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Abstract: This paper presents a super-twisting-based sliding mode control method for the formation
problem of multi-robot systems. The multiple robots contain plenty of uncertainties and disturbances.
Such a control method has two adaptive gains that can contribute to the robustness and improve
the response of the formation maneuvers despite these uncertainties and disturbances. Based on the
leader-follower frame, this control method was investigated. The closed-loop formation stability is
theoretically guaranteed in the sense of Lyapunov. From the aspect of practice, the control method
was carried out by a multi-robot system to achieve some desired formation patterns. Some numerical
results were demonstrated to verify the feasibility of the control method. Some comparisons were also
illustrated to support the superiority and effectiveness of the presented sliding mode control method.

Keywords: second order sliding mode control; adaptive control; formation control; multiple robots;
super twisting law

1. Introduction

With the coming of the artificial intelligence era, multi-robot systems are becoming more attractive
and more significant [1]. Multi-robot systems one of the emerging and popular solutions in various
fields, such as industry, agriculture, aviation, etc. [2]. Concerning multi-robot systems, the control
problem of formation maneuvers is an important topic [3,4].

In many cases, the robots in a multi-robot system have to form some formation patterns in
order to accomplish a given task in collaborative projects, military reconnaissance, and hazardous
situations [5]. For the purpose of organizing and managing the robots, a coordinated control scheme
needs to be pre-defined in the multi-robot system [6]. Some schemes have been developed, containing
virtual structure methods, leader-follower approaches, behavior-based techniques, and so on [7].
In this paper, the leader-follower scheme was taken into consideration because the scheme can
accomplish a given formation task with the guaranteed closed-loop stability. Although it suffers from
the drawback of a ‘single point of failure’, the leader-follower scheme is of merit for the formation
maneuvers of small-and-medium-scale multi-robot systems [8–10]. This paper does not focus on how
to design a coordinated control scheme, but it concentrates on the formation control design. Thus,
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the leader-follower scheme was directly adopted. In addition, the small-scale multi-robot systems
were taken into account for the convenience of the control design.

Inherently, the formation model of a multi-robot system contains nonlinearities and motion couples
that create a significant challenge to the formation control design [11,12]. In reality, a multi-robot
system is inevitably subjected to some uncertainties and disturbances, including but not limited to
modelling errors, inertia-and-mass variations, signal-transmission delays, unpredictable obstacles, etc.
These uncertainties and disturbances significantly challenge the formation control [13–16]. To deal
with the control problem of formation maneuvers, many control methods have been reported, i.e.,
model predict control [17], adaptive control [18], interval type-2 fuzzy control [19], adaptive dynamic
programming [20], etc.

The methodology of the sliding mode control [21] is a synthetic tool. Some sliding-mode-based
control approaches have been investigated for the control problem. Some studies have been reported,
such as the first-order sliding mode control [22,23], the integral sliding mode [4], the derivative and
integral terminal sliding mode control [14], the terminal sliding mode control [24], and so on. As far as
the methodology of sliding mode control is concerned, the invariance is its most attractive property,
which means that a sliding-mode-based control system is completely and thoroughly robust against
the uncertainties and disturbances entering the control system by the control channel. Dialectically, the
methodology is criticized for its chattering phenomenon as well. Many sliding-mode-based control
ideas focus on decreasing and even eliminating the chattering phenomenon, whereas the super-twisting
sliding mode control is a kind of the second-order sliding mode control method [25].

The super-twisting sliding mode control has become popular because this control technique
only needs the information of a sliding mode variable and gets rid of the dependence on the time
derivative of this sliding mode variable [26]. The control technique can effectively force the sliding
mode variable and its time derivative to the origin in finite time despite the existence of the bounded
disturbances and uncertainties on the assumption that the boundary is known [27]. Unfortunately,
this boundary can hardly be known with regard to the formation maneuvers of multi-robot systems.
One can overestimate this boundary from the aspect of the closed-loop stability, but the overestimate
definitely enlarges the necessary control gain of the super-twisting sliding mode control. In order
to deal with the issue, the gain adaptation algorithm was taken into account. The integration of
the gain adaption algorithm and the super-twisting sliding mode control can benefit the formation
maneuvers of uncertain multi-robot systems with the unknown boundary [28]. However, the design
in [28] was only presented for the single-input-single-output systems and it cannot be directly extended
to a multiple-input-multiple-output system as the formation maneuvers of multi-robots. In this
paper, we focused on this field, worked at the issue, and sought to its solution. The purpose was to
investigate an adaptive-gain super-twisting sliding mode control design for the formation maneuvers
of multi-robot systems.

The remainder is presented as follows. Section 2 introduces the modeling of a single mobile
robot, as well as the modeling of a leader-follower pair of multi-robot systems. Section 3 presents the
design of the adaptive-gain super-twisting sliding mode control and adopts the Lyapunov theory to
analyze the closed-loop system stability. In Section 4, we implement the adaptive-gain super-twisting
sliding mode control on a multi-robot system platform. Some numerical results and comparisons are
illustrated in Section 4. Finally, conclusions are drawn in Section 5. The highlights and contributions of
the paper can be summarized by

• The multiple-input-multiple-output dynamics of the formation problem were formulated.
• An adaptive-gain super-twisting sliding mode control method was developed by the formation

maneuvers of uncertain multi-robot systems.
• The control method is with the guaranteed closed-loop stability in the sense of Lyapunov.
• The adaptive gains were theoretically bounded even if the boundaries of the uncertainties and

disturbances were unknown.
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2. Modelling

2.1. Model of a Robot

Figure 1 shows a unicycle-like robot in the horizontal plane. The diameter of this robot is 2r. Its
two parallel wheels have the same axis and are controlled by two direct current motors independently.
The robot can simultaneously rotate and translate, described by

q =
[

x y θ
]T

(1)

In (1), (x, y) is located at the center of the robot and represents its translational coordinates, and θ
indicates its rotational coordinate. To know the position, a positioning sensor at the front castor of this
robot is set up in Figure 1. The axis of the sensor is orthogonal to the axis of the two wheels.

Figure 1. Sketches of the unicycle-like robot.

On the assumption of pure rolling and no-slipping, the ideal kinematic model of this robot [3,4]
has the form of

.
q =


.
x
.
y
.
θ

 =


cosθ 0
sinθ 0

0 1

 ·
[

v
ω

]
(2)

s. t.
.
x sinθ−

.
y cosθ = 0 (3)

Here, v is the robot’s linear velocity in the X-Y coordinates and ω represents the angular velocity.
The directions of the two vectors are that v is positive when the robot moves in the positive direction of
the X axis and that ω is positive when the robot rotates counterclockwise.

Concerning the constraint (3), the time derivative of (2), namely the ideal dynamic model, can be
written as 

..
x
..
y
..
θ

 =

−

.
y

.
θ

.
x

.
θ
0

+


cosθ 0
sinθ 0

0 1

 · u (4)

In (4), u = [
.
v

.
ω ]

T
. Here,

.
v and

.
ω represent the acceleration and angular acceleration of the

robot, respectively.
Since the robot in reality suffers from a variety of disturbances and uncertainties, for example,

friction, slip, slide shift, etc., the real dynamic model [6] can be derived from (4).
..
x
..
y
..
θ

 =

−

.
y

.
θ

.
x

.
θ
0

+


cosθ 0
sinθ 0

0 1

 · (u + ∆ · u) + π
(
q,

.
q
)

(5)
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In (5), π
(
q,

.
q
)

represents the lumped uncertainties and disturbances, defined by

π
(
q,

.
q
)
= [ πx πy πθ ]

T

Here, πx, πy, and πθ are the functions of the vectors q and
.
q. ∆ indicates the physical parameter

changes of this robot, described by

∆ =

[
ε 0
0 ε′

]
Here, ε and ε′ are the changes of the mass and the inertia of the robot, respectively.

2.2. Model of a Leader-Follower Formation Pair

Consider a multi-robot system composed of N robots. Each robot is the same as the robot in
Figure 1, where the robot i is assigned as the leader and takes charge of other robots, that is, there exist
N−1 leader-follower pairs in this multi-robot system. Figure 2 illustrates a leader-follower pair made
of the leader i and its follower k [27].

Figure 2. Sketches of a leader-follower pair.

Some symbols in Figure 2 are represented as follows. For each individual robot, the subscripts
i and k are adopted to describe the individual variables of the leader and the follower, respectively.
The subscript ik is employed to depict the relative variables of the pair. Here, the relative distance lik
means the distance between the leader’s center and the follower’s front castor, formulated by

lik =

√
(xi − xk)

2 +
(
yi − yk

)2
(6)

Here,
xk = xk + r cosθk
yk = yk + r sinθk

The relative bearing angle ψik of the leader-follower pair is determined by

ψik = π+ ζik − θi (7)

Here,

ζik = arctan
yi − yk − r sinθk

xi − xk − r cosθk

The purpose of the paper was to investigate an adaptive-gain super-twisting sliding mode control
design for formation maneuvers of this multi-robot system. Motivated by this purpose, the formation
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objective of the leader-follower scheme was that each leader-follower pair of the multi-robot system has
to keep the desired relative distance and the desired relative bearing angle in spite of uncertainties and
disturbances. In order to focus on the objective, some ideal conditions were taken in the multi-robot
system: (1) There are neither collisions nor communication delay; (2) the follower is well-known, that
is, it knows its position and velocity, meanwhile, it can obtain the position and velocity of the leader
as well.

Define a vector xik = [x1 x2 x3 x4]T. Let x1 = lik, x2 =
.
lik, x3 = ψik and x4 =

.
ψik. According to the

formation objective, the relative distance lik and the relative bearing angle ψik are determined as the
formation control output. Then, the dynamics of formation maneuvers of the multi-robot system can
have the form of (8) in light of the leader-follower scheme [14].

.
xik = f(xik, dik) + g(xik, ∆k)uk
yik = h(xik)

(8)

Here, xik is the system state vector and yik is the system output vector. Further,

f(xik, dik) = Aikxik + Bik,2dik
g(xik, ∆k) = Bik,1 + Bik,1∆k

Aik, Bik,1, Bik,2, and h(xik) are depicted by

Aik =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, Bik,2 =


0 0
1 0
0 0
0 1

, Bik,1 =


0 0

cosϕik r sinϕik
0 0

− sinϕik
lik

r cosϕik
lik

, h(xik) =

[
x1

x3

]

where ϕik = ψik + θik. dik is the lumped term of all the uncertainties and disturbances in the
leader-follower pair.

dik = Lik(I2 + ∆i)ui + Fik + Pik (9)

In (9),

Lik =


0 0

− cosψik 0
0 0

sinψik
lik

−1

, Fik =


0
F1

0
F2

, Pik =


0

P1

0
P2


Here, I2 is a 2 × 2 identity matrix and F1, F2, P1, and P2 are written by

F1 = (
.
ψik)

2lik + 2
.
ψik

.
θilik + (

.
θi)

2lik
−r cosϕik(

.
θk)

2
− (

.
yk

.
θk −

.
yi

.
θi) cos(ψik +

.
θi) − (

.
xi

.
θi −

.
xk

.
θk) sin(ψik + θi)

F2 =
−(

.
yk

.
ϕik−

.
ψik

.
yi) sin(ψik+θi)−r

.
θk

.
ϕik sinϕik

lik
−(

.
xk

.
ϕik−

.
ψik

.
xi) cos(ψik+θi)+iik((

.
yi−

.
yk) cos(ψik+θi)−(

.
xi−

.
xk) sin(ψik+θi )−r

.
θk

.
ϕik cosϕik)

lik
P1 = −(πix −πkx) cos(ψik + θi) − (πiy −πky)sin(ψik + θi) + rπkθ sinϕik

P2 =
(πix−πkx)sin(ψik+θi)−(πiy−πky) cos(ψik+θi)+rπkθ sinϕik−likπiθ

lik

3. Control Design

3.1. Sliding Mode Design and Its Input-Output Dynamics

The super-twisting law is a powerful second-order sliding-mode technique [28]. It can effectively
deal with the controlled plant with a relative degree equal to one with respect to the control input.
Theoretically, the technique can make the sliding mode variable and its time derivative convergent to
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the origin in spite of the uncertainties and disturbances. Thus, this technique can be considered as a
solution for formation maneuvers of the multi-robot system.

In order to implement the control design of the leader-follower pair, the sliding mode vector sik,
that is, the sliding surfaces, has to be defined in advance.

sik =

[
sik,1
sik,2

]
= C1

([
lik
ψik

]
−

[
ldik
ψd

ik

])
+ C2


 .

lik.
ψik

−


.
l
d
ik

.
ψ

d
ik


 (10)

Here, C1 and C2 are 2 × 2 constant matrices and they need to be pre-defined. ldik and ψd
ik are the

desired relative distance and the desired relative bearing angle of this leader-follower pair, respectively.
Differentiate the sliding mode vector sik in (10) with the respect to time, the input–output dynamics

can be derived as follows.

.
sik =

∂sik
∂t

+
∂sik
∂xik

f(xik, dik) +
∂sik
∂xik

g(xik, ∆k)uk (11)

In (10) and (11), we have

∂sik
∂uk

= 0 and
∂

.
sik
∂uk

=
∂sik
∂xik

g(xik, ∆k) , 0

Namely, the relative degree of sik with respect to uk is equal to 1. Subsequently, the
super-twisting-based sliding mode control design can be available for formation maneuvers of
such a multi-robot system.

Let
a(xik, dik, t) = ∂sik

∂t +
∂sik
∂xik

f(xik, dik)

b(xik, ∆k, t) = ∂sik
∂xik

g(xik, ∆k)
(12)

Assumption 1. b(xik, ∆k, t) is a 2 × 2 matrix and contains both known and unknown parts, written by (13).

b(xik, ∆k, t) = b0(xik, t) + ∆b(xik, ∆k, t) (13)

Here b0(xik, t) is a known positively definite matrix, ∆b0(xik, ∆k, t) is bounded but unknown, and
the two parts of b(xik, ∆k, t) satisfy

||∆b(xik, ∆k, t)b−1
0 (xik, t)||2 ≤ γ(xik, t) < γ1 < 1 (14)

where γ1 is a unknown constant.

Assumption 2. a(xik, dik, t) is a 2 × 1 vector and contains both known and unknown parts, depicted by (15).

a(xik, dik, t) = a1(xik, t) + a2(xik, dik, t) (15)

Here, both a1(xik, t) and a2(xik, dik, t) are bounded, and they satisfy

||a1(xik, t)||∞ ≤ δ1
√
||sik||2

||
.
a2(xik, dik, t)||∞ ≤ δ2

(16)

where δ1 and δ2 are positive but unknown.
Concerning Assumptions 1 and 2, the input-output dynamics of the sliding mode vector sik in (11)

can have the form of
.
sik = a(xik, dik, t) + b1(xik, ∆k, t)$k (17)
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Here, b1(xik, ∆k, t) = I2 + ∆b(xik, ∆k, t)b−1
0 (xik, t) is a 2 × 2 matrix and $k = b0(xik, t)uk.

From Assumption 1, we have

1− γ1 ≤ ||b1(xik, ∆k, t)||2 ≤ 1 + γ1

3.2. Adaptive-Gain Super-Twisting Sliding Mode Design

According to the super-twisting law, the following sliding mode formation control approach was
addressed. Considering the input-output dynamics (17), here the variable $k is related to the control
input uk so that their control design is equivalent to each other. Therefore, the following sliding mode
control is formulated.

$k = $k1 +$k2 (18)

Here,
$k1 = −αk

√
||sik||2sgn(sik)

.
$k2 = −

βk
2 sgn(sik)

where αk and βk are the adaptive gains to be deduced from the closed-loop system stability. The signum

function sgn(sik) in (18) is determined by sgn(sik) =
[

sgn(sik,1) sgn(sik,2)
]T

.
From (17) and (18), the input-output dynamics can be re-written as

.
sik = −αk

√
||sik||2b1sgn(sik) + a1 +$k∗

.
$k∗ = −

βk
2 b1sgn(sik) +

.
a2 +

.
b1$k2

$k∗(0) = 0
(19)

Here, a1(xik, t),
.
a2(xik, dik, t), and

.
b1(xik, ∆k, t) are abbreviated by a1,

.
a2, and

.
b1 for brevity, and

$k∗ = a2 + b1$k2.

Assumption 3.
.
b1$k2 in (19) is bounded but its boundary is unknown, that is,

||

.
b1$k2||∞ ≤ δ3 (20)

Here, δ3 is positive but unknown.

Substituting $k2 in (18) into (20) yields

||

.
b1$k2||∞ ≤

||

.
b1||∞

2

∫ t

0
βkdt ≤ δ3

This fact indicates the adaptive gain βk is bounded as well, i.e.,

|βk| ≤ β
∗ (21)

Here, β∗ is positive but unknown.

Assumption 4. The adaptive gain αk is bounded, that is,

|αk| ≤ α
∗ (22)

Here, α∗ is positive but unknown.

Note that the uncertainties and disturbances of the input-output dynamics (17) exist in the terms
a2 and b1. From Assumptions 2 and 3, the lumped boundary of the uncertain terms in (17) can be
deduced from (16) and (22).

||
.
χ||∞ = ||

.
a2 +

.
b1$k2||∞ ≤ ||

.
a2||∞ + ||

.
b1$k2||∞ ≤ δ2 + δ3 = δ4 (23)
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where
.
χ =

.
a2 +

.
b1$k2.

Until now, the formation control design has been equivalent to the deduction of the adaptive-gain
laws in (18) that can make sik and

.
sik convergent to zero in finite time despite the uncertainties and

disturbances, where the input-output dynamics are decided by (19) and the unknown boundaries δ1,
γ1, and δ4 are given by (14), (16), and (23). Finally, the adaptive gains are designed by

.
αk =

ξ
√
γ1
2 sgn(||sik||2 − µ) if αk > αm

η if αk < αm

βk = 2εαk

(24)

Here, γ1 is determined by (14); ε, ξ and η are arbitrary positive constants; αm > 0 is an arbitrary
small constant and the initial condition of αk at t = 0 satisfies αk(0) > αm.

3.3. Stability Analysis of the Closed-Loop Control System

Theorem 1. Consider the dynamics (19), where a1, a2 and b1 satisfy Assumptions 1 and 2 with the unknown
gains δ1, δ2, and γ1. The adaptive gains satisfy Assumptions 3 and 4 and they are determined by (24). Then, for
any xik at t = 0, there exist

• a parameter µ > 0 so that αk satisfies (25) if ||sik||2 > µ at t = 0;

αk >
δ1(λ+ 4ε2) − ε(4δ4 + 1)

λ(1− γ1)
+

[2εδ1 − 2δ4 − λ− 4ε2]
2

12ελ(1− γ1)
(25)

Here λ is an arbitrary positive constant and δ4 is determined by (23).
• a finite time tF > 0 so that the sliding modes of sik are reached in the finite time tF regarding to the

adaptive-gain super-twisting sliding mode control method, that is, ∀t > tF, ∃ ||sik||2 ≤ η1 and ||
.
sik||2 ≤ η2.

Here, η1 > µ and η2 > 0.
• both αk and βk are bounded.

Proof.
Preparation.
Define a 4 × 1 augmented vector Z

Z =
[

ZT
1 ZT

2

]T
=

[ √
||sik||2[sgn(sik)]

T [$k∗]
T

]T
(26)

Here, ||Z1||∞ =
√
||sik||2, sgn(Z1) = sgn(sik) and Z2 = $k∗. Further, the time derivative of Z1 and

Z2 can be written as .
Z1 = 1

2
1

||Z1 ||∞
[−αkb1Z1 + Z2 + a1]

.
Z2 = −

βk
2 b1

Z1
||Z1 ||∞

+
.
χ

(27)

From (27), we have .
Z1.
Z2

 = 1
2||Z1||∞

[
−αkb1 I2

−βkb1 O2

][
Z1

Z2

]
+

1
2||Z1||∞

[
a1

2||Z1||∞
.
χ

]
(28)

Here, O2 is a 2 × 2 zero matrix.
Further, considering (16) and (23), two bounded scalar functions ρ1(xik, t) and ρ2(xik, t) can be

constructed as
a1 = ρ1(xik, t)

√
||sik||2sgn(sik) = ρ1(xik, t)Z1

.
χ =

ρ2(xik,t)
2

√
||sik ||2
√
||sik ||2

sgn(sik) =
ρ2(xik,t)

2
Z1
||Z1 ||∞

(29)
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Then, we can have
0 < ρ1(xik, t) < δ1

0 < ρ2(xik, t) < 2δ4
(30)

Substituting (29) into (28) yields  .
Z1.
Z2

 = A
[

Z1

Z2

]
(31)

Here, A = 1
2||Z1 ||∞

[
−αkb1 + ρ1(xik, t)I2 I2

−βkb1 + ρ2(xik, t)I2 O2

]
.

Consider a Lyapunov candidate as
V0 = ZTPZ (32)

Here, P =

[
(λ+ 4ε2)I2 −2εI2

−2εI2 I2

]
is a 4 × 4 positive definite matrix, λ > 0 and ε > 0.

From (31), the time derivative of V0 in (32) can be written by

.
V0 =

.
Z

T
PZ + ZTP

.
Z = ZT

(
A

T
P + PA

T
)
Z ≤ −

1
2||Z1||∞

ZTQZ (33)

Here, Q =

[
Q11 Q12

Q21 4ε

]
is a 4 × 4 symmetric matrix, Q11, Q12 and Q21 are given by

Q11 = 2λαkb1 + 4ε(2εαk − βk)b1 − [2(λ+ 4ε2)ρ1(xik, t) − 4ερ2(xik, t)]I2

Q12 = Q21 = (βk − 2εαk)b1 + [2ερ1(xik, t) − ρ2(xik, t)]I2 − (λ+ 4ε2)I2

From the aspect of the stability of V0, Q is not only symmetric but also positive definite in the
sense of Lyapunov. Therefore, we selected βk = 2εαk in Q11. Then, Q can be positive definite and its
minimal eigenvalue is λmin(Q) ≥ 2ε if αk satisfies (25).

From (32), we have
λmin(P)||Z||22 ≤ ZTPZ = V0 ≤ λmax(P)||Z||22 (34)

Further, (35) can be deduced from (33) if (25) holds true.

.
V0 ≤ −

1
2||Z1||∞

ZTQZ ≤ −
2ε

2||Z1||∞
ZTZ = −

ε||Z||22
||Z1||∞

(35)

In (26), the following inequality exists.

||Z1||∞ =
√
||sik||2 ≤ ||Z1||2 ≤ ||Z||2 ≤

(
V0

λmin(P)

)1/2

(36)

With regard to (34) and (36), (35) can be re-written by

.
V0 ≤ −

ελ1/2
min(P)

λmax(P)
V1/2

0 (37)

Analysis.
Now, the closed-looped control system stability will be presented in the sense of Lyapunov. Define

a Lyapunov candidate as

V = V0 +
1

2γ1
(αk − α

∗)2 +
1

2γ2
(βk − β

∗)2 (38)
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Here, α∗ and β∗ are given in Assumptions 3 and 4. Concerning (33) and (37), the time derivative of
V can have the form of

.
V =

.
V0 +

1
γ1

(αk − α
∗)

.
α+

1
γ2

(βk − β
∗)

.
β (39)

From (37), (39) can be written as

.
V ≤ −

ελ1/2
min(P)

λmax(P)
V1/2

0
+ 1

γ1
εα

.
αk +

1
γ2
εβ

.
βk

= −
ελ1/2

min(P)
λmax(P)

V1/2
0
−

ξ1√
2γ1
|εα| −

ξ2√
2γ2
|εβ|+

1
γ1
εa

.
αk +

1
γ2
εβ

.
βk +

ξ1√
2γ1
|εα|+

ξ2√
2γ2
|εβ|

(40)

Here, εα = αk − α
∗ and εβ = βk − β

∗. It is apparent that both εα and εβ are negative or equal to
zero according to Assumptions 3 and 4.

Since (̃a2 + b̃2 + c̃2)
1
2
≤ |̃a|+ |̃b|+ |̃c|, it is concluded that

−
ελ1/2

min(P)

λmax(P)
V1/2

0
−

ξ1√
2γ1
|εα| −

ξ2√
2γ2
|εβ| ≤ −η0V1/2

Here, η0 = min(
ελ1/2

min(P)
λmax(P)

, ξ1, ξ2). Then, (40) can have the form of

.
V ≤ −η0V1/2 +

1
γ1
εα

.
αk +

1
γ2
εβ

.
βk +

ξ1√
2γ1
|εα|+

ξ2√
2γ2
|εβ| (41)

Since both εα and εβ in (41) are equal to or less than zero, we can obtain

.
V ≤ −η0V1/2

− |εα|(
1
γ1

.
αk −

ξ1√
2γ1

) − |εβ|(
1
γ2

.
βk −

ξ2√
2γ2

) (42)

The motivation of designing the adaptive gains is to investigate a domain. The domain acts as
a flag. The gains αk and βk can start dynamically reducing when the system trajectories come to the
domain in finite time. Once the trajectories leave the domain, the gains start dynamically increasing in
order to draw the trajectories back. Inspired by the methodology of sliding mode, we picked up the
domain ||sik||2 ≤ µ as this flag. Thereafter, (42) is deduced by different cases in accordance with such
a flag.

Case 1. ||sik||2 > µ and αk > αm for all t ≥ 0. Take (24) into account. With regard to this case, (43) can be
deduced from (24).

.
αk = ξ1

√
γ1

2
(43)

Therefore, (42) becomes
.

V ≤ −η0V1/2
− |εβ|(

1
γ2

.
βk −

ξ2√
2γ2

) (44)

Picking up ε = ξ2
2ξ1

√
γ2
γ1

in (14) and substituting it into the time derivative of βk = 2εαk yields

.
βk = ξ2

√
γ2

2
(45)

Finally, (44) becomes
.

V ≤ −η0V1/2 (46)
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Associated with the closed-loop system stability, (33) must be held true in order to have the
positive definite matrix Q, meaning that α should be increased as its adaptive law (24) until (33)
is satisfied in the finite time tF. From this time tF on, (46) will guarantee the convergence of this
closed-loop system to the domain ||sik||2 ≤ µ.

Case 2. ||sik||2 ≤ µ. Take (24) into account. According to the motivation, αk needs to be reduced in light of the
adaptive law (24) so that it has a form of

.
αk =

−ξ
√
γ1
2 if αk > αm

η if αk < αm

(47)

Meanwhile, picking up ε = ξ2
2ξ1

√
γ2
γ1

in (14) and substituting it into the time derivative of
βk = 2εαk yields

.
βk =

 −ξ2

√
γ2
2 if αk > αm

ξ2
ξ1

√
γ2
γ1
η if αk < αm

(48)

Consequently, (42) becomes

.
V ≤


−η0V1/2+2|εα|

ξ1√
2γ1

+ 2|εβ|
ξ2√
2γ2

if αk > αm

−η0V1/2
−|εα|(

η
γ1
−

ξ1√
2γ1

) − |εβ|(
ξ2
ξ1

η
√
γ1γ2
−

ξ2√
2γ2

) if αk < αm
(49)

Equation (49) indicates that the sign of the time derivative of V is indefinite so that ||sik||2 may
become larger than µ with the decrease of αk and βk. Once ||sik||2 becomes greater than µ, the condition
defined in Case 1 will be immediately triggered. In (46), the time derivative of V is negative so that the
closed-looped control system possesses the inherent stability and sik will enter the domain ||sik||2 < µ
again in finite time. This process continues back and forth until the control system becomes convergent.
In this process, sik may deviate from the domain for a finite time but there always exists another domain
in the real sliding modes of sik.

||sik||2 ≤ η1 (η1 > µ) (50)

Inside the domain ||sik||2 < µ, the value of ||
.
sik||2 can estimated from (19) and (24).

||
.
sik||2 ≤ [(1− γ1)αk(t1) + δ1]µ

1/2 + [ε(1− γ1)αk(t1) + δ4](t2 − t1) = η2 (51)

Here, t1 is the time instant when sik enters the domain ||sik||2 ≤ µ and t2 is the moment when sik
leaves the domain. Once ||sik||2 becomes µ < ||sik||2 < η1, we have

||
.
sik||2 ≤ (1 + γ1)

(
η1

1/2 + ε
)αk(t2) + ξ1

√
η1γ1

2
+ ε

(t3 − t2) + δ1η1
1/2 + δ4(t3 − t2) = η̃2 (52)

Here, t2 is the time instant when sik leaves the domain ||sik||2 < µ and t3 is the moment when sik
enter the domain ||sik||2 < µ. Subsequently, (53) can be drawn from (51) and (52).

||
.
sik||2 ≤ max

(
η̃2, η2

)
= η2 (53)

From (50) and (52), there exist the real sliding modes, described by

Ω =
{

sik,
.
sik : ||sik||2 ≤ η1 ||

.
sik||2 ≤ η2 η1 > µ

}
(54)

The existences of the sliding modes in (52) can be presented in theory, but η1 and η2 cannot be
obtained in advance before a real control process is carried out.
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Further, a solution of (24) in the domain µ < ||sik||2 ≤ η1 can be gotten as

αk = αk(0) + ξ1t

√
γ1

2
0 ≤ t ≤tF (55)

Equation (54) indicates that the adaptive gain αk is bounded so that the gain βk is bounded on
account of βk = 2εαk. Inside the domain ||sik||2 ≤ µ, the adaptive gains αk and βk can be decreased as
the presented control design. Consequently, αk and βk are bounded.

Hitherto, the three pieces of results in Theorem 1 have been proven. In the next section, this
presented control method will be carried out for the formation maneuvers of an uncertain multi-robot
system made of such several leader-follower pairs. �

4. Implementation

4.1. Multi-Robot Simulation Platform

In order to demonstrate the feasibility of the designed formation control method, a multi-robot
system platform was established in this section. The platform contains three identical robots shown in
Figure 1, where the robot numbered by 1 is assigned as the leader and other two robots numbered by
2 and 3 become its followers. The number of this plat form is 3 so that the formation system is a typical
small-scale one, indicating that some assumptions such as no collisions and no communication delay
can easily be held true. The robot radius is set by r = 0.05 m. Considering this platform, the parameter
∆ in (5) written as ∆1, ∆2 and ∆3 for the three robots has the form of

∆1 = ∆2 = ∆3 =

[
∆ 0
0 ∆

]
(56)

Here, ∆ is set by 0.3 × rad−0.2 and rad is random between 0 and 1. Other parameters indicate the
uncertainties and disturbances are formulated by

π1x = π1y = π1θ = 0.5 sin(2πt)
π2x = π2y = π2θ = π3x = π3y = π3θ = 0.3 sin(2πt)

(57)

Concerning each follower, the parameters of their formation controller are set by ε = 1, γ1 = 2,
ξ = 2, µ = 0.7, αm = 0.01, and η = αm. Their parameters of the sliding modes are set by

C1 =

[
400 0

0 400

]
and C2 =

[
56 0
0 56

]
. Considering the adaptive gains of the two followers, the

initial values of α2 and α3 is picked up as (19) and (21), respectively. Meanwhile, the initial value of the
super-twisting law in (18) is given by $22 = $32 = 2.

4.2. Simulation Results

4.2.1. String Formation When Moving along a Circular Trajectory

In Figure 3, the multi-robot platform carries out the task of string formation when moving along
a circular trajectory, where the red means the leader robot and the green and blue delegate the two
followers. The initial postures of the three robots are allocated at

q1 = [ 0.5m 0m 0.5π rad]
T

, q2 = [ 0.8m −0.4m 0rad ]
T

, q3 = [ 1m −0.5m π rad]
T

(58)

According to the initial postures and the formation task, the initial states of the formation dynamics
(8) can be calculated as

x12(0) = [ 0.525m 0m/s 0.8πrad 0rad/s ]
T

, x13(0) = [ 0.707m 0m/s 0.75πrad 0rad/s ]
T

(59)
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Similarly, the desired states of the two followers are assigned by

xd
12 = [ 0.13m 0m/s 0.5πrad 0rad/s ]

T
, xd

13 = [ 0.26m 0m/s 0.5πrad 0rad/s ]
T

(60)

The leader’s linear speed and its angular velocity are set as v1 = 0.5m/s and ω1 = 1rad/s.

Figure 3. String formation of the platform when moving along a circular trajectory.

Figure 4 demonstrates the state variables in (8) when the multi-robot system fulfills the formation
task in Figure 3. For the purpose of comparisons, the other three classic control methods were also
implemented on the same platform to accomplish the same formation task besides the presented control
method (short for AST-SMC in Figure 4). These control methods are listed as the derivative-integral
terminal sliding mode control [14] (short for DI-TSMC in Figure 4) and the sole super-twisting sliding
mode control without any adaptive gains (short for ST-SMC in Figure 4).

Figure 4. Comparisons of the state variables by different control methods. (a) l12, (b) Ψ12, (c) l13,
(d) Ψ13.
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From Figure 4, the presented control method can apparently improve the performance of the
system state variables in (8). Note that the sole super-twisting sliding mode control is with the same
sliding surfaces formulated by (10). From this aspect, the adaptive laws of the gains can benefit the
improvement of the control performance. Furthermore, the control inputs of the three control methods
applied to the follower 2 and the follower 3 are illustrated in Figures 5 and 6, respectively.

Figure 5. Comparisons of the control inputs from the follower 2. (a) Acceleration by AST-SMC,
(b) angular acceleration by AST-SMC, (c) acceleration by DI-TSMC, (d) angular acceleration by
DI-TSMC, (e) acceleration by ST-SMC, (f) angular acceleration by ST-SMC.

Figure 6. Comparisons of the control inputs from the follower 3. (a) Acceleration by AST-SMC,
(b) angular acceleration by AST-SMC, (c) acceleration by DI-TSMC, (d) angular acceleration by
DI-TSMC, (e) acceleration by ST-SMC, (f) angular acceleration by ST-SMC.
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Shown in Figures 5 and 6, the adaptive-gain super-twisting sliding mode control method can
decrease the chattering phenomenon effectively. In theory, the adaptive-gain super-twisting sliding
mode control can completely compensate the disturbances and uncertainties entering the formation
control system by the control channel. However, the formation dynamics (8) contain some disturbances
and uncertainties that enter the control system by other channels. Therefore, the control inputs have to
frequently switch to resist their adverse effects.

Figure 7 illustrate the sliding surfaces of the adaptive-gain super-twisting sliding mode control
method. The gains α2, β2, α3, and β3 governed by the designed adaptive law (24) are demonstrated in
Figure 8. As proven in Theorem 1, the sliding surfaces are convergent in infinite time although the time
instants cannot be known in advance. Further, the curves of the gains in Figure 8 are not convergent.
In fact, they are bounded as proven in Theorem 1.

Figure 7. Sliding surfaces of the two followers. (a) s12,1, (b) s12,2, (c) s13,1, (d) s13,2.

Figure 8. Adaptive gains of the two followers. (a) α2, (b) β2, (c) α3, (d) β3.
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4.2.2. String Formation When Moving along an S-Shape Trajectory

This platform in Figure 9 forms up a string when moving along an S-shape trajectory. Both the
adaptive law and the controller parameters were kept unchanged. They are the same as the formation
task in Figure 3. Concerning this task, the initial postures of the three robots are set by

q1 = [ 0.5m 0m 0rad]
T

, q2 = [ 1.2m 0.5m 0rad ]
T

, q3 = [ 2m 2m π rad]
T

(61)

Figure 9. String formation of the platform when moving along an S-shape trajectory.

According to this control task and the initial postures, the initial states of the formation dynamics
can be calculated by

x12(0) = [ 0.9m 0m/s 1.8πrad 0rad/s ]
T

, x13(0) = [ 2.47m 0m/s 0.3πrad 0rad/s ]
T

(62)

Similarly, the desired states can be obtained by (59) on account of the leader’s trajectory.

xd
12 = [ 0.9m 0m/s 0.3πrad 0rad/s ]

T
, xd

13 = [ 1.6m 0m/s 0.7πrad 0rad/s ]
T

(63)

The state variables and the control inputs are also similar to the formation task in Figure 3 as
proven in Theorem 1 so that these curves are not be demonstrated, owing to the limited space.

4.2.3. String Formation When Moving Along a Straight Trajectory

This platform in Figure 10 forms up a string when moving along a straight trajectory. Both the
adaptive law and the controller parameters were kept unchanged. The state variables and the control
inputs are not illustrated because they are similar to Figure 3. The initial postures of the three robots
are set by

q1 = [ 0.5m 0m 1
2π rad]

T
, q2 = [ 1.2m 0.5m 0rad ]

T
, q3 = [ 2m 1m π rad]

T
(64)
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Figure 10. String formation of the platform when moving along a straight trajectory.

According to this control task and the initial postures, the initial states of the formation dynamics
can be calculated by

x12(0) = [ 0.9m 0m/s 1.69πrad 0rad/s ]
T

, x13(0) = [ 1.7m 0m/s 1.65πrad 0rad/s ]
T

(65)

Similarly, the desired states can be obtained by (59) on account of the leader’s trajectory.

xd
12 = [ 0.3m 0m/s 1.2πrad 0rad/s ]

T
, xd

13 = [ 0.6m 0m/s 1.8πrad 0rad/s ]
T

(66)

The simulation results in Figures 9 and 10 indicate that the presented control method is available
for various formation patterns in spite of the adverse effects of uncertainties and disturbances. This fact
means such an adaptive-gain super-twisting sliding mode control method is an alternative solution
for the formation maneuvers of uncertain multi-robot systems under the mild assumption that the
uncertainties and disturbances are bounded by an unknown boundary.

5. Conclusions

This paper concentrated on the formation control of multi-robot systems. In order to accomplish
the formation task despite the inevitable disturbances and uncertainties, the super-twisting sliding
mode control method was adopted. For the sake of dealing with the overestimate of the control
gains, the adaptive laws of the gains were deduced. Theoretically, this adaptive-gain super-twisting
sliding mode control method for the formation maneuvers was investigated in the sense of Lyapunov.
Such a control method can guarantee the convergence of the sliding surfaces and make the adaptive
gains bounded. Practically, the control method was applied to a multi-robot platform with three
mobile robots. Some comparisons have been illustrated by the other two control methods, that is, the
derivative-integral terminal sliding mode control and the sole super-twisting sliding mode control with
no adaptive laws. The numerical results illustrate that the presented method has the best performance.
The presented control method can be a solid support to solve the formation maneuvers of uncertain
multi-robot systems.
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