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Abstract

In this paper, we propose a novel unsupervised graph as-

sociation (UGA) to learn the underlying view-invariant rep-

resentations from the video pedestrian tracklets. The core

points of it are mining the cross-view relationships and re-

ducing the damage of noisy associations. To this end, UGA

adopts a two-stage training strategy: (1) intra-camera

learning stage and (2) inter-camera learning stage. The

former is to learn representations of a person with regards

to camera information, which helps to reduce false cross-

view associations in the second stage. Compared with ex-

isting tracklet-based methods, ours can build more accu-

rate cross-view associations and require lower GPU mem-

ory. Extensive experiments and ablation studies on seven

RE-ID datasets demonstrate the superiority of the proposed

UGA over most state-of-the-art unsupervised and domain

adaptation RE-ID methods. Code is available at github1.

1. Introduction

Person Re-identification (RE-ID) aims to match the same

pedestrian across non-overlapping camera views, which has

potential applications like longterm multi-camera tracking

and forensic search. Benefiting from the advance of deep

learning, especially the deep convolution network [14, 10],

the performance of RE-ID has obtained significant improve-

ments [19, 42, 30, 32, 29, 31, 48]. In supervised learning,

the deep CNN learns view-invariant representations from

the pair-wise labelled data. Since deep CNN is a data-driven

method, it requires a large number of pair-wise labelled data

in training. Figure 1 show some pair-wise labelled tracklets

∗Equal Contribution
†Corresponding author

1https://github.com/yichuan9527/Unsupervised-Graph-Association-

for-Person-Re-identification

Figure 1: Examples of the pair-wise labelled tracklets. Pair-

wise labelled tracklets refer the images belonging to the

same person under different cameras.

from different cameras. However, labelling sufficient pair-

wise RE-ID data is expensive and time-consuming. How to

improve the performance and scalability of deep RE-ID al-

gorithm without pair-wise labelled data (i.e., unsupervised

learning) is a great challenge in recent person RE-ID re-

search.

There have been a series of unsupervised image based

methods to address this problem, which can be roughly

divided into three categories: 1) image-to-image trans-

lation, 2) domain adaptation, 3) unsupervised clustering.

The image-to-image translation methods [51, 49, 4, 1, 38]

transfer the source domain images to the target domain by

GAN [9] network. The domain adaptation methods [21, 36]

aim to transfer the source domain trained model to the target

domain in an unsupervised manner. Unsupervised cluster-

ing methods [5, 16] obtain the pseudo labels of target do-

main data through the unsupervised clustering algorithms
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Figure 2: The framework of the proposed unsupervised graph association (UGA), including 1) intra-camera learning stage

and 2) inter-camera learning stage. The model architecture consists of a Resnet-50 backbone, a global average pooling

layer (GAP), an embedding block and multi-branch-classifier. The embedding block includes a batch normalization layer, a

drop-out layer, a FC layer reducing the 2048-dim feature to 1024-dim and a batch normalization layer.

and fine tune the source domain model with pseudo labels

on target domain.

However, the precondition of above mentioned meth-

ods is that there are some similarities between the source

domain and the target domain. For example, as shown

in [5, 4, 22], the above mentioned three methods can

easily achieve high performances between Market1501

[46] and DukeMTMC-ReID [27], since Market1501 and

DukeMTMC-ReID are similar to each other. However, the

performance becomes worse when using MSMT17 [38] as

the target. This is because the variations of illumination

and resolution are more complicated in MSMT17 than that

in Market-1501 and DukeMTMC-ReID. The unsupervised

image based methods are sensitive to these variations and

have poor scalability to unknown scenes.

Recently, the tracklet based methods (i.e., TAUDL [17],

UTAL [18], RACE [40], BUC [23]) have been proposed to

overcome this weakness. Pedestrian tracklets are easily ob-

tained by existing tracking algorithms [15, 28, 6, 7, 44].

The frames of the same tracklet generally belong to the

same identity. Owing to this, the complexity of the unsuper-

vised learning is reduced as presented in TAUDL, UTAL.

However, UTAL and TAUDL match the underlying posi-

tive pairs in the mini batch. Due to this, both of them need

a large batch size (384) to sample the underlying positive

pairs which may occupy at least five 1080-Ti GPUs in train-

ing. RACE and BUC, which progressively merge the un-

derlying positive pairs in training, are easily damaged by

merging noisy pairs.

To address these problems, we propose an unsupervised

graph association (UGA) framework for tracklet based un-

supervised RE-ID. The pip line is shown in Figure 2, it con-

tains an intra-camera learning stage and an inter-camera

learning stage.

Intra-camera learning stage. We apply the multiple-

branch-classifier (MBC) structure to learn the intra-camera

representation, where each classifier branch corresponds to

one camera’s classification task. Besides, we apply an em-

bedding block at the top of the backbone, which makes

the negative pairs easier to be distinguished and avoids the

training overfitting.

Inter-camera learning stage. We build a cross-view

graph (CVG) to associate pedestrian tracklets and develop

a cross-camera loss to learn the view-invariant representa-

tions from CVG. We replace the weights of MBC with the

corresponding nodes of CVG to fast updating CVG in the

training process. In order to reduce the damage of the noisy

associations, we introduce two constraints (threshold, sym-

metry) into CVG and use the CVG’s edge weight as the

weighting of the cross-camera loss. To sum up, the contri-

butions of this paper can be summarized as follows:

• We propose a simple yet effective unsupervised person

RE-ID framework, named unsupervised graph associ-

ation (UGA). Without any source domain pre-training,

UGA achieves high performance, with low GPU mem-
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ory occupation.

• We incorporate a novel cross-view graph (CVG) and

a cross-camera loss into UGA framework. By using

both of them, model can learn the view-invariant rep-

resentations from the underlying positive samples.

• We conduct extensive experiments and ablation studies

on seven RE-ID datasets to demonstrate the effective-

ness of the proposed UGA.

2. Related work

Deep supervised person RE-ID. The aim of person

re-identification (RE-ID) is retrieving the same person un-

der multiple views. Benefitting from the advance of the

deep learning algorithm, person RE-ID has achieved a re-

markable progress [42, 32, 34, 29, 2, 48, 35, 33]. Yi et

al. [42] adopt image pairs and introduce part priors into

a siamese network for learning the view-invariant represen-

tations. Sun et al. [32] and chang et al. [2] develop the

part feature based methods to enhance the discriminative of

Re-ID features. Wang et al. [34] fuse the temporal-spatial

information with appearance information to improve the re-

trieval accuracy.

Unsupervised person RE-ID. Deep person RE-ID al-

gorithm has poor scalability in real-word applications, due

to the lack of sufficient pair-wise labelled data for training.

To solve this problem, lots of unsupervised person RE-ID

methods are proposed [51, 49, 21, 36, 5, 52, 47]. Zhong

et al. [51, 49], Deng et al. [4] and Bake et al. [1] adopt

the GAN network to transfer the source domain training im-

ages to target domains, or transfer the target domain testing

images to the source domain for improving the testing accu-

racy. Li et al. [21] and Wang et al. [37] apply the domain

adaptation methods transferring source domain knowledge

to target domain. Fan et al. [5] and Wu et al. [16] fine tune

the source model in target domain with target data pseudo

labels, which are obtained by the unsupervised clustering

algorithm. However, these methods rely on the similarity

between the source domain and the target domain. In or-

der to reduce the dependence on the source domain, the

tracklet-based methods are proposed. Li et al. [17, 18]

match the underlying positive pairs in the mini batch, using

a cross camera histogram loss to learn the view-invariant

features. Ye et al. [40] propose a robust embedding to re-

duce the damage of the noisy frames for estimator pseudo

labels more accuracy.

Graph based methods. Considering the relationships

between the training samples, graph based methods [25, 8,

3, 29] are used to provide more supervision signals for both

of semi-supervised learning and supervised training. Luo

et al. [25] propose a smoothing neighbors on teacher loss

(SNTG) for semi-supervised learning. SNTG builds the re-

lation graph of training samples and learns more smoothing

representations from the relation graph. SNTG is a semi-

supervised method, which deals the closed set classification

and needs a few of labelled samples for training. However,

it is not suitable for the unsupervised person RE-ID task,

since unsupervised person RE-ID is an open-set retrieval

problem. Shen et al. [29] propose a similarity-guided graph

neural network (SGGNN) to enhance the relations between

the probe images and the gallery pedestrian images. But

SGGNN is a supervised training approach which needs lots

of labelled samples to build the graph for training.

3. Method

Definition. Suppose we have a dataset, captured from T

cameras. We adopt the sparse space-time tracklets sampling

(SSTT) [17] to sample the training tracklets {sit, y
i
t} from

each camera. Denoting sit = {I
sit
1 , I

sit
2 , ..., I

sit
n }, where I

sit
n

is the n-th image of the i-th tracklet (i ∈ [1, . . . ,Mt]) in

t-th camera (t ∈ [1, . . . , T ]). We randomly assign a unique

pseudo label yit(y
i
t ∈ {y1t , . . . , y

Mt

t }) for the sit. φ(·) is the

backbone function. ft is the t-th branch classifier of MBC.

W i
t is the weight of ft, corresponding to the class of sit.

3.1. Intra­camera learning

Through the SSTT sampling, we can obtain the training
data {sit, y

i
t} for each camera and a person has at most one

tracklet in each camera. To avoid the conflict of pseudo
labels, we adopt the multi-task training to learn the intra-
camera representation. The pip line of intra-camera learn-
ing is shown in Figure 2. A multi-branch-classifier (MBC)
structure is adopted to model the persons classification in
different cameras as a multi-task problem. All of the clas-
sifiers share the backbone features. For the t − th branch,
the softmax cross-entropy loss function is formulated as fol-
lows:

l
t
ce(I

sit
n ) = −

Mt
∑

j=1

log(
e(W

j
t )T φ(I

sit
n )

∑Mt

k=1 e
(Wk

t )T φ(I
si
t

n )

) (1)

In the Eq. (1), W
j
t is the weight of sit and φ(I

sit
n ) is the

representation vector of I
sit
n extracted by the backbone φ(·).

The total loss of all branches lintra can be defined as Eq. (2),

where Nbs denotes the batch size.

lintra =
1

Nbs

∑

Nbs

ltce(I
sit
n ) (2)

To avoid overfitting and restrain negative pairs at the

intra-camera learning stage, we add an embedding block at

the top of the backbone (shown in Figure 2), which contains

two batch normalization layers and one drop-out layer. As

shown in Figure 3, the batch normalization layer is effec-

tive to reduce the average similarity score of the negative
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Algorithm 1: Unsupervised graph association (UGA)

Input: Pair-wise unlabelled tracklets sit of T cameras.

The Backbone φ and multi-branch-classifier ft.

W i
t is the weight vector of ft.

Threshold λ and max iteration epmax.

Initializing iteration step ep← 0.

(t = 1, . . . , T )
while ep < epmax do

1: ep← ep+ 1;

2: Computing Lintra according Eq. (2);

3: Updating φ and ft;

end

1: Computing tracklets center cit ;

2: Replacing classifier weight vector W i
t with cit ;

3: Initializing CVG G(cit, e(c
i
t, c

a
m)), according Eq. (5);

4: Reset ep← 0 ;

while ep < epmax do

1: ep← ep+ 1;

2: Computing Linter according Eq. (9);

3: Updating φ, cit;

4: Updating G(cit, e(c
i
t, c

a
m));

end

Output: Backbone φ.

pairs. The ablation study in later section proves that the per-

formance of the intra-camera learning stage obtains a great

improvement.

3.2. Inter­camera learning

Extracting tracklets’ representation. In the inter-

camera learning stage, we fuse all of the frames’ future as

the tracklet’s representation cit. The definition of cit is shown

in Eq. (3), where Nsit
is the number of the tracklet frames.

cit =

∑N
si
t

n=1 φ(I
sit
n )

Nsit

, I
sit
n ∈ sit (3)

Building cross-view graph (CVG). We define a local

KNN set {cit}
m
K of cit, which finds of the nearest K tracklets

of cit in camera m. Through merging these local KNN sets,

we can get CVG. However, there are lots of noisy links in

CVG. In order to reduce them, we apply a threshold con-

straint and a symmetric constraint on graph edges. For

arbitrary nodes cit and cjm on CVG, the former requires the

cosine similarity between the nodes cit and cjm is larger than

the threshold λ, while the latter requires cit and cjm must ex-

ist in each other’s local KNN set. The symmetric constraint

can be formulated as:

(cit, c
j
m)K = {cjm ∈ {cit}

m
K & cit ∈ {cjm}tK} (4)

In above equation, if the symmetric constraint can is satis-
fied, (cit, c

j
m)K is true; otherwise, (cit, c

j
m)K is false. If the

edge is not satisfied these two constrains, the edge will be
removed from CVG. The weight of the edge e(cit, c

j
m) can

be summarized as follows :

e(cit, c
j
m) =







cos(cit, c
j
m) if cos(cit, c

j
m) > λ & (cit, c

j
m)K

1 if cit = cjm
0 other

(5)

where cit = cjm denotes the node cit connects itself, i.e.,

e(cit, c
i
t) is a self-connection. Considering through the

SSTT sampling, each person has at most one tracklet in

each camera. K is set to 1 in this paper. Through the local

KNN set and these two constrains, we can obtain a precise

cross-view graph (CVG).

Cross-camera loss. We develop a graph weighted loss

as the cross-camera loss to pull the underlying positive pairs

close. Firstly, we define a graph neighbor set N(sit) of the

tracklet sit:

N(sit) = {(sam, yam)|if e(cit, c
a
m) 6= 0} (6)

In fact, N(sit) is a set which contains sit’s all local nearest
neighbors of all cameras. Though SSTT sampling, we give
a pseudo label yit for sit under t-th camera and give a pseudo
label yam for sam under m-th camera. We think these track-
lets sam(sam ∈ N(sit)) belonging to the same graph neigh-
bor set are the underlying positive pairs. Based on this, the
pseudo label of sit may be yam under m-th camera, while the
pseudo label of sam may be yit under t-th camera. We hope
to learn view-invariant representation by pulling these un-
derlying positive pairs close. To this end, we propose the
following cross-camera loss:

lce(I
sit
n , s

a
m) = −

Mm
∑

j=1

log(
e(c

j
m)T φ(I

sit
n )

∑Mm

k=1 e
(ckm)T φ(I

si
t

n )

)

linter(I
sit
n ) =

∑

N(sit)−sit

lce(I
sit
n , s

a
m), s

a
m ∈ N(sit)

(7)

In above equation, we replace the weight parameters W i
t

of ft with the corresponding CVG node cit. By doing this,

CVG can be fast updated in training process.
Graph weighted cross-camera loss. In Eq. (7), if

sam and sit have different IDs, the cross-camera loss will
pull negative pairs close. We adopt two strategies to al-
leviate this problem: 1) using the graph edge’s weight as
the weighting of the cross-camera loss to reduce the dam-
age of the negative pairs; 2) adding the intra-camera loss
as a self-camera constraint item with a constraint weight

α = e(cit, c
i
t). The cross-camera loss of the image I

sit
n can

be redefined as follows:

linter(I
sit
n ) =

∑

N(sit)−sit

e(cit, c
a
m)lce(I

sit
n , s

a
m) + αlce(I

sit
n , s

i
t)

=
∑

N(sit)

e(cit, c
a
m)lce(I

sit
n , s

a
m), where α = e(cit, c

i
t)

(8)
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The multi-branch-classifier loss of the whole mini batch is

formulated as follows:

linter =
1

Nbs

∑

Nbs

linter(I
sit
n ), t ∈ [1, . . . , T ] (9)

In Eq. (8), if the model is misled by negative pairs,

lce(I
sit
n , sit) will punish it with a large gradient.

CVG’s updating. In the above equation, the derivative

of cam can be re-emphasized as:

∂linter

∂cam
= −

∑

Nbs

err(I
sit
n )e(cit, c

a
m)φ(I

sit
n ) (10)

with:

err(I
sit
n ) = 1(yam == j)−

e(c
j
m)Tφ(I

sit
n )

∑Mm

k=1 e
(ckm)Tφ(I

si
t

n )
(11)

The updating of CVG’s node cam can be formulated as:

c
a
m ← c

a
m−η

∑

Nbs

err(I
sit
n )e(cam, c

i
t)φ(I

sit
n ), t ∈ [1, . . . , T ] (12)

In above equation, η denotes the learning rate and Mm is

the total number of tracklets in camera m. According to

Eq. (12), the updating of cit makes full use of underlying

positive pairs from all camera views. This measure pulls

underlying positive pairs close and encourages CVG finding

more cross-view underlying positive pairs.

4. Experiment

4.1. Experimental Setup

Datasets and evaluation protocol. All experiments

are evaluated on four image RE-ID datasets (Market-1501

[46], DukeMTMC-ReID [27, 47], CUHK03-detected [20],

MTMS17 [38]) and three video RE-ID datasets (Mars [45],

Prid2011 [11], iLIDS-Video [37]). The ablation studies

are mainly conducted on Market-1501 [46] and Mars [45]

which are most the widely used image and video person

RE-ID datasets. The training/testing ID splits are shown

in Table 1. Common cumulative matching characteristic

(CMC) and mean average precision (mAP) are used as the

performance evaluation metric. Particularly, on Market-

1501, we follow the single-query evaluation protocol. On

the CUHK03-detected, we follow the standard single-shot

protocol for the labelled images and detected images sepa-

rately, which needs to repeat 20 times of random 1,367/100

training/testing identity splitting and report the averaged re-

sults.

Pseudo label assignment. We follow the experiments

settings and tracklet sampling methods of TAUDL [17] and

UTAL [18]. For video datasets, iLIDS-VID and PRID2011

Table 1: Dataset statistics and training/testing splitting

Dataset ID Cam Track Tain Test Images

iLDS-VID 300 2 600 150 150 43,800

PRID2011 178 2 354 89 89 38,466

MARS 1,261 6 20,478 625 636 1,191,003

Market 1,501 6 0 751 750 32,668

Duke 1,812 8 0 702 1,110 36,411

MSMT17 4,101 15 0 1,041 3,060 126,441

CUHK03 1,467 2 0 1,367 100 14,096

”Market”, ”Duke” and ”CUHK03” denote Market-1501, DukeMTMC-

ReID and CUHK03-detected datasets respectively.

provide only one tracklet of a person in one camera. But

MARS has multiple tracklets per ID per camera. We ran-

domly sampling one tracklet for a person in one camera on

MARS. For the image RE-ID datasets, we assume all im-

ages of a person in one camera are belong to a single track-

let. Then, we randomly assign a unique pseudo label to each

tracklet for each camera.

4.2. Implement details

The structure of the backbone is shown in Figure 2.The

training images are resized to 256×128. In order to balance

the model learning speed over different cameras, we adopt

an equably sampling strategy, i.e., randomly sampling the

same number images from each camera in a mini batch. The

batch size of our experiments is set to 60. Adam optimizer

is applied in our training process, with initializing the learn-

ing rate of 3.5e−4 and decaying 0.1 at the 40-th and 60-th

epoch. The hyper-parameter λ is set to 0.65. The total train-

ing epoch is 80 for both the intra-camera and inter-camera

learning stage.

4.3. Ablation Study

BN analysis. As shown in Figure 3, after adding a BN

layer for both the supervised algorithm and unsupervised

algorithm, the average similarity of negative samples be-

comes 17 times smaller than that of positive samples in

Table 2: The ablation studies of the BN.

strategies Market-1501 Mars

metric(%) mAP Rank 1 mAP Rank 1

R 27.9 47.3 26.0 41.1

R+BN 55.6 78.9 33.2 53.4

R+embed 54.8 77.5 35.1 55.1

R* 73.5 88.2 47.6 62.2

R+BN* 77.1 91.5 51.7 67.6

R+embed* 77.9 91.2 55.7 69.6

1 ∗ denotes the supervised algorithm.
2 ”R” denotes only use the Resnet-50 backbone;
3 ”R+BN” denotes adding a BN after the backbone;
4 ”embed” denotes adding an embedding block af-

ter the backbone.
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Table 3: The performance of different λ

Market DukeMTMC CUHK03 MSMT17 Mars Prid2011 iLIDS-VID

metric(%) mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 R1 R5 R1 R5

0.55 67.5 85.5 54.2 74.8 70.5 59.6 20.2 46.0 38.7 58.1 71.9 92.1 54.0 74.0

0.6 68.9 86.3 55.2 74.3 69.4 57.2 21.7 50.2 40.5 59.9 79.8 93.3 51.3 72.7

0.65 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5 39.3 58.1 80.9 94.4 57.3 72.0

0.7 71.0 87.9 55.7 75.7 63.4 51.0 20.9 47.3 37.8 57.7 77.5 92.1 47.3 70.0

0.75 69.3 86.3 55.1 75.0 61.6 48.4 21.3 49.2 35.5 54.5 70.8 91.0 48.0 69.3

Table 4: The performance of the intra-learning stage and inter-learning stage

Market DukeMTMC CUHK03 MSMT17 MARS Prid2011 iLIDS-VID

metric(%) mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 R1 R5 R1 R5

intra 54.8 77.5 52.5 72.6 56.3 42.2 19.7 45.7 35.1 55.1 65.2 86.5 42.7 74.0

inter(λ = 0.65) 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5 39.3 58.1 80.9 94.4 57.3 72.0

improvement +15.5 +9.7 +0.8 +2.4 +11.9 +14.3 +2.0 +3.8 +4.2 +3.0 +15.7 +7.9 +14.6 -2.0

the unsupervised algorithm, while it becomes the 355 times

smaller in the supervised algorithm. It indicates the BN

layer helps to make the positive and negative samples easier

to be discriminated. Particularly, the unsupervised tracklet

based algorithm obtains a huge promotion. As in previous

work ( [12, 29]), BN may help the deep network converge

faster and we find that the faster convergence helps better

distinguish negative pairs. We compare two BN structures

in Table 2: 1) adding a batch normalization layer at the top

of the Resnet-50 backbone (R+BN); 2) applying an embed-

ding structure (BN-Dropout-FC-BN) after the Resnet-50

backbone. The performances of the two structure are shown

in Table 2. R+BN achieves a better result on Market-1501,

while the embedding block performs better on MARS. To

avoid overfitting, we adopt the embedding block in this pa-

per, since the embedding block includes a dropout layer.

Table 5: Effect of the self-camera constraint item.

Market-1501 MARS

Metric(%) mAP R 1 mAP R 1

base1 54.8 77.5 53.1 55.1

w/o self-cam2 65.8 83.7 36.7 53.4

w self-cam2 71.0 87.9 40.5 59.9

1 Baseline model of intra-camera learning stage.
2 Self-camera Constraint item.

Table 6: Robust analysis of noisy tracklets on MARS

Rate ID duplication Mislabeling

Metric(%) mAP R1 R5 mAP R1 R5

0% 35.1 55.1 74.6 35.1 55.1 74.6

20% 31.9 54.1 68.9 33.4 53.3 67.2

50% 30.1 51.4 66.3 26.8 45.7 61.4

100% 27.2 48.8 64.2 - - -

Figure 3: (a) and (b) show the average similarity score of

positive pairs and negative pairs on Market-1501, respec-

tively. The average similarity score of negative pairs de-

clines obviously after using BN for both of the supervised

and unsupervised training.

Threshold λ analysis. The threshold λ is important for

the initialization and updating of CVG. The precision scores

and recall scores with different λ are shown in Figure 4 .

With λ increasing from 0.1 to 0.9, the precision is closing

to 1 while the recall score is declining to 0. As shown in

Figure 4, the precision score is greatly improved after us-

ing the symmetric constraint. It proves that our symmetric

constraint strategy is effective. There is a good trade-off

between recall and precision, when λ is set between 0.55

and 0.75. Therefore, in the Table 3, we evaluate the per-

formance of λ from {0.55, 0.6, 0.65, 0.7, 0.75}. From the

average Rank-1, λ = 0.65 achieves the best performance,

and λ = 0.75 performs worst.

Self-camera constraint item analysis. We introduce

a self-camera constraint item into the cross-camera loss

(Eq. (8)), to alleviate the misleading by noisy associations.

The ablation study of the self-camera constraint item is

shown in Table 5. The self-camera constraint item improves

5.2% mAP and 4.2% rank-1 in Market-1501, while im-

proving 3.8% mAP and 5.4% rank-1 in MARS. Particularly
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Figure 4: Precision scores and recall scores of different λ.

In this figure,”pre” denotes the precision. ”rec” denotes the

recall. ”sys pre” and ”sys rec” respectively denote the pre-

cision and recall of using the symmetry condition. The hor-

izontal axis is the value of the λ.

in the MARS, without the self-camera constraint item, the

inter-camera learning even brings down the performance of

the intra-camera learning stage.

Effectiveness of the cross-camera loss. The inter-

camera training stage encourages the model to learn the

view-invariant representations. The performance of the

intra-camera learning and inter-camera learning are shown

in Table 4. We can observe that the inter-camera stage av-

eragely improves 7.55% rank-1 for image RE-ID datasets,

and averagely improves 11.1% rank-1 for video RE-ID

datasets. This demonstrates the effective of CVG and the

cross-camera loss.

Robust analysis of intra-camera stage. The assump-

tion of our experiments is one person has only one tracklet

in each camera through SSTT sampling. However, it may

not always hold in real-word applications. The ID duplica-

tion and mislabelling often occur in practice. The ID du-

plication is that the tracklets of the same person are given

different pseudo labels. While the mislabelling is assigned

the tracklets of different persons with the same pseudo la-

bels. The base of UGA is the intra-camera learning stage.

To evaluate the robust of this stage, we simulate noisy track-

lets in these two situations. For the ID duplication sit-

uation, we randomly select a part (20%, 50%, 100%) of

persons per camera to create the ID duplication, while the

remaining IDs still sample one tracklet. In Table 6, we

can see that 20% of the persons have ID duplication, the

model of the intra-camera stage declines by 1% on rank-1;

when 50% of the persons have ID duplication, the model

of the intra-camera stage declines by 3.7% on rank-1; when

all the persons have ID duplication, the model of the intra-

camera stage still achieves 48.8% rank-1 and 27.2% mAP.

The model of the intra-camera stage is not very sensitive

to the ID duplication noise. For the mislabelling situa-

tion, we randomly merge a portion (20%, 50%) of track-

lets to simulate the mislabelling situation. When merging

20% of all the tracklets, rank-1 is decreased by 1.8%; when

merging with 50% of all the tracklets, rank-1 is decreased

by 9.4%. Under the influence of two kinds of noise, the

intra-camera learning stage model still achieves a competi-

tive performance.

4.4. Comparison to the state­of­the­art methods

We compare our UGA with some state-of-the-art un-

supervised person RE-ID methods, specifically comparing

with four similar unsupervised graph based methods. The

performances of these methods are shown in Table 7 and

Table 8.

Image person RE-ID datasets. Table 7 shows the per-

formance of several state-of-the-art methods on four image

person RE-ID datasets, containing four GAN based meth-

ods (HHL, SPGAN, SPGAN+LMP), two domain adapta-

tion methods (TJ-AIDL, ECN), four unsupervised cluster-

ing methods (BUC, CAMEL, PUL and CDS) and two track-

let based method (UTAL, TAUDL). The proposed UGA

outperforms all these approaches. Specifically, UGA aver-

agely outperforms the second by 9.6% on Rank-1 accuracy

and 16.8% on mAP, respectively. Both of the adaptation

methods and cluster methods rely on source domain adap-

tation, specifically cluster method is inefficient on the large

dataset (i.e., MSMT17) since it will spend much time on of-

fline data clustering. Comparing with them, UGA has better

generalization ability, since UGA does not need source do-

main pre-training and the association progress (CVG) can

be updated online.

Video person RE-ID datasets. We compare the pro-

posed UGA on three video person RE-ID datasets with

several state-of-the-art approaches in Table 8. The pro-

posed UGA outperforms all the state-of-the-art methods on

iLIDS-VID, 15.6% higher than the second (SMP) on Rank-

1. On Prid2011, UGA is also competitive and even reaches

100% on Rank-20. On MARS, our approach does not per-

form as good as EUG and BUC. However, as shown in

BUC [23] and EUG [39], BUC is sensitive to the hyper-

parameter and merging times, while EUG is sensitive to

the enlarging factors. When the enlarging factors chang-

ing, the rank-1 of EUG declines from 62.67% to 42.77%.

The Rank-1 of UGA varies from 59.9% to 54.5% with the λ

changing. Comparatively, UGA is more robust to the hyper-

parameter.

Comparison with the unsupervised graph based

methods. We compare our UGA with the existed graph

based work (i.e., TUADL [17], UTAL [18], RACE [40]

and ECN [50]) in Table 7 and Table 8. UGA averagely out-

performs TAUDL by (17.4% on Rank-1, 21.3% on mAP) in

image person RE-ID datasets and (25.4% on Rank-1, 16.6%

on Rank-5) in video person RE-ID datasets. UGA outper-

forms UTAL by (12.3% on Rank-1, 16.8% on mAP) in im-

age person RE-ID datasets and (18.9% on Rank-1, 10.4%

on Rank-5) in video person RE-ID datasets. In addition,

both of TAUDL and UTAL matches the positive pairs in the
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Table 7: Comparing UGA with the state-of-the-art methods on the image person RE-ID dataset

Dataset Reference Method Market1501 DukeMTMC-ReID CUHK03 MSMT17

metric mAP Rank 1 mAP Rank 1 mAP Rank 1 mAP Rank 1

HHL [49] ECCV’18 GAN 31.4 62.2 27.2 46.9 - - - -

SPGAN [4] CVPR’18 GAN 22.8 51.5 22.3 41.1

SPGAN+LMP [4] CVPR’18 GAN 26.7 57.7 26.2 46.4 - - - -

TJ-AIDL [36] CVPR’17 adaptation 26.5 58.2 23.0 44.3 - - - -

BUC [23] AAA’19 cluster 38.3 66.2 27.5 47.4 - - - -

CAMEL [43] ICCV’17 cluster 26.3 54.5 - - - 39.4 - -

PUL [5] ToMM’18 cluster 20.1 44.7 16.4 30.4 - - - -

CDS [16] ICME’19 cluster 39.9 71.6 42.7 67.2 - - - -

TAUDL [17] ECCV’18 tracklet 41.2 63.7 43.5 61.7 31.2 44.7 12.5 28.4

UTAL [18] TPAMI’19 tracklet 46.2 69.2 44.6 62.3 42.3 56.3 13.1 31.4

ECN [50] CVPR’19 adaptation 43.0 75.1 40.4 63.3 - - 10.2 30.2

UGA(ours) This work tracklet 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5

1-st and 2-nd best results are in red/blue respectively.

Table 8: Comparing UGA with the state-of-the-art methods on the video person RE-ID dataset.

Datasets Reference PRID2011 iLIDS-VID MARS

Metric(%) R1 R5 R20 R1 R5 R20 R1 R5 R20 mAP

SMP [24] ICCV’17 80.9 95.6 99.4 41.7 66.3 80.7 23.9 35.8 44.9 10.5

DGM+MLAPG [41] ICCV’17 73.5 92.6 99.0 37.1 61.3 82.0 24.6 42.6 57.2 11.8

DGM+IDE [41] ICCV’17 56.4 81.3 96.4 36.2 62.8 82.7 36.8 54.0 68.5 21.3

DASy [1] ECCV’18 43.0 - - 56.5 - - - - - -

GRDL [13] ECCV’16 41.6 76.4 89.9 25.7 49.9 77.6 19.3 33.2 46.5 9.56

DTW [26] PR’17 41.7 67.1 90.1 31.5 62.1 82.4 - - - -

BUC [23] AAAI’19 - - - - - - 61.1 75.1 80.0 38.0

EUG(p=0.05) [39] CVPR’18 - - - - - - 62.7 74.9 82.6 42.5

RACE [40] ECCV’18 50.6 79.4 91.8 19.3 39.3 68.7 43.2 57.1 67.6 24.5

TAUDL [17] ECCV’18 49.4 78.7 98.9 26.7 51.3 82.0 43.8 59.9 72.8 29.1

UTAL [18] TPAMI’19 54.7 83.1 96.2 35.1 59.0 83.8 49.9 66.4 77.8 35.2

UGA(ours) This work 80.9 94.4 100 57.3 72.0 87.3 58.1 73.4 81.4 39.3

1-st and 2-nd best results are in red/blue respectively.

mini batch which needs a large batch size (384) to sample

the underlying positive pairs and may occupy at least five

1080Ti GPUs in training. But UGA can be implemented

on one 1080-Ti, since CVG can be stored in CPU memory.

Different from RACE [40] merging the underlying positive

tracklets directly, UGA uses the cross-camera loss and CVG

to associate tracklets. It is more robust to noisy associations.

Due to this, UGA easily achieves the higher performance

than RACE. Comparing with ECN, UGA averagely outper-

forms ECN by (14.4% on Rank-1, 16.1% on mAP) in im-

age person RE-ID datasets. Because ECN is simply apply

a KNN graph to associate the underlying positive samples,

while UGA uses the more precise graph (CVG) to associate

the underlying positive pairs.

5. Conclusion

In this paper, we have proposed a novel yet effective Un-

supervised Graph Association (UGA) approach to address

the unsupervised person RE-ID problem. The core ideas

of UGA are finding more underlying correct associations

and avoiding the damage of noisy associations. To that end,

we mainly adopt an embedding block, a cross-view graph

(CVG) mining strategy and a graph weighted cross-camera

loss. Experiments on four image RE-ID dataset and three

video RE-ID dataset demonstrate the superiority of UGA.
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