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Abstract

Bolts constitute a very important subset of mechanical fasteners. In order to tighten bolts, a degree of bolt preload scat-
ter is to be expected. Since the torque control of tightening bolts is the most popular means of controlling the preload,
an appropriate tightening torque becomes pivotal. This paper investigates the torque control problem of bolt tightening
process. This process is not as simple as it looks because the inherently nonlinear process contains many uncertainties.
To conquer the adverse effects of the uncertainties, this paper designs an adaptive-gain second-order sliding mode con-
troller. Theoretically, such design can guarantee that the bolt tightening process has the closed-loop stability in the sense
of Lyapunov. From the aspect of practice, the control method is carried out by a platform. Some comparisons illustrate

the feasibility and effectiveness of the designed controller.
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Introduction

In mechanical industry, bolted joints are the most
important and the most common elements in construc-
tion and machine design.! This fact indicates that bolts
constitute a very important subset of mechanical fas-
teners. In order to precisely assemble many hardware
devices together, bolts need to be accurately tightened.?
Apparently, bolt loosening can have profound conse-
quences and may cost tens of thousands of dollars in
damage.’?

Some typical approaches are usually employed to
tighten bolts, that is, torque control tightening, angle
control tightening, yield-controlled tightening, heat
tightening, and bolt stretch approach.* It is insightful
to appreciate the features and characteristics of the
approaches. Whatever approach is used to tighten a
bolt, a degree of bolt preload scatter is to be expected.
To regulate such preload, controlling the torque which
a fastener is tightened to is the most popular means.>¢
Consequently, an appropriate tightening torque
becomes pivotal. Theoretically, the nominal torque nec-
essary to tighten the bolt to a given preload can be
determined either from some tables or by calculation
using a relationship between torque and the resulting
bolt tension.”® In real world, the tightening torque is
dependent on many factors.” Even though skilled

operators can empirically fasten bolts, the real tighten-
ing torque is hardly as accurate as expected.'
Intuitionally, one operator can make use of some spe-
cific tools like torque wrench to set the tightening tor-
que applied to the fastener. However, such operation
can hardly increase throughput.''

Since an insufficient tightening torque is usually a
frequent cause of bolted joint failure, the torque con-
trol problem of bolts tightening process rises up on
account of some performance demands, such as high-
throughput capability, high-precision assembly, and
high-quality products.'? Concerning this torque control
problem, many control methods have been reported,
that is, finite-element-based control,'® data-driven-
based classification,'* bolt tightening control using
neural networks,'> optimized bolt tightening design,'®
model-free fuzzy control,'” to name but a few. See Jia
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et al.” for a complete review of recent philosophies in
automated threaded fastening strategies. In brief, most
of these mentioned methods concentrate on the investi-
gation of control design and work at the improvement
of control performance.'”

Inherently, the bolt tightening process is nonlinear
and it contains many uncertainties that have an adverse
effect on the control performance.'®!”'® These uncer-
tainties include but are not limited to tightening condi-
tions, material of the bolt and nut, and temperature of
the bolt and nut. In order to optimize the bolt tighten-
ing process, the torque control needs to keep robust in
the presence of these uncertainties.

Although the torque control methods are diverse,
the methodology of sliding mode control (SMC)
invented by A.I. Utkin is an attractive branch."” SMC
is not a sole design method. In contrast, it is a set of
analytical and synthetic methods. The basic idea of an
SMC system is to alter the dynamics of a nonlinear sys-
tem by the discontinuous control signal so that the
SMC system seems to slide along the boundary of the
hybrid dynamics. The boundary is named sliding sur-
face.?*?! According to the types of sliding surfaces, the
SMC methods can be divided into first-order SMC,
second-order SMC, integral SMC, terminal SMC, and
so on.?? All the SMC methods are advocated thanks to
their invariance property.”® Such property is the most
attractive feature. When any SMC system keeps sliding
on their sliding surfaces, it is insensitive to matched
uncertainties as if there were no uncertainties.***

Unfortunately, the uncertainties in the bolt tighten-
ing process are hardly matched on account of the com-
plexity of bolted joints in mechanical industry. The
existence of the unmatched uncertainties has a series of
deficiencies, that is, a loss of the guaranteed stability, a
decrease of the system robustness, and a deterioration
of the control performance. Although the previous
works'® ! have significant contributions on bolt tigh-
tening, how to deal with the deficiencies by the metho-
dology of SMC still remains problematic and unsolved.
On the contrary, the SMC methodology is confronted
with the dilemma of chattering, an inherent shortcom-
ing of SMC.?**” Many ideas based on SMC have been
devoted to the decrease and elimination of chattering,
where the super-twisting algorithm is such a solution of
the second-order SMC design.*®

The super-twisting-based second-order SMC
becomes successful because it only needs the informa-
tion of a sliding-surface variable and gets rid of the
dependence on the time derivative of the sliding-surface
variable.””*° Provided that the uncertainties have a
known boundary, this control design can effectively
force the sliding-surface variable and its time derivative
to the origin in finite time despite the existence of the
bounded uncertainties.’'** Unfortunately, this assump-
tion is not mild because this boundary can hardly be
known in advance.*® One can overestimate this bound-
ary from the aspect of the closed-loop stability. But
such overestimate definitely enlarges the necessary
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Figure I. Mechanical structure of the designed tightening shaft.

control gain of the super-twisting-based second-order
SMC.**7 In order to deal with the issue, the adaptive-
gain law is taken into account. The integration of the
adaptive-gain law and the super-twisting-based second-
order SMC can benefit the control performance of the
bolt tightening process with regard to the uncertainties.

This paper touches the torque control problem of
bolt tightening process. The remainder of the paper is
organized as follows. Modeling the bolt tightening pro-
cess is addressed in section “Modeling.” Section
“Control design and analysis” describes the adaptive-
gain second-order SMC and presents the closed-loop
stability in the sense of Lyapunov. The control design
is implemented via a numerical platform in section
“Simulation results” and some comparisons are illu-
strated in this section to support the presented control
design. Finally, section “Conclusion” concludes this

paper.

Modeling

Design of mechanical structure

The mechanical structure is not only a framework but
also mechanical support of bolt tightening process.
According to the tightening task, the structure in
Figure 1 is designed to be shaft-like. The integration of
such shafts could be horizontal or vertical arrangement,
subjected to the spaces and technical requirements.
From Figure 1, this shaft is made of several compo-
nents. They are servo motor, gear reducer, sensor, and
screwdriver.

In Figure 1, the servo motor is the power unit that
powers the shaft. Note that the motor, driver, encoder,
and associated electronics are also included in this servo
motor. The gear reducer and the couplings work as the
transmission unit. The sensors are the detection unit,
including the dynamic torque sensor and the photoelec-
tric sensor. Both the sensors are employed to detect the
real-time torque and angle. Finally, the shaft driven by
the servo motor can fasten a bolt whose tip is inserted
into the screwdriver’s head. Although the task of the
tightening process is to control the tightening torque,
the detection unit contains two kinds of sensors to
detect the tightening torque and the tightening angle,



Wu et al.

1133

respectively. Here, the purpose of designing such a
photoelectric sensor is to stop bolts jamming. Once this
angular sensor detects the tightening angle beyond a
given value, the bolt tightening process will be immedi-
ately stopped and treated as a failure. Then, one opera-
tor will manually deal with it.

Tightening process modeling

The process of tightening a bolt involves turning the
bolt (angle) and the related torque (torque) so that the
preload is produced in the bolt. The desired result is a
clamping force to hold the bolt and nut together. The
most general model of the bolt tightening process has
four distinct zones as displayed in Figure 2.

Zone 1 is called the rundown zone. This zone occurs
before the bolt or nut contacts the bearing surface. Due
to thread locking features such as nylon inserts or
deformed threads, the prevailing torque will show up in
the rundown zone. Otherwise, due to misalignment of
parts, chips, or foreign material in the threads, the fric-
tional drag on the shank or threads will be additional
causes of the prevailing torque in this zone.

Zone 2 is entitled the alignment zone, wherein the
bolt, nut, and joint mating surfaces are drawn into
alignment, that is, they become a stable clamped condi-
tion. From Figure 2, this zone is apparently nonlinear
and a complex function can be adopted to describe the
process of drawing together the mating parts and bend-
ing of the bolt as a result of non-parallelism of the bear-
ing surface to the bolt underhead surface.

Zone 3 is named the elastic clamping zone, wherein
the slope of the torque with respect to angle is constant.
In the zone, this slope is a very important characteristic
of each bolted joint. This slope can be projected back-
ward to locate the elastic origin. The angle-of-turn from
the elastic origin is multiplied by the angle-tension coef-
ficient to calculate the tension that has been created by
the bolt tightening process.

Zone 4 is the post-yield zone. The zone begins with
an inflection point at the end of the elastic clamping
range. The yielding effect can occur in the bolt, as a
result of underhead embedment or as thread strip in
the bolt. The yield point can be used to establish or ver-
ify the tension-angle coefficient for the torque-angle-
tension tightening process.

In a real bolt tightening process, the rundown and
alignment zones are very transient. Consequently, it is
assumed that the bolt tightening process starts from the
elastic clamping zone. In Zone 3, there are the follow-
ing formulas

T = KFd
1
FoCP M)
360

where T is the tightening torque, K means the nut fac-
tor, F indicates the pre-tightening force, d delegates the
nominal diameter of the bolt, 8 is the angle of turn by

-~

4 Zones of the Bolt Tightening Process
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Figure 2. Four zones of the bolt tightening process.

degree measure, P describes the thread pitch and C. All
the variables are determined by their ISO units.
According to equation (1), there exists

KCPd
360 0 (2)
Define
KCPd
360 (3)

Take a bolt to be tightened into consideration.
Apparently, its C, P, and d are constant. Finally, K" is
only affected by the nut factor K. Generally speaking,
the nut factor is a variable and it combines three fac-
tors, that is, a geometric factor, a thread friction-related
factor, and an underhead friction-related factor. If the
variations of the three factors are small enough, the nut
factor K can be treated as an unknown constant. From
definition (3), K is also unknown.

Substituting equation (3) into equation (2) yields

T =Ko (4)

Equation (4) indicates the relationship between the
tightening torque and the angle of turn is approxi-
mately linear. But the slope K~ is unknown.

Mechatronic components modeling

The tightening torque 7 in equation (4) is originated
from the servo motor. It is transmitted via the reducer
and is applied to the screwdriver and bolt to complete
the tightening task. With regard to this servo motor in
Figure 1, it is an armature-controlled one and its field
flux keeps constant. According to the Kirchhoff vol-
tage law in the armature circuit, the following formula
can be obtained

4
u:Ri+Ld—; + Koo (5)

Here, u is the input voltage of the armature winding, i
is the winding current, R is the resistance of the arma-
ture winding, L is the inductance of the armature wind-
ing; the constant K, is related to the back-electromotive
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force and w,, is the angular velocity of the rotor,
respectively.

Furthermore, its electromagnetic torque has the
form of

TC’ = Kll (6)

Here, T, is the electromagnetic torque, the electromag-
netic torque constant K, is determined by the servo
motor. When the servo motor rotates, the motion of
equation can be represented by

dw,,
T.— T, =J
o ds

+ Bwy, (7)

where T is the load torque, J is the moment inertia,
and B is the friction coefficient of this servo motor drive
system, respectively.

The load torque 7 of the servo motor is just the
tightening torque 7 transmitted via the gear reducer. If
the reduction ratio of this gear reducer is n, then the
tightening torque can be expressed by the load torque,
given by

1

Similarly, the angular velocity of the screwdriver can
also be expressed by the angular velocity of the rotor,
given by

Wse = - O 9)
Here, wy. is the angular velocity of the screwdriver and
it is also the angular velocity of the bolt. This fact
indicates

_de

P (10)

wSL’
Furthermore, the time derivative of equation (4) has
the form of

dT de
— =K'— 11
dt dr (11)
Replacing the time derivative of 0 in equation (11) by
equation (10) yields

- = K* Wge

& (12)

Substituting equations (6), (8), and (9) into equation
(7) gives

do, 1 T K, .
= ——(B(I)m + E) + El (13)

dt J

According to equations (5), (12), and (13), the dyna-
mical model of the bolt tightening process can be
described by

-~ = K* sc
ds @sc
dwur 1 T K[ .

L= ——(Bw,+ = | + — 14
ds J( Pse nz) Jn' (14)
di _ R . nk, n 1
dr 'L e

Control design and analysis

Let x = [x; x» x3]" as a three-dimensional state vector.
Here, x; = T, x» = wy. and x3 = i. Then, the dynami-
cal system (15) can be obtained by the combination of
equation (14) and the external disturbances

x=1fx,d)+g-u
y=xi

Here, f (x, d) = [fi /> £3]", fi, f» /5 are formulated by
equation (16) and f (x, d) is abbreviated as f; the con-
stant vector g = [0 0 L~ ']; the external disturbances
d,, d.», and d,3 are unknown; y is the output torque of
this servo motor; the input voltage of the armature
winding u is the control input of the bolt tightening
process

(15)

fi = K'xy +dy
_ 1 X1 Kl
fz = _j(BXZ + ﬁ) + EX3 + do (16)
R nk,
= —Tx— + d,
f 7B * dy3

From equation (15), the control task of the bolt tigh-
tening process is that the tightening torque 7" achieves
the desired torque 7¢. Meanwhile, all the variables of
this process are kept bounded. In equation (16), if K"
were known, such a control design would not be chal-
lenging. Many well-developed control methods could
be directly employed. Unfortunately, K~ is assumed
unknown in this study. In order to achieve the bolt tigh-
tening, the method of adaptive-gain second-order slid-
ing mode is taken into consideration.

Input—output dynamics
At first, a sliding surface should be defined

s=¢’-x (17)

Here, the variable s means the sliding surface and the
constant vector ¢ = [¢1 ¢5 ¢3]” is pre-defined.

Differentiating the sliding surface variable s in equa-
tion (17) with the respect to time ¢, the input—output
dynamics can be derived as follows

ds as as s
= — + —f+

a e T ae 18)
From equations (17) and (18), there exist
§=O and §=§g5£0 (19)

u u ox
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From equation (19), the relative degree of s with
respect to u is equal to 1, indicating that the adaptive-
gain SMC can adopt the super-twisting algorithm for
the torque control of this bolt tightening process.

According to equation (18), the following two sym-
bols are defined

as )

ax. ) = o+ if and

os
b= —
8xg

(20)
Note that the constant 4 in equation (20) can be known
once the vector ¢ is pre-defined. Moreover, b cannot be
zeroth as long as ¢3 is not equal to zero.

Assumption I. a (x, t) contains both known and
unknown parts, depicted by

ax, 1) = a;(x,1) + ay(x, 1) (21)

The two terms on the right side are subjected to

lai(x, )] <81/|s]

22
|aa(x, )| <8, @)

Here, the boundaries 6; and 9§, are positive but
unknown.

Put briefly, define equation (23) by means of equa-
tions (18) and (20)

o=b-u=mw + w (23)
Here
W = —aﬂsgn(s)
(24)
wy = — gsgn(s)

Here, sgn() is the signum function and « and 8 in equa-
tion (24) are the adaptive gains, which will be deduced
from the Lyapunov’s direct method to make this bolt
tightening process have the guaranteed closed-loop
stability.

From equations (18), (23), and (24), the input—
output dynamics can have the form of

§= —ay/|s|sgn(s) + a; + .

W, = — gsgn(s) + @ (25)
@ (0) =0

Here, a; (x, ?) and the derivative of a, (x, ) are abbre-
viated by a; and &, for brevity and @, = a; + w>.

Assumption 2. @, is bounded but its boundary is
unknown, that is

|2 <83 (26)

Here, 63 is positive but unknown.
From equation (24), the following equation can be
calculated by means of Assumption 2

t
1
‘w2|<§JB dr<é;
0

This case indicates the adaptive gain 8 is bounded as
well, that is

Bl<B*

Here B is positive but unknown.

(27)

Assumption 3. The adaptive gain « is bounded, that is

(28)

lo| <

Here, " is positive but unknown.

Until now, the torque control design has been equiv-
alent to the deduction of the adaptive gain laws in
equation (24) that can make s and the derivative of s
convergent to zero in finite time despite the
disturbances.

Design of adaptive gains

Theorem I. With regard to the dynamic system (15) of
the bolt tightening process, design the dynamics (25)
here a; and a, are subjected to Assumption 1 and select
the adaptive gains of & and B in equation (24) accord-
ing to equation (29)

e {flsgndsl )

n if @ < ayy

if a>a,,
(29)
B = 2ea

Here, w> 0; &, m and ¢ are arbitrary positive con-
stants; «,,, > 0 is an arbitrary small constant and the
initial condition of « at ¢ = 0 satisfies a(0) > «,,.
Then, for any x at ¢ = 0, the following results can be
obtained.

I. Ifu < s(0), then « is subjected to equation (30)

o1(A + 482) — (46, + 1) [2851 — 26— A — 482]2
a> +
A 12eA
(30)

Here, A is an arbitrary positive constant.
II. There is a finite time 7z so that the sliding mode of

s 18 reached in the finite time ¢z.
IT1. Both a and B are bounded.

Proof
Preparation. Introduce a new vector with the form of

z=[z1 22" = [/|s|sgn(s) w.]" (31)

Then, the time derivatives of z; and z, can be formu-
lated by
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. 1
z1= —(—az; +z, + ay)
2|z
(32)

22:— 21+d2

_B_
2¢/ls]
Furthermore, equation (33) can be obtained via re-
writing equation (32) in a vector format

HEE= A R
(33)

Due to Assumption 1, equation (34) can be obtained

ay = py(x, 1)y/|s[sgn(s) = py(x. 1)z

_ p(x,0) _px0 (34)
> sgn(s) PR
Here, p; and p, are two bounded functions so that
0<p(x,0)<6
pi(x, 1) 1 (35)

0 < py(x, 1) <25,

Considering equation (34), equation (33) has the

form of
Il _gxl=&
2] =4[] 9
Here
Lo L [—atpx 1}
2z] LB+ pax,1) 0
Consider a Lyapunov candidate as
Vo=12"Pz (37)
2 _
Here, P = P i;:g 128} is a 4X4 positive definite

matrix, A > Oand e > 0.
According to equation (36), the time derivative of V
in equation (37) can have the form of

Vo=4"Pz+2"Pz=2"(A"P + PA")z< 2| ‘ 27Qz
7]
(38)
Here, Q = {Q—” le] is a 4X4 symmetric matrix,
0y 4

and Q11, 12, and O, are described by

0, = 20 + 4eea — B) — 2(A + 4e%)p,(x, 1) + 4ep,(X, 1)]
015 = 0y = (B —2e) + 2epy(x, 1) — po(x, 1) — (A + 4&7)
(39)
In order to have the guaranteed stability of V) in the
sense of Lyapunov, Q should be not only symmetric

but also positive definite. From this aspect, equation
(40) is picked up

B = 2ea (40)

Consequently, Q becomes positive definite. If equation
(30) holds true, its minimal eigenvalue can be

/\min(Q) = 2¢

From equation (37), equation (42) can be obtained

(41)
Amin(P)||Z|3<2Pz = Vo<Ama(P)|2]3  (42)

Furthermore, equation (43) can be deduced from equa-
tion (38) if equation (30) holds true

~ 2 ezl
Vo< — 2'Qz< ——7272= — 2 43
O i AR BT
From equation (31), there exists
Ve >1/2
i = VISIS|Zh S | — 44
il = VR <liel< (5o (44)

Considering equations (42) and (44), equation (43)
can be re-written by

< AV (P)

h )\maX(P)

V2 (45)

Stability analysis. To check the closed-looped control sys-
tem stability, the following Lyapunov candidate V is
determined by

V="0y+(@—a)+(B-p)

Here, a" and B" are given by Assumptions 2 and 3 in
equations (27) and (28).

Concerning equation (38), the time derivative of V
can have the form of

(40)

V="Vy+(a—a)a+ (B—pB)

According to equation (45), equation (47) can be writ-
ten as

(47)

AN (P) 1/2

__min‘\" /7

—&élea] — & leg| t esa
T A (P) &1lea] — Elepl

+ egB + & leal + Ealegl

~X

(48)

Here, &, and &, are arbitrarily positive constants.
Furthermore, there exists

g =a—a'

egg=p—p
It is apparent that both ¢, and &g are negative or equal
to zero in light of Assumptions 2 and 3.

Since (a* + b* +
can be concluded

| .
A2 <lal + |b| + |¢|, equation (49)

1/2
m/m(P) V1/2
Amax(P)

& lea] — &rlep| < — noV'? (49)
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3 1/2
L)lmin(P) §l

Amax(P)* /22
be re-organized by

Here, n, = min %). Then, equation (48) can

V< — oV + g + epB + &lea] + Eleg]  (50)

Since both ¢, and ¢g are equal to or less than zero,
equation (51) can be obtained

V< —non/z—|8a|(d—§1)—|8ﬁ|(3—§2) (51)

The motivation of designing the adaptive gains is to
investigate a domain. The domain acts as a flag. The
gains « and B can start dynamically reducing when the
system trajectories come to the domain in finite time.
Once the trajectories leave the domain, the gains start
dynamically increasing for the purpose of drawing the
trajectories back. Inspired by the methodology of slid-
ing mode, the domain (52) is picked up as this flag.
Thereafter, equation (51) will be investigated by differ-

ent cases in accordance with such a flag
|s|<m (52)

Here, w is defined in equation (29).

Case |. For all 1 > 0, there exist |s| >pu and a > a,,.
Concerning equation (29), equation (53) can be

obtained
a=§ (53)
Thus, equation (51) becomes
V< = V' = legl(B - &) (54)

In order to force B — & = 0, equation (55) is selected
-y
2

Substituting equation (55) into the time derivative of
the second equation in equation (29) yields

(55)

B=é& (56)
Finally, equation (54) becomes
V< =V (57)

In order to have the guaranteed closed-loop stability,
equation (38) has to be held true so that the matrix Q
should be positively definite. This means that « is kept
increased in terms of its adaptive law (53) until equa-
tion (38) holds true in the finite time 7. From the time
ty on, equation (57) will guarantee the convergence of
this closed-loop system to the domain |s| < u.

Case 2: |s|<p. Take equation (29) into consideration.
With regard to the motivation, « needs to be reduced in
light of the adaptive law (29) so that it has the form of

. {—fl if a>a,
a = .

n fa<a,
Similarly, select ¢ in equation (29) as equation (55).
Substituting this ¢ into the time derivative of the second
equation in equation (29) yields

(58)

. [ =& fa>ay
B{%”) ifa < ay (59)
Consequently, equation (51) becomes
if > a,,

i —mg V' + 2leqlé) + 20eplés
S\ el =~ lsgl (nE - 6) ifa<an
(60)

Equation (60) indicates that the sign of the time deri-
vative of V' is indefinite so that it is possible that |s|
becomes larger than p with the decrease of a and B.
Once |s| increases larger than w, the condition defined
in Case 1 will be immediately triggered. The time deri-
vative of V in equation (57) becomes negative so that
the closed-loop control system possesses the inherent
stability and the sliding surface variable s will enter the
domain |s| < u again in finite time. This process will
take place now and then and it will not stop until the
control system becomes convergent. During this pro-
cess, the sliding surface variable s may deviate from the
domain for a finite time, but there always exists another
larger domain in the real sliding mode of the sliding
surface variable s. This larger domain in the real sliding
mode of s can be described by

(61)

In the domain |s|] < p, the value of |§| can be esti-
mated from equations (25) and (29)

ls|<my (m > p)

1< [a(t) + 81]u'/? + [ea(t) + 8)(12 — 1) = 1y
(62

)

Here, ¢, is the time instant when the sliding surface vari-
able s enters the domain|s| < w and %, is the moment
when s leaves the domain.

Once p < |s| < 7, there exists

15| <(m "2 + e)(a() + Em'* + &)(1 — 1)

3 (63)
+8m 2+ 8215 — 1) =

Here, ¢, defined in equation (62) is the time instant
when s leaves the domain|s| < w and ¢z is the moment
when s enters the domain|s| < p again.

From equations (62) and (63), equation (64) can be
obtained by

S| < max(,, 7,) = M, (64)

From equations (61) and (64), the real sliding mode
can be described by

Q={ss: |sl<sm Blsm m>p} (65
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Note that the existences of the sliding mode in equa-
tion (65) can be presented in theory but n; and 7, can-
not be obtained in advance before a real control
process is carried out.

The aforementioned design and analysis has guaran-
teed that equation (30) on the right-hand side is
bounded. Meanwhile, the adaptive gain « is increasing
linearly with respect to time in terms of equation (29).
Thus, equation (29) is fulfilled in finite time. Provided
that w = 0 in equation (29), this means both s and the
time derivative of s are convergent to zero in the finite
time 7,. Here, ¢, can be estimated by

24/ V(1)

<= 66
Mo ( )

where f, represents the initial condition of the input—
. S St 1 )
output dynamics (25) and 1, = mm{%, £,6).
For any w > 0, it can be obtained that both s and
the time derivative of s are convergent to the domain

defined in equation (65) in the finite time ¢x<¢,. Thus,
it is concluded that

< 2/ M)

Fx —

- (67)

Now, let’s check the boundaries of the adaptive gains
a and B. In the domain w < |s| < n, a solution of
equation (29) can be constructed by

a=a0) + &t 0<t<ty (68)

From equation (68), it is apparent that the adaptive
gain « is bounded in the finite time 7. Similarly, the
adaptive gain B is also bounded according to its defini-
tion in equation (29). On the other hand, the adaptive
gains « and B are decreasing inside the domain |s| <pu.
In a word, @ and B are inherently bounded in the larger
domain of the real sliding mode.

Simulation results

In this section, some numerical results will be illu-
strated by a platform. Such a platform driven by a
servo motor can demonstrate the bolt tightening pro-
cess by the comparisons of several control methods.
Some physical parameters of this platform are deter-
mined by the moment inertia J = 0.000457 kg m? the
friction coefficient B = 0.03 N m/(rad/s), the induc-
tance of the armature winding L = 0.0036 H, the resis-
tance of the armature winding R = 1.25Q, the constant
related to the back-electromotive force K, = 0.0753 V/
(rad/s), the electromagnetic torque constant K, = 0.49
N m/A, and the reduction ratio of this gear reducer n
= 100. Some rated parameters of the servo motor are
listed as rated power Py = 400 W, rated voltage Uy =
48 V, rated torque T, = 1.27 N m, and rated speed ny
= 3000 r/min.

The parameters of the designed adaptive-gain sec-
ond-order siding mode controller are determined by

the constant vector of the sliding surface in equation
(17) ¢' = [55 0.01 1] and the pre-defined constants in
equation 29) p = 0.7, n = 0.001, @,,, = 0.001, ¢ = 1,
v1 = 2, and a(0) = 120. Meanwhile, the initial value
of the super-twisting algorithm in equation (24) is set
by @,(0) = 150.

Disturbance rejection

In the subsection, some results will be illustrated to
show the performance of the designed controller for
the disturbance rejection. The desired torque is set to
be 50 N m. The reduction ratio is n = 100. The con-
trol input is the voltage of the armature winding. The
initial state vector x (0) is set to x'(0) = [0 0 0]". The
results via the bolt tightening process are demon-
strated in Figure 3.

To verify the performance of the designed controller,
the disturbances in equation (16) are defined by the
Heaviside step function with different amplitudes, for-
mulated by

0 other

-5 3<it<5,

-4 8<t<9
0 other

do=<¢ -5 4<t<5,

-3 T7<t<15
0 other
-2 S5<it<52
1 6<1<62

drl =

and  (69)

dr3 =

As the aforementioned uncertainties and distur-
bances, equation (16) describes some Heaviside step
functions that can simulate the material change of the
bolt and nut during this tightening process. Since the
temperature change is very slow, the Heaviside step
function is not good enough to describe such kind of
disturbances. Note that equation (69) is only employed
by the numerical platform. When the adaptive-gain sec-
ond-order sliding mode controller is designed, it is
assumed that equation (69) is unknown.

From Figure 3(a), the tightening torque is toward
the desired torque during the bolt tightening process.
The designed controller can effectively achieve the tigh-
tening task in the presence of disturbances. In Figure
3(b), the angular velocity is demonstrated. During the
simulation, the saturation constraint of the angular
velocity is not considered. It can be found that the
angular velocity suffers from the chattering phenom-
enon for the existence of the disturbances. The control
input and one of the adaptive gains « are also illu-
strated in Figure 3(c) and (d). According to the defini-
tion of B in equation (29), it is not shown because of
the limited space. As proven in Theorem 1, the adap-
tive gains are kept bounded during the bolt tightening
process.
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Effects of different reduction ratios for the fixed-point
control

In order to investigate the effects of the bolt tightening
speed on the accuracy, the changes of the reduction
ratios are taken into consideration in this subsection.
On the contrary, the disturbances in equation (16) are
set to zero. Both the controller parameters and the
rated speed are kept unchanged. Four reduction ratios
are considered here, that is, n = 10, 20, 50, and 100,
respectively. The simulation results via these four reduc-
tion ratios are displayed in Figures 4-7. From Figures
4-7, the tracking error is decreased with the increase in
the reduction ratio. So is the angular velocity. But the

bolt tightening time is increased with the increase in the
reduction ratio. Therefore, the reduction ratio should
not be too big from the aspect of throughput capacity.
Note the reduction ratio is subjected to the angular
velocity of this servo motor. Both of the factors should
be considered when the reduction ratio is decided.

Effects of different reduction ratios for the tracking
control
The performance of the designed controller has been

verified by a fixed-point torque. In this subsection, the
performance of tracking a dynamic torque will be
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Figure 6. Numerical results by the presented control method when n = 50: (a) tightening torque, (b) angular velocity, and

(c) tracking error.

displayed by different reduction ratios in order to show
the superior of the designed controller. Without loss of
generality, a sinusoidal torque is assigned as the tracking
target. Both the controller parameters and the rated speed
are kept unchanged as well. The numerical results are
shown in Figure 8. The results are similar to the results of
the fixed-point control. Apparently, the bigger the reduc-
tion ratio, the slower the tracking performance. Therefore,
the reduction ratio should not be too big from the aspect
of throughput capacity. However, the smaller reduction
ratio indicates the larger angular velocity, which is sub-
jected to the servo motor. The angular velocity curves are
not displayed because of the limited space.

Comparisons of different control methods

The comparisons of the three control methods are illu-
strated in Figure 9, that is, the adaptive-gain second-
order SMC, the second-order SMC, and the adaptive

fuzzy control in Liu et al.'” In order to verify the ability
of disturbance rejection of these control methods, the
disturbances defined in equation (69) are injected into
the model of this bolt tightening process. It is appar-
ently that the blue solid in Figure 9 is just the curve in
Figure 3(a). From Figure (9), the designed controller
can drive the bolt tightening system to the desired tor-
que as soon and as accurately as possible. The
adaptive-again algorithm can dramatically improve the
control performance because the sliding-surface para-
meters of the second-order SMC are the same as the
designed control method.

Conclusion

This paper focuses on the torque control problem of
bolt tightening process. The bolt tightening process is
rather complex because this process is inherently
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Figure 8. Numerical results of the tracking performance by the presented control method: (a) n = 10, (b) n = 20, (c) n = 50, and
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nonlinear, which makes the control problem challen-
ging. The paper has modeled the bolt tightening pro-
cess according to the mechanical structure of the
designed tightening shaft. Then, the control method
based on the adaptive-gain second-order sliding mode
technique has been designed. According to the control
method, the closed-loop bolt tightening system can
have the guaranteed stability in the sense of Lyapunov.
The control method has been carried out by a numeri-
cal bolt tightening platform. Compared with other two

benchmark methods, the adaptive-gain second-order
SMC has the best performance. Meanwhile, the effects
of different reduction ratios on the control performance
have been discussed, which will benefit the design opti-
mization of this bolt tightening shaft. There are still
some techniques to deal with the adverse effects of dis-
turbances and uncertainties, such as nonlinear distur-
bance observer, intelligent compensator, and estimator.
This field is our consecutive research interests in the
future.
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