
  

  

Abstract— Road region detection is a crucial functionality for 

road following in advanced driver assistance systems (ADAS). 

To address the problem of environment interference in road 

segmentation through a monocular vision approach, a novel 

graph-cut based method is proposed in this paper. The novelty 

of this proposal is that weights of neighboring links (n-links) in a 

s-t graph are estimated by Multilayer Perceptrons (MLPs) 

rather than calculating by the neighboring contrast simply in 

previous graph-cut based methods. Estimating n-link weights by 

MLPs reinforces the ability of graph-cut based road 

segmentation algorithms to tolerate the complex and changeable 

appearance of road surfaces. Additionally, the Gentle AdaBoost 

algorithm is integrated into the graph-cut framework to 

estimate the terminal link (t-link) weights in the s-t graph. 

Experiments are conducted to show the robustness and 

efficiency of the proposed method. 

I. INTRODUCTION 

Road detection system is a pivotal component of 
environmental perception systems of ADAS. The relative 
position between road boundaries and the vehicle itself can be 
acquired through road detection for vehicle navigation, lateral 
control, lane departure warning, etc. 

Most of road detection methods are based on computer 
vision approaches so far, owing to the richness of features, low 
cost and high resolution of camera data. In computer vision 
based road detection methods, the process of separating road 
region pixels from others in each road image is referred to road 
segmentation, which is in focus in this paper.  

Road segmentation is essentially a challenging problem. 
On the one hand, road surfaces show changeable appearance, 
owing to different surface materials, weather conditions, 
illumination, artificial markings and so on. On the other hand, 
traffic scenes are complex owing to continuously changing 
surroundings and the presence of various vehicles or 
pedestrians. A large amount of research has been carried out in 
the last two decades for more accurate, more robust and faster 
road segmentation. The general idea of road segmentation is 
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recognizing road pixels and background pixels by some 
distinguishing features, most often colors and texture cues. To 
mitigate impacts of some environmental factors, 
transformation of features [1] can be performed. In principle, 
the existing approaches to road segmentation can be 
categorized to two classes: unsupervised and supervised. 
Unsupervised methods collect pixels or regions with similarity 
into groups. Crisman et al. [2] adopted ISODATA (Iterative 
Self-Organizing Data Analysis Technique) clustering in their 
road following system. Cheng et al. [3] applied mean-shift 
algorithm for unstructured road segmentation. Malik et al. [4] 
used a self-organizing map to detect drivable road surfaces. 
Supervised methods regard road segmentation as a 
two-category classification problem and train classifier with 
labeled data to distinguish road regions. Zhou et al. [5] 
employed a Fuzzy SVM classifier for road segmentation and 
an online-learning scheme was combined. For optimal feature 
set is hard to be determined manually by prior-knowledge, Sha 
et al. [6] adopted boosting algorithm for its ability of feature 
selection. Kuhnl et al. [7] also adopted a boosting algorithm, 
i.e. GentleBoost, to extract road areas with a certain 
confidence. Basically, the methods mentioned above utilize 
only the local information, resulting in that the segmentation is 
sensitive to local interference, such as shadows and pavement 
cracks. Whereas graph-cut based methods [8, 9] integrate local 
and global information tightly, showing better robustness to 
local factors to a certain extent. In addition, applying graph cut 
to road segmentation is intuitive, for graph cut divides a road 
image into a road part (foreground) and a non-road part 
(background). However, previous graph-cut methods are 
prone to regard margins with high contrast caused by lane 
markings or strong shadows as road boundaries. It is attributed 
to that weights of neighboring links (n-links) in a s-t graph are 
calculated simply by neighboring contrast in previous 
graph-cut based methods. 

In this paper, the graph-cut framework is adopted to 
extract road areas. It’s different from previous methods that 
we use Multilayer Perceptrons (MLPs) to learn mapping 
relations from features of neighboring pixels to n-link weights 
and then estimate n-link weights by MLPs, which is the 
meaning of “learnable” in the title. This approach reinforces 
the ability of graph-cut based algorithms to tolerate complex 
and changeable appearance of road surfaces. Additionally, the 
Gentle AdaBoost algorithm is integrated into the graph-cut 
framework to estimate the terminal link (t-link) weights in a 
s-t graph. Because boosting methods have been proved to be 
very successful in feature selection [6] and the Gentle 
AdaBoost is often good at regression. Contrast experiments 
are carried out to show the performance of our method. 

The remained structure of this paper is organized as 
follows: Section II analyzes the problem of previous graph-cut 
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based methods firstly, and elaborates the proposed n-link and 
t-link weights estimate method next. In Section III, 
experiments are conducted and their results are described. 
Finally, the work is concluded in Section IV. 

II. A PROPOSED ROAD SEGMENTATION METHOD 

A. Problem Formulation 

Essentially, road segmentation can be considered as a pixel 
labeling problem. Each pixel p  in an image is represented by 

a feature vector pv . An image P  can be represented by a set 

of feature vector denoted by 
1 2

{ , , , }
N

V v v v= ⋯ , where N  

denotes the pixel number in an image. The target of road 
segmentation on a single road image is to find a corresponding 

label set { | {0,1}, 1,2, }
i i

L l l i N= ∈ = ⋯ , i.e. assign a label to 

each pixel in the image. The labels of road region pixels are 
denoted by 1 while those of background pixels are set to 0. 

In graph-cut based methods, a road image is modeling by a 
s-t graph [10, 11]. A s-t graph is composed of two different 
types of nodes and edges. Such two types of nodes refer to 
neighborhood nodes and terminal nodes, respectively. The 
former correspond to pixels in a road image, while the latter 
include a source node s  and a sink node t . Edges those 
connect neighborhood nodes are n-links, and edges those link 
terminal nodes with neighborhood nodes are t-links [11]. To 
indicate link strength, a non-negative weight is assigned to 
each edge. A cut is a subset of edges which are to be cut off, 
and its cost is the sum of weights of edges in the cut. With 
respect to image segmentation, a cut divides nodes of a s-t 
graph into two disjoint subsets, which represent foreground 
and background. A min-cut is the one with the minimum cost, 
corresponding to an optimal segmentation of an image. 
Finding a min-cut can be formalized as a process of 
minimizing an energy function below [10, 11]: 

                         ( ) ( ) ( )E L R L B Lγ= + ,                       (1) 

where ( )R L  is the regional term which is with respect to the 

property of each individual node in a s-t graph,  ( )B L  is the 

smoothness term which is with regard to the relation between 
neighboring nodes, γ  is a constant that indicates the relative 

importance of the two terms.  

The regional term in (1) is defined as follows [10, 11]  

                                  ( ) ( )p p

p P

R L R l
∈

= ∑ ,                          (2) 

where ( )p pR l  is a t-link weight which can be regarded as a 

penalty for assigning label pl  to a neighborhood node p . 

(0)pR  denotes the weight of the link to the source node while 

(1)pR  corresponds to the weight of the link to the sink node. 

The regional term is supposed to be minimum only if all the 

pixels are labeled correctly. Generally, ( )R l  can be calculated 

according to a probability distribution of data. For instance, 
Rother et al. [12] used Gaussian Mixture Models (GMMs) to 

model both foreground and background and defined ( )R l  as a 

negative logarithm of the likelihood function of GMMs. But 
GMMs assume that data obey the Gaussian distribution, which 

is not realistic for changeable and complex traffic scenes. Thus, 

we apply the Gentle AdaBoost algorithm to estimate ( )R l , i.e. 

the t-link weights, for its feature selection and regression 
ability. 

 The boundary term in (1) is defined as follows [10, 11]: 

                        ( , )

( , )

( ) ( , )p q p q

p q

B L l l Bδ
∈

= ⋅∑
N

,                  (3) 

where N  is a set composed of neighboring pixel pairs, 

( , )p ql lδ  is a function taking value 0 and 1 for p ql l=  and 

p ql l≠  respectively. ( , )p ql lδ  indicates that penalties only 

exists at the boundary between foreground and background. 

( , )p qB  denotes a n-link  weight, which represents the similarity 

between two neighboring pixels p  and q . In previous 

graph-cut based segmentation methods, ( , )p qB  is usually 

defined in a format as follows [9, 11, 12]: 

                          
2

( , )
exp[ ( ) ]

p q p q
B v vβ∝ − − ,                     (4) 

where β  is a constant which can be determined by the 

average contrast over an image [12]. Obviously, a 
corresponding penalty is high if different labels are assigned to 
two neighboring pixels with high similarity, whereas labeling 
two pixels with high contrast differently leads to a low 
penalty. 

(a) (b)
Fig. 1 Changeable road surfaces. (a) is a traffic scene after raining, and (b) 

shows a road surface with serve shadows and strong illumination. Red 
rectangles mark sub-regions with strong contrast while yellow ones mark road 

boundaries with low contrast. 

However, a road surface often shows considerable 
intra-regional diversity. Appearance of road surfaces is 
changeable and complex for the sake of changing illumination, 
shadows, weather conditions, different road surface materials, 
lane markings and so on. As shown in Fig. 1, pixels on both 
sides of lane marking edges or shadow margins generate 
strong contrast, while contrast on road boundaries is not as 
strong as hoped. Indeed, contrast at road boundaries is often 
much weaker than that of some sub-regions of road areas. As a 
result, the min-cut may deviate from the real road boundaries, 
when n-link weights are defined by (4) as in previous graph- 
cut methods.  

In perspective of energy function designing for road 
segmentation, the energy function should be minimized only 
when the min-cut occurs at the road boundary. Thus, it’s 
necessary to seek other approaches to define n-link weights 
instead of calculating by neighboring contrast simply as in (4). 
The key lies in how to find the mapping relations from features 
of neighboring pixels to n-link weights. An intuitive way is to 
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learn such mapping relations automatically from data, i.e. 
labeled road images. In this paper, we adopt MLPs to model 
such mapping relations for their innate ability on data fitting. 

B. Estimating n-link weights by MLPs 

In our method, neighborhood nodes of a s-t graph are 
linked in a 8-connected way. Specifically, MLPs are adopted 
to estimate n-link weights of neighboring pixels which are 
adjacent either horizontally/vertically or diagonally. Actually, 
a graph composed of neighborhood nodes connected in the 
8-connected way can be divided into numbers of basic units, 
each of which is with a single node and four edges, as shown 
in Fig. 2. Thus, we can obtain all n-link weights in a s-t graph 
by estimating weights of n-links in four direction as Fig. 2 (b) 
shown. Certainly, nodes on borders actually don’t have such 
four edges, but we can regard absent edges as ones with zero 
weights. Four independent MLPs are constructed to model the 
mapping relations of n-links in such four directions 
respectively. 

(a) (b)  

Fig. 2 (a) is a part of a graph whose nodes are linked in a 8-connected way, and 
(b) is a basic unit of (a). 

Table I. Definition of input features of MLPs 

Feature Definition 

Normalized  
color 

/ ( )r R R G B= + +  / ( )g G R G B= + +  

/ ( )b B R G B= + + 2 2h H H S= + 2 2s S H S= +  

Neighboring 
color 

difference 

2( )
c n

cd C C= − , where [ , , , , ]C r g b h s= , indexes c  

and n  refer to a current node and its neighboring node 

respectively. 

Gradient 

' /Gr Gr Grm= , ' / (2 )θ θ π= , where Gr  and  θ  are 

gradient strength and orientation at a current node, Grm  

is the maximum gradient strength in an image.  

Retinal 
position 

' /x x Iw= , ' /y y Ih= , where ( , )x y is the coordinate of 

a current node, Iw  and Ih  are the width and height of an 

image respectively. 

Each MLP is a four-layer feedforward network, composed 
of one input layer, two hidden layer and one output layer. 
Definitely, such four layers contain 10, 20, 20, 1 neuron(s) 
respectively. The sigmoid function is adopted as the activation 
function of each neuron. We take 10 1×  dimensional feature 

vectors as input. As listed in Table I, the input features include 
color features, neighboring color difference, gradient features 
and retinal position. The output layer of each MLP is of an 
output scale between 0 and 1. The output value is regarded as a 
corresponding n-link weight. Apparently, the closer the output 
value is to 1, the greater the n-link weight is. 

 Road images are labeled in pixels to train the MLPs. But it’s 
not necessary to take all pixels in an image to train. On the one 
hand, it will make the quantity of training data be huge and 
thereby lead to a large amount of computation. On the other 
hand, it’s difficult to make the MLPs focus on the data which 
we are really interest in, such as shadows, light spots, lane 

markings， etc. Therefore, we need to apply a certain sampling 

method to pick pixels from training images. For each training 
image, positive samples are extracted from only road areas, 
and negative samples are pixels just on the road boundaries. 
Positive samples are not picked from non-road areas for we 
don’t care n-link weights of nodes in non-road areas. 
Additionally, reducing the diversity of training data 
contributes to convergence of MLPs. We follow some 
probabilities to choose positive samples randomly from road 
areas with high contrast, strong grayscale intensity and other 
normal areas. All pixels just on road boundaries are picked as 
negative samples for such pixels are far less than pixels in road 
areas. The corresponding output values for such positive and 
negative samples are 1 and 0 respectively. Once training 
samples are ready, we adopted the RPROP (Resilient 
Backpropagation) algorithm [13] to train the MLPs. Owing to 
the discrepancy on quantities of positive and negative samples, 
additional weights should be put on negative samples to 
balance between hit-rate and false-alarm rate. Each weight 
coefficient is set as follows: 

                          
1 , 1

( )
/ , 0p n

if y
w y

N N if y

=
=  =

,                           (5) 

where pN  and 
n

N  denote numbers of positive and negative 

samples respectively, y  is the label of a sample, i.e. 1y =  for 

positive samples and 0y =  for negative ones.  

 

Fig. 3 Results of estimating n-link weights in the 4 directions by MLPs 

After MLPs are trained, they are integrated into the graph- 
cut framework to estimate n-link weights: 

               ( , ) ,( ), ( , )p q d p qB MLP v d dir p q= = ,                 (6) 

where ( , )dir p q  denotes the direction of the edge linking 

pixel p  and q , ,p qv  is the input feature vector. Fig. 3 shows 

results of n-link weights estimation of a road image with 
strong illumination and shadows. In Fig. 3, n-link weights in 
the 4 directions are converted to a range of 0 to 255, shown as 
grayscale images. It’s shown that a majority of pixels in road 
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areas are of high n-link weights with their respective 
neighbors while pixels near the road boundaries are of low 
n-link weights.  Estimating n-link weights by MLPs shows 
resistance to illumination and shadows, which cause strong 
contrast in road areas and disturb previous methods estimating 
by contrast. Admittedly, a few pixels don’t obtain consistent 
n-link weights as hoped. But it doesn’t matter, because global 
energy minimization of graph cut can relieve impacts of some 
local interference to some extent. 

C. Estimating t-link weights by Gentle Adaboost 

The Gentle AdaBoost (GAB) algorithm [14] is applied to 
estimate t-link weights of each pixel. As a variant of AdaBoost, 
GAB owns excellent ability of feature selection. Furthermore, 
GAB is more numerically stable and robust to noise, for it puts 
less emphasis on outliers. Additionally, GAB is known as one 
of the best out of box supervised regression algorithm [15].  

We adopt a GAB classifier composed of 500 weak 
classifiers. The weak classifiers in GAB are set as decision 
tree stumps, i.e. decision trees with only a single split node per 
tree. Input of the GAB classifier is a 13 1×  dimensional 

feature vector, including color features (RGB values, mean 
and variance of RGB values in a 9 9×  window whose center 

is a current pixel), gradient information (gradient strength and 
orientation) and retinal position. The GAB classifier outputs a 
weighted sum of votes rather than a class label. And the GAB 
is supposed to output positive (negative) values for positive 
(negative) samples. Labeled road images are used to train the 
GAB. Positive and negative samples are picked randomly 
from road regions and non-road regions respectively.  

After being trained, it’s integrated into the graph-cut 
framework to estimate t-link weights. The t-links include links 
from  pixels to the  source node s  and links from  pixels to the  

sink node t . Weights on such two types of links of a pixel p  

are defined as follows: 

             

1
, 0

1 exp( )
( , )

1
, 1

1 exp( )

p

p

p p p

p

p

l
w x

R x l

l
w x

 = + − ⋅
= 

 =
 + ⋅

,             (7) 

where w  is a positive constant and is set as 0.5 in the 

experiments, px  denotes output of GAB on the pixel p , pl  is 

a label, 0pl =  for the link to s , 1pl =  for the link to t . If px  

is positive, assigning label 0 to p  will suffer larger penalty 

than labeling 1 to it. 

Once n-link and t-link weights are estimated through 
above methods, we can get a label of each pixel by minimizing 
the energy defined in (1): 

                              ˆ argmin ( )
L

L E L= .                           (8) 

This can be solved by the max-flow/min-cut algorithm [10]. 
Finally, we can get optimal segmentation of road images. 

III. EXPERIMENTAL RESULTS 

Experiments are conducted on a labeled dataset [16] to 
evaluate our proposed road segmentation method. The dataset 

includes two road image sequences captured under different 
weather conditions. One sequence (RainySet) contains 251 
images captured after raining. Thus, road surfaces in this 
sequence are wet. Another sequence (SunnySet) is composed 
of 332 labeled images, which were acquired during a sunny 
day. Shadows and lighting variations are widely distributed in 
this sequence. The dataset are shown to be a well-balanced 
validation set in terms of diversity of road scenes [16]. Each 
image in the dataset is with a resolution of 640 480× . 

Specifically, the region of interest is set as the lower 60% part 
of each road image. It's based on the fact that road regions are 
usually in the lower part of road images. In real applications, 
vanishing lines can be estimated to determine where ground 
surfaces are roughly located. 

The dataset are separated into two parts, i.e. a training set 
and a testing set. To build the training set, about 20%  images 

are picked randomly from each sequence. The remained 
images compose the testing set. The MLPs and GAB are 
trained on the training set, which contains images from both 
sequences. Then, contrast experiments are carried out on the 
testing set. Our method is compared with graph-cut based 
methods in which n-link weights are calculated by 
neighboring contrast as in (4) and t-link weights are estimated 
by Gaussian mixture models (GMMs), respectively. Three 
pixelwise measures, i.e. average precision P , average recall 
R  and average F-measure F , are adopted to perform 
quantitative evaluations of road segmentation results. Such 
three measures are defined as follows:  

  

1 1

1 1

( ) ( )

,

( ) ( )

2

t t

t t

N N

i i i i

i i

N N

i i

i i

Num A M Num A M

P R

Num A Num M

PR
F

P R

= =

= =

= =

=
+

∑ ∑

∑ ∑

∩ ∩

 ,     (9) 

where 
i

A  denotes  the detected road area of a given image i , 

i
M  is the corresponding ground-truth mask, ( )Num i  denotes 

the number of elements in a set, 
t

N  is the number of testing 

images. These measures of testing results are listed in Table II 
and Table III, which record performance on the RainySet and 
SunnySet respectively. The first column of both tables 
indicates the methods integrated into the graph-cut framework 
to estimate t-link weights and n-link weights, with the format 
of “t-link weights estimation method + n-link weights 
estimation method”. Specially, CON represents the method in 
which n-link weights are calculated by neighboring contrast as 
in (4). With respect to GMMs, models are necessary to update 
with changes of road scenes. The strategy that we updates the 
models by a segmentation result of a previous frame is 
indexed by ① in the tables.  At the very first frame, the models 
in strategy ① is initialized by the ground-truth. To compare 
performance of MLPs and CON more specifically, another 
strategy that models in GMMs are updated by the ground-truth 
of a previous frame is also adopted, denoted by ② in the tables. 
Either foreground or background is modeled by 5 Gaussian 
models in GMMs. It’s found that taking more or less 
components doesn’t bring obvious changes in road 
segmentation results, after cases of 3 to 30 components are 
tested.  
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With respect to both testing sets, the original method, i.e. 
GMMs + CON, shows high average precision P . But R  is    
relatively low for there exists high contrast margins on road 
surfaces, which result in incomplete road segmentation. After 
CON is replaced by MLPs, R  increase obviously although P  
decrease slightly. After MLPs and GAB are introduced, both 
P  and R  are improved. It’s shown that estimating n-link 
weights by MLPs improves the average F-measure on both 
sequences. We attribute such performance improvement to 
that MLPs learn the mapping relations from features of 
neighboring pixels to n-link weights. Therefore, MLPs make 
the estimation of n-link weights more robust to environment 
factors such as shadows, lighting variations, and lane 
markings, etc. In other words, estimating n-link weights by 
MLPs reinforces the ability of graph-cut based methods to 
tolerate the complex and changeable appearance of road 
surfaces. In terms of t-link weights estimation, GBA shows 
similar or better performance than GMMs. It’s owing to that 
GMMs assume data obey the Gaussian distribution, which 
doesn’t match with the complex traffic scenes to some extent. 
Additionally, GBA has an aptitude for feature selection and 
data regression. Different model updating strategies of GMMs 
lead to the performance discrepancy between methods 

indexed by ① and those indexed by ②. It’s noticed in Table 

III that GMMs + CON ① achieves a low performance, for 

such a method fails to overcome significant environment 
interference and capture the road surfaces in a fragment of the 
SunnySet. 

Table II. Performance on the RainySet 

Methods P (%) R (%) F (%) 

GMMs + CON ① 99.65 90.93 95.09 

GMMs + MLPs ① 99.10 98.68 98.89 

GMMs + CON ② 99.17 94.62 96.84 

 GMMs + MLPs ② 99.00 98.91 98.96 

GBA + CON  97.02 97.26 97.14 

GBA + MLPs 98.58 98.76 98.67 

Table III. Performance on the SunnySet 

Methods P (%) R (%) F (%) 

GMMs + CON ① 98.03 68.65 80.75 

GMMs + MLPs ① 97.41 98.00 97.70 

GMMs + CON ② 98.05 96.67 97.35 

GMMs + MLPs ② 97.56 98.58 98.07 

GBA + CON  98.65 98.62 98.63 

GBA + MLPs 98.82 98.99 98.91 

To illustrate the effectiveness qualitatively, some results of 
road segmentation on both sequences are shown in Fig. 4. 
Some interference factors, such as serve shadows, vehicles on 
the road, lane markings and so on, are distributed in the shown 
examples. By observing col. 2 and col. 4 (col. for column), it 
can be found easily that methods using CON for n-link 
weights estimation are sensitive to high and low contrast, 
which is pointed out in Part A of Section II. Whereas 

estimating n-link weights by MLPs are shown to be able to 
relieve such impact. Comparing col. 2 and col. 4 or col.3 and 
col. 5, we see that GBA outperforms GMMs on t-link weights 
estimation. Results in col. 5 are very approximate to the 
ground-truth. 

 Experiments above have shown the robustness and 
efficiency of our proposed method.  

IV. CONCLUSIONS 

In this paper, we propose a novel graph-cut based method 

on road segmentation.  Firstly, we point out that previous 

graph-cut based methods are prone to regard regions with 

high contrast as road boundaries. To overcome such an 

obstacle, weights of n-links in a s-t graph are estimated by 

MLPs rather than calculating by the neighboring contrast 

simply in previous methods. Additionally, the GAB is 

integrated in the graph-cut framework to estimate t-link 

weights. Contrast experiments have shown the performance 

of our proposed method. 

The weakness of our proposed method is time-consuming. 

The average time cost by a single frame is 1.8 s on a PC with a 

CPU of Intel Core i5. In the future, we will accelerate the 

process through parallel computing by GPU, for MLP and 

GAB are suitable for parallel process. Additionally, more 

evaluation experiments will be carried out next. 
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Fig. 4 Examples of road segmentation results. Detected road surfaces are marked by red regions. Row 1 to 4 display results on the RainySet, and Row 5-8 show 

those on the SunnySet. Column 1 list original images, and the remained columns are results of GMMs + CON ①, GMMs + MLPs ①, GBA + CON, GBA + 
MLPs, respectively. 
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