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Abstract. Using lower limb rehabilitation robots to help stroke patients
recover their walking ability is becoming more and more popular
presently. The natural and personalized gait trajectories designed for
robot assisted gait training are very important for improving the thera-
peutic results. Meanwhile, it has been proved that human gaits are closely
related to anthropometric features, which however has not been well
researched. Therefore, a method based on anthropometric features for
prediction of patient-specific gait trajectories is proposed in this paper.
Firstly, Fourier series are used to fit gait trajectories, hence, gait patterns
can be represented by the obtained Fourier coefficients. Then, human age,
gender and 12 body parameters are used to design the gait prediction
model. For the purpose of easy application on lower limb rehabilitation
robots, the anthropometric features are simplified by an optimization
method based on the minimal-redundancy-maximal-relevance criterion.
Moreover, the relationship between the simplified features and human
gaits is modeled by using a random forest algorithm, based on which the
patient-specific gait trajectories can be predicted. Finally, the perfor-
mance of the designed gait prediction method is validated on a dataset.
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1 Introduction

Stroke is one of the common diseases that cause nervous system damage
and even lead to death. Fortunately, due to timely treatment after stroke,
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the relative death rate has dropped rapidly [1]. However, the damages caused
by stroke usually have long-term negative effects on patients’ mobility, muscle
control ability and gait patterns, and almost a half of stroke patients cannot
walk without assistance [2].

Lower limb rehabilitation robots (LLRRs) have been developed to assist
stroke patients to recover their walking ability in the last 20 years. Lokomat [3],
ALEX [4] and Rewalk [5] are typical examples of the LLRR. Since gait training
robots will be used by different patients, it is crucial to design personalized gait
patterns for this kind of robot, which can be predicted by using the anthropo-
metric parameters. However, the accurate relationship between anthropometric
parameters and the gait pattern has not been well researched.

Luu et al. [8] proposed a gait trajectory generation method based on finite
Fourier series (FFS) and modeled the relationship between the Fourier coeffi-
cients and gait feature, i.e., cadence and stride length. It can be seen from [8],
human gait patterns can be represented by the associated Fourier coefficients.
Koopman et al. [7] selected six key events to describe an individual’s gait pattern
in a gait cycle. Then a linear model was used to describe the relationship among
the key events and human heights and walking speeds.

Luu et al. also adopted the multi-layer perceptron neural networks (MLPNN)
model [6] and the general regression neural network (GRNN) model [9] for the
gait pattern prediction, which are based on the gait parameters and four anthro-
pometric features of the human legs. However, human gait trajectories are related
to more factors, as is shown in [10]. Fourteen anthropometric features were used
to estimate the hip, knee, and ankle joint angles, and the Gaussian process
regression (GPR) method was used to design the estimation model [10]. The
shortcoming of this method is that the estimation time is longer and the esti-
mated gait patterns are inconvenient to be implemented on the platform of
LLRRs.

This paper mainly focuses on developing a machine learning approach to pre-
dict personalized gait patterns. A Random Forest (RF) algorithm is designed to
learn the relationship between the anthropometric features and the gait trajecto-
ries. To reduce calculation load, the gait trajectories are represented by Fourier
coefficients which are used as the outputs of the RF algorithm. Fourteen anthro-
pometric features which are same as [10] are used as the inputs of the RF algo-
rithm. For the purpose of easy application on LLRRs, the minimal-redundancy-
maximal-relevance (mRMR) criterion is adopted for the feature optimization,
which is implemented based on the mutual information of inter-anthropometric
features and the mutual information between the anthropometric features and
Fourier coefficients. It can be found in the experiment that the modeling effi-
ciency of the RF algorithm is higher than that of GPR. It can seen from the
result of the anthropometric feature optimization of this paper and the com-
parison experiment that, the features used in [8,9] is insufficient for accurate
prediction of personalized gait patterns, and the features used in [10] are too
redundant for human gait prediction.
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The remainder of this paper is organized as follows. Section 2 illustrates an
LLRR developed at Institute of Automation, Chinese Academy of Sciences and
the gait fitting method. The gait pattern prediction and the feature optimization
are also given in Sect. 2. The results and discussion are presented in Sect. 3. This
paper is summarized in Sect. 4.

2 Method

2.1 A Lower Limb Rehabilitation Robot

An LLRR has been developed at Institute of Automation, Chinese Academy
of Sciences recently, based on which multiple training modes for patients at
different rehabilitation phases can be provided.

Hip joint

Knee joint

Ankle joint

Thigh link 

Shank link 

BWS pulley 

Back plane 

Foot pedal

Fig. 1. Lower limb rehabilitation robot developed by Institute of Automation, Chinese
Academy of Sciences.

As shown in Fig. 1, the LLRR has two leg exoskeletons, each of which has
thigh and shank links and hip, knee and ankle joints. Each joint has one rota-
tional degree of freedom in the sagittal plane, i.e., flexion/extension. The train-
ing effect can be improved by using a natural and personalized gait trajectory.
On one hand, the lengths of thigh and shank links can be adjusted according to



18 S. Ren et al.

patients’ shapes, which is one of the typical properties of the robot. On the other
hand, how to design a personalized gait trajectory based on patients’ features is
one of the key points, which is investigated in the following text.

2.2 Anthropometric Features and Gait Trajectory Fitting

The human gait data which describes healthy subjects’ gait kinematics and
anthropometric features are obtained from [10]. Human age, gender and 12 body
parameters are considered in this paper and given in Table 1.

Table 1. The associated human anthropometric features

Features Ranges Features Ranges

Age (years old) 20–69 Bi-iliac width (cm) 26.1–35.8

Height (cm) 149–185 ASIS breath (cm) 20–30.6

Mass (kg) 43.3–99 Knee diameter (cm) 8.2–13

Gender F/M Foot length (cm) 20.5–28

Thigh length (cm) 27.5–41.6 Malleolus height (cm) 5.2–9

Calf length (cm) 30.5–46.3 Malleolus width (cm) 5.5–8

Bi-trochanteric width (cm) 28.8–38.6 Foot breath (cm) 6.4–11

The joint trajectories of human legs are continuous, smooth and periodic
during walking. So, when patients participate in training on the LLRR, the
output angle of LLRR must be smooth and compliant. Using Fourier series to
fit the gait trajectories can generate the smooth and compliant output values.
It has been proved that five terms of the Fourier series are enough for accurate
fitting joint trajectories of human legs, as follows:

f(tn) = a0 +
5∑

n=1

(an cos(nωt) + bn sin(nωt)), n = 1, · · · , 5 (1)

where ω = 2π
T (T is the period of the gait pattern). an and bn are Fourier

coefficients. Hence, the human leg joint trajectory can be represented by a vector
consisting of Fourier coefficients, as follows:
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5
i,j , b

5
i,j) (2)

where i = 1, 2, ..., P ; P is the number of subjects; j = 1, 2, 3, corresponding to
the hip, knee and ankle joints, respectively.

2.3 Feature Selection Based on mRMR

Selecting the proper number of anthropometric features, which are strongly cor-
related with human gaits, is helpful for the performance improvement of the
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human gait prediction model. The mRMR method [11] is adopted to rank the
importance of anthropometric features. It bases on the mutual information (MI)
between the anthropometric features and the Fourier coefficients given in (3),
which is a measure of the mutual dependence between the two variables.

By using the mRMR, an anthropometric feature subset can be obtained.
The features in subset are not only highly related to Fourier coefficients, but
also less redundancy among themselves. The mutual information, I(X,Y ), of
two variables X and Y can be calculated in terms of their marginal probability
functions p(x), p(y) and joint probability distribution function p(x, y), as follows:

I(X,Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (3)

A feature subset, where the redundancy of inter-features is minimum, can be
obtained by:

min W =
1

N2

N∑

i=1

N∑

j=1

I(si, sj), (4)

where si and sj are features in set S that contains N features.
Similarly, the features of subset having max-relevance with Fourier coeffi-

cients can be obtained by:

max S =
1
N

N∑

i=1

I(si, rt), (5)

where rt is one of the Fourier coefficients.
The mRMR method combining the above two conditions can be described

by:

max
si∈S−Dm

[
I(si, rt) − [

1
N − M

N−M∑

j=1

I(si, sj)]
]
, (6)

where Dm is an already selected feature subset with M features. Then one
feature can be selected from the set {S −Dm} into Dm by implement of (6) for
one time. It can be seen that the features selected early into set Dm are more
closely related to the Fourier coefficients.

2.4 The Random Forest Model

RF is a machine learning algorithm that combines the advantages of Bagging
and Decision trees for classification or prediction [12]. The performance of RF
has been verified in plenty of applications in the last ten years. Therefore, the
RF algorithm is adopted to develop a model for describing the relationship
between the anthropometric features and the Fourier coefficients. The RF algo-
rithm designed in this paper is given by:
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– Give a dataset containing X samples, where each sample contains L anthro-
pometric features. Xtemp (Xtemp < X) samples are randomly chosen from the
original dataset to construct a subset Xi

sub. There will be T sample subsets,
i.e. Xi

sub (i = 1, ..., T ), after T bootstrap iterations.
– Build T regression trees based on T sample subsets. A feature subset Θsub is

formed by using K (K < L) features which are randomly selected from the
L anthropometric features. The best feature of the subset Θsub is used for
division at each node of the tree. This is very effective to avoid the correlation
of inter-trees. T trees can be built by this method to form a RF model.

– Let the response value of a tree to an input sample x is f t(x), the output
value of the RF model can be given as follows:

Y (x) =
1
T

T∑

t=1

f t(x). (7)

In this paper, two parameters of the RF model, which are highly related to
the performance, are needed to be optimized: ntree, number of the trees, and
mfeature, number of the features in the subset Θsub. The grid search method
is used to find the optimal values of the two parameters. And the mean square
error (MSE) is chosen to evaluate the predictive accuracy of the RF model.

3 The Results and Discussion

3.1 The Result of Fourier Series Fitting

The comparison between the reconstructed trajectories and actual trajectories
of a sample are shown in Fig. 2. It can be seen that the actual trajectories are
fitted very well by the Fourier coefficients.

3.2 Feature Selection and Optimization of the RF Model

The importance rankings of an anthropometric feature to each of the associated
11 Fourier coefficients can be obtained by the mRMR. Since a joint trajectory
is represented by the 11 Fourier coefficients, the importance of each feature to
a joint trajectory can be represented by the mean value of its 11 importance
rankings corresponding to 11 Fourier coefficients. The importance rankings of
14 features are given in Table 2.

By adding one feature each time, 14 feature subsets can be obtained from the
14 features. Then the final optimal feature subset can be selected by using the
optimal RF model. The specific steps are given as follows: Firstly, the first subset
was obtained by using only the first feature in Table 2. Secondly, new subsets
can be formed by adding one by one in the order of rankings until 14 subsets
were obtained. Thirdly, the RF model was optimized for each feature subset.
The grid search method was adopted to optimize the two parameters of each
RF model: ntree and mfeature with ranges of 100–550 (in our experiments, the
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MSE couldn’t be decreased above 550 and below 100) and 1–12, respectively. The
performance of each RF model was verified by using the 5-fold cross validation
method [13]. For example, for the feature subset containing 12 features, the
optimal ntree(150) and mfeature(3) can yield the lowest MSE for the ankle
joint, as is shown in Fig. 3. Finally, the optimal feature subset can be obtained
by selecting that with the lowest MSE of the RF model. It can be seen from
Fig. 3 that, the best performance of the RF model for the ankle joint can be
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Fig. 2. Reconstructed joint trajectories by the Fourier coefficients and actual joint
trajectories.

Table 2. The importance ranking of anthropometric features based on mRMR.

Features Hip joint Knee joint Ankle joint Mean

Mass 2.75 1.33 1.08 2.24

Age 4.17 2.58 2.67 3.73

Height 4.42 3.33 2.92 3.96

Calf length 6.33 5.42 4.08 5.56

Thigh length 6.25 5.83 6.33 6.28

ASIS breath 6.42 5.92 7.42 6.73

Bi-trochanteric width 7.58 8.17 7.5 7.63

Malleolus height 7.00 10.33 9.25 7.64

Bi-iliac width 8.17 7.25 8.00 8.21

Foot length 8.75 9.92 9.25 8.91

Malleolus width 9.25 12.25 12.08 10.09

Knee diameter 9.75 9.50 11.00 10.16

Foot breath 11.75 11 10.75 11.41

Gender 12.42 12.17 12.67 12.46
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Fig. 3. (a) Optimaization of the RF models and (b) Feature selection for ankle joint.

obtained by using the feature subset, namely SOP , containing the top seven
features. Therefore, four anthropometric features are not enough for prediction,
as is presented in the introduction section.

3.3 Predicted Performance of the RF Models

The predicted Fourier coefficients, obtained by using the optimized feature sub-
set and the RF models, were used to reconstruct the joint trajectories. The recon-
structed trajectories matched the actual trajectories well, which can be seen from
Fig. 4. In order to validate the performance of the RF models, the 5-fold cross vali-
dation were used. The root mean squared error (RMSE) was adopted as the evalu-
ation criterion. Meanwhile, the Pearson correlation coefficient was used to evaluate
the similarity between the predicted and actual trajectories.
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Fig. 4. Three joint trajectories comparison

Additionally, the feature dataset of [9], refered as S2 in this paper, were
also used to predict the gait trajectories, where the prediction model is the RF
model as well. In addition to four anthropometric parameters, S1 includes two
gait parameters, namely stride length and cadence. They were not included in
the gait dataset of this paper; however, they can be calculated by the gait period
and walking speed as follows:

C = 2
1

Tgait
, (8)
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Lstride =
Vwalking

Tgait
, (9)

where C is the cadence; Tgait is the period of a gait; Lstride is the stride length;
Vwalking is the walking speed.

Table 3. The performance comparison by using the feature dataset S1 and S2

Joint S1 S2

e ρ e ρ

Hip 5.06 0.91 4.72 0.93

Knee 8.02 0.881 7.70 0.897

Ankle 5.15 0.74 4.92 0.75

The performance comparison by using the feature dataset S1 and S2 are
given in Table 3, where the mean error, e, is defined by:

e =
1
5

5∑

m=1

(
1
5

5∑

n=1

em,n

)
, (10)

em,n =
1
P

P∑

i=1

√√√√ 1
Q

Q∑

j=1

|v∗
i (j) − vi(j)|, (11)

where i is the sample index; j is the time index; Q is the max time index; P
is the total number of the test samples; v∗

i and vi is the predicted and actual
sample joint trajectory, respectively.

The mean value of Pearson correlation coefficients ρ is defined by:

ρ =
1
5

5∑

m=1

(
1
5

5∑

n=1

ρm,n

)
, (12)

ρm,n =
P∑

i=1

cov(v∗
i , vi)

σv∗
i
σvi

, (13)

where cov(v∗
i , vi) is the covariance; σv∗

i
and σvi

are the standard deviations.
It can be found from Table 3 that the performance of the gait prediction

model based on S2 is better than that based on S1 in the RMSE and correla-
tion. Meanwhile, as shown in Fig. 5, the volatility of the RMSE and correlation
of the gait prediction model based on S2 is much smaller than that based on S1.
It indicates that the gait prediction model based on the optimized feature sub-
set can generate relatively stable prediction results. Moreover, the performance
comparison experiment between the RF and GRNN models was also carried out,
from which it was found that the performance of these two models were similar
to each other.
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Fig. 5. RMSE and correlation coefficients of the predicted trajectories based on S1 and
S2. Each bar is obtained from a 5-fold cross validation. The middle point in bar is the
average, and two end points of the bar indicate the standard deviation.

Besides, the MLPNN model of [6] was also used to predict the gait trajectories
of this paper. Lavenberg-Marquardt algorithm used in [6] was applied. It was
found that, the volatility of RMSE for MLPNN was relatively large. It can be
explained by that the performance of the MLPNN is unstable for gait dataset
with small number of samples.

4 Conclusion

To generate the patient-specific gait trajectories for the LLRR, a RF algorithm
is designed to learn the relationship between the anthropometric features and
the Fourier coefficients, which are used to represent the gait trajectories. The
anthropometric features are simplified by using an optimization method based
on the criterion of mRMR. The tree and feature numbers of the RF model
are optimized by the grid search method. The experiment results show that
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the performance of the proposed method based on the optimized feature subset
is satisfactory. Patients will be included in experiments to further prove and
improve the gait prediction method of this paper in the future.
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