted circles imposed on images indicate the main detection difference areas between these two methods.
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Table 2 low resolution aerial images is very important for vision based UAV

Computational cost comparison between the proposed method and the wide line navigation. It can be seen that the detection result obtained by the
detector on a PIV 2.4G processor. . . . . .

wide line detector is comparable to that acquired using the proposed

Synthesized image Shot image Road image method. The reason is that there are no large objects and no high le-

(500 x 480) ms (460 x460)ms (480 x 480) ms vel noise in the image. The main difference lies in the calculation

The wide line 885 992 837 costs as shown in Table 2. Our method is approximately 100 times

detector faster than the wide line detector while achieving similar or better

e 8.7 68 results, which makes it competent for real-time applications.

Fig. 9. Experimental result comparison for the shot image in Fig. 8 between our method and morphological based operators: (a) detection results by LWF based bright object
detector and dark object detector, respectively; (b) segmentation results by top-hat and bottom-hat operators, respectively; (c) the wrongly extracted regions that LWF based
method does not detect while morphological based method does.

Fig. 10. Experimental result comparison for a river image between our method and bottom-hat operator: (a) original image; (b) results of our method; (c) results of bottom-
hat operator. The segmented image and filtered image are displayed at the top and bottom row, respectively.
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Another state of the art small object detector is the morpholog-
ical top-hat and bottom-hat operators, which are usually used to
extract the bright and dark structures in the image. Fig. 9 shows
the bright and dark object detection results for the shot image in
Fig. 8 by using the LWF based method and the morphological based
method. The segmentation threshold for top-hat and bottom-hat
operators is set as 30 to get the best results for the short image.
The ideal bright object detection results should mainly include cir-
cles and the number “7-9”, while the darker results should consist
of the shots and the number “10”. Fig. 9(c) shows the wrongly ex-
tracted regions that LWF based method does not detect while mor-
phological based method does. We can see that the detection
results of our method are better than that of morphological ones.
In addition, the proposed method is approximately 6 times faster
than top-hat or bottom-hat operators and thus is more suitable
for real-time applications.

Ariver detection example under clutters is illustrated in Fig. 10.
The segmentation threshold for bottom-hat operator is toned to be
70 to get the best results for the river image, while all parameters
of our method are with the default settings. A size filter is followed
for both methods to remove the noisy regions with less than 400
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pixels. This does not affect the real-time performance because it
only increases the cost by about 15%. Results for the proposed
method and the bottom-hat operator are shown in Fig. 10(b) and
(c), respectively. Compared to bottom-hat operator, our method
is easy to use and can extract rivers more efficiently and reliably.

5.2. Curvilinear structure extraction and delineation

When the proposed small object detector and centerline detector
work in turn, they behave in whole as a novel curvilinear structure
extraction and delineation algorithm. The results obtained by using
small object detector usually contain curvilinear structures as well
as point features and noises. However, point features and noises
are then removed implicitly and effectively by utilizing the center-
line detector. As a result, the final output after the two detectors only
contains vector representations of curvilinear structures, which is
very important for UAV navigation based on GIS and vision as has
been described in Section 4. We test the algorithm on a number of
aerial sequences and report some typical results below.

Fig. 11 shows some road detection and delineation results from
an aerial image sequence under camera zoom and focus. The reso-

o
.

b

Fig. 11. Line detection and delineation results for road sequence under camera zoom and focus: (a) original images; (b) line region images; (c) vector representations
imposed upon the original gray images. This sequence has 550 frames with a resolution of 640x480. Frames 1, 44, 395 and 525 are shown from the top to the bottom in turn.
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lution varies approximately from 4 m to 1.6 m per pixel. Road
width varies from 4 to 10 pixels in the test sequence while all
parameters of the algorithm are fixed with the default values. It
can be seen from these images that our method achieves good per-
formance with the default settings of all parameters, which makes
it very convenient to use in practices. The reason of this property
can be explained from Fig. 4 in part. For thin lines, the default
bandwidths h, are larger than 4hg, so a higher quality score may
be produced for background estimation though it will be more
dependent on image contents and specific applications. In addition,
carefully toning parameters is troublesome and even unfeasible
when lines of different widths exist in the same image. Experi-
ments show that though a bit more disturbances do appear in
the detection results with the default values, most of these
wrongly detected noises are removed during the centerline extrac-
tion process.

Fig. 12 displays some road detection and delineation results from
an aerial image sequence under clutter scenes. The resolution is
about 2 m per pixel. Several factors such as low intensity contrast,
various objects, complex scenes and dirty lens exist in the sequence
making the task very difficult. It can be seen from the results that our
method can cope with these difficulties. The main reason is that the
proposed algorithm is insensitive to noise. In addition, the profile

function selection strategy decreases the required bandwidth for
small object detection, which reduces the dependences of back-
ground estimation quality on surroundings far away.

The algorithm has been tested on a PIV 2.4G processor. It is
implemented in C++ on the plate of Visual C++ 6.0 with elementary
optimizations. In these conditions, the cost of extraction and delin-
eation of lines from one image sized of 640 x 480 takes about
18 ms, which indicates that a rate of 50 fps can be achieved in prac-
tices by using our method.

6. Conclusions

In this paper, we present a novel algorithm to get the regions as
well as vector representations of curvilinear structures by using
LWEF. The proposed algorithm consists of two components: (a)
small object detector and (b) centerline detector. Our small object
detector utilizes background subtraction strategy by means of LWF
with CPF, followed by a noise removal process employing circular
analysis. The detection results are then further processed to get
vector representations of lines by a novel centerline detector,
which uses LWF based evidence map estimation with GPF, seed
generation, line following and incremental line fitting subse-
quently. This algorithm is very fast, because LWF with CPF for

a

c

Fig. 12. Line detection and delineation results for road sequence under clusters: (a) original images; (b) line region images; (c) vector representations imposed upon the
original gray images. This sequence has 586 frames and the image size is 620 x 432. Frames 6, 445, 465 and 499 are shown from the top to the bottom subsequently.
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small object detector and LWF with GPF for centerline detector can
be efficiently calculated by integral image and accumulated image,
respectively. A general calculation strategy for LWF is also dis-
cussed to provide guidelines for other related applications. Exper-
imental results on a number of images and videos indicate that the
performance and computational speed of our small object detector
are superior to those of the wide line detector and morphological
based operators and that the proposed line detection and delinea-
tion method is very efficient and effective.

Further investigation and improvement could include bringing
forward profile function selection criterion for evidence map qual-
ity estimation, proving whether GPF is the best profile function to
get evidence map for centerline detection, using more experimen-
tal images and sequences, and applying LWF to other image pro-
cessing tasks. Considerations will also be given to studying the
matching method to GIS, evaluating the feature detection results
and exploring the application of the proposed method to UAV nav-
igation systems and other surveillance systems.
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