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Abstract: A challenging aspect of instrument segmentation in robotic surgery is to distinguish different parts of the same instru-
ment. Parts with similar textures are common in a practical instrument and are difficult to distinguish. In this work, we introduce
an end-to-end recurrent model that comprises a multiscale semantic segmentation network and a refinement model. Specifically,
the semantic segmentation network uniformly transforms the input images in multiple scales into a semantic mask, the refinement
model is a single-scale net recurrently optimizing the above semantic mask. Through extensive experiments, we validate that
the models with multiscale inputs perform better than those to fuse encoding and decoding feature maps with spatial attention.
Furthermore, we verify the effectiveness of our model with state-of-the-art performances on several robotic instrument datasets
derived from MICCAI Endoscopic Vision Challenges.

1 Introduction

The research community of robotic instrument segmentation has
payed growing interest in current clinical practice [1–7] for its
crucial importance in many tasks involved in robot-assisted min-
imally invasive surgery and computer-assisted surgical systems.
Particularly, accurate segmentation of instruments is a fundamen-
tal step towards scene understanding in many surgical and robotic
operations [8–12].

Minimally invasive surgery has been applied in a variety of surgi-
cal procedures because it causes less damage to tissues and reduces
patient suffering. However, minimally invasive surgery requires
high-level operation techniques and is difficult to master, which lim-
its the widespread use of this technology. Moreover, surgeons incline
to feel fatigue after long-term continuous surgical operations, and
their hands tend to be unstable to ensure accurate manipulations.

Robot-assisted minimally invasive surgery addresses the above
problems because locations of robotic instruments are capable of
quickly reaching the target without shaking. However, potential fac-
tors such as shadows, specular reflections, partial occlusions, blood
splattering, and tissue dynamics lead to the complicated surgical
environment. Moreover, compact size of robotic instruments and
their complex actuation mechanisms cause trajectory control and
scene understanding in surgical operations more challenging.

Recent advances in semantic segmentation are driven by the
success of convolutional neural networks [13–39]. Some of them
classify pixels using a single semantic segmentation model with pre-
trained weights [13–16, 18, 19, 21, 23, 25, 26, 29, 32, 33, 36]. Some
other methods refine pixels using multiple convolutional neural
networks [18, 20, 22, 24, 27, 28, 31, 34]. Still other methods post-
process pixels with additional modules based on low-level boundary
cues [30, 35]. In spite of their success, these methods do not refine
semantic masks in a supervised way. Designed without multiscale
recurrent refinement, previous methods often struggle in separating
parts with similar contexts, as shown in Figure 2 (MT is closer to
the true mask than M0).

This work introduces a multiscale recurrent refinement model for
part segmentation of instruments in robotic surgery, which alleviates
the above problem with a collaborative rectification mechanism. The
model comprises two parts: the semantic segmentation network and
the recurrent refinement network. Given an input image, the seman-
tic segmentation network transforms the images in multiple scales
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Fig. 1: Number of parameters v.s. mean Dice coefficient: Every
circle represents the performance of a method, and our model outper-
forms others by a large margin with the fewest parameters. ’15’, ’17’,
and ’18’ respectively denote the dataset from Endovis15, Endovis17,
and Endovis18.

to a mask with continuous semantic regions. The segmentation net-
work is a multiscale Linknet [13], a quite efficient encoder-decoder
model that can remove spotted semantic regions.

During inference, the semantic segmentation network simultane-
ously predicts masks from converted images in multiple resolutions,
then all the outputs are fused into a mask. Based on Linknet [13] and
Siamese network [40], the semantic segmentation model is directly
trained end-to-end to capture multiscale contexts.

The recurrent refinement model predicts a more detailed mask
collaboratively. Built on a basic Linknet, the recurrent refinement
model effectively simplifies multiple semantic segmentation mod-
els into a single model, while achieving accurate robotic instrument
segmentation. Furthermore, we merge predictions from both the
semantic segmentation model and the recurrent refinement one,
leveraging dependencies of masks from different paths.

Through an extensive set of experiments on several medical
instrument datasets, we demonstrate superior part segmentation per-
formances of our method on both rigid instruments and robotic ones.
Furthermore, when used with other semantic segmentation mod-
els, the recurrent refinement model shows the ability to improve
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the segmentation results by refining their spotted semantic regions.
For the end-to-end designation, our semantic segmentation systems
optimize as a whole.

In summary, the contributions of this paper are three-folded.
Firstly, a multiscale Linknet is constructed to significantly reduce
spotted regions when segmenting semantic parts of medical instru-
ments. Secondly, a recurrent refinement model is introduced to
optimize coarse boundaries in masks from the semantic segmenta-
tion model. Thirdly, to demonstrate the effectiveness of multiscale
and recurrent refinement, widely used spatial attention modules are
integrated into our framework. All the variants and state-of-the-art
semantic segmentation models are evaluated and compared, which
systematically demonstrates the superiority of our method.

2 Related Work

Encoder-decoder networks and fully convolutional ones have
become the dominant architectures for semantic segmentation. In
this work, we discuss their variants that exploit context information
for semantic segmentation.

2.1 Encoders

Encoders with limited receptive fields or small kernels may not
be suitable for representing semantic pixels. Therefore, convolution
operations in a fully convolutional neural network are replaced with
dilated convolutions [7] or deformable ones [41], and large kernels
in a global convolutional network simultaneously localize and clas-
sify pixels [29, 42, 43]. However, encoders with small kernels might
be faster for dense pixel classification.

Semantic features seem to generalize better using weights of pre-
trained models such as VGG-11 [5], ResNet-50 [34], ResNet-101 [7,
32], WideResNet [32], Xception [15], and DenseNet-169 [25]. How-
ever, these networks heavily rely on the pretrained weights, so
high-level features in too deep models may not be easily transfered
for segmenting targets in other tasks.

To obtain more informative representations for semantic segmen-
tation on several occasions, features in some layers are aggregated
in specified feature dimensions. Specifically, concurrent spatial and
channel "squeeze and excitation" blocks are integrated into a fully
convolutional network to segment brains and organs [44]. More-
over, the position-attention module and channel-attention one are
designed to refine segmentation outputs [19].

To fuse multi-scale features, typically, pyramid pooling blocks are
nested before decoding intermediate feature maps. For example, a
pyramid parsing module followed by upsampling and concatenation
layers is initially proposed [34]. After that, an atrous spatial pyra-
mid pooling layer consists of atrous convolution layers with different
rates in parallel [14]. Based on the above atrous-convolutional struc-
ture, region features are merged with boundary ones [32]. Besides,
global structures of vessels are captured with a graph neural net-
work, while local appearances on an image grid are learned with a
convolutional neural network [45].

Moreover, convolutional networks can be extended and applied in
three-dimensional semantic segmentation occasions including surgi-
cal tools [3, 46]. Specifically, to solve this issue, a three-dimensional
fully convolutional network is constructed [3], dense paths are cre-
ated inside the above model given early-fused inputs [47], and bidi-
rectional convolutional long-short term memories are built to capture
spatial-temporal correlations of the continuous slice of vertebrae and
livers in three-dimensional CT scans [48].

Additionally, structure priors in images can be efficiently fused
using multi-modal inputs. For example, spatial ranking maps are
supervised by panoptic segmentation labels to alleviate overlapping
problems among various classes [42], high-resolution feature maps
are refined with inputs from multiple paths [49], streams respec-
tively given stacked optical flows and color images models motions
and appreances [50], and gated convolutional layers enforce bound-
ary information merely processed in a shape stream [32]; images in
axial, coronal, and sagittal views are independently segmented and
fused into a single result with union operations [43].

2.2 Decoders

Feature maps from encoders in a fully convolutional network is
directly fused to output semantic pixels, but they can be gradu-
ally decoded in different levels to capture sharper boundaries [15].
Initially, feature maps of decoders are directly concatenated with
those of encoders in a U-net [51]. Recently, additional modules
are linked between each encoding layer and the corresponding
decoding counterpart. For example, residual attentions are built to
localize the liver in every image and segment it in the volumetric
space [52]; dense skip pathways are created with multiple nested
convolutional blocks to bridge the semantic gap [53]; a U-net can
also consist of filters with different kernel sizes and residual con-
nections [54]; cascade branches with multiple atrous convolution
blocks and residual-kernel poolings are used to connect an encoder
and a decoder [55]; convolutional long-short term memories can
be temporally connected in an decoder [56]. Different from the
aforementioned works, Linknet [13] is constructed as the baseline
network and attention gates [57] are integrated in decoders by lever-
aging spatial relationships between encoded features and previous
decoded ones.

Feature maps from encoders can also be fused before progres-
sive decoding. For example, multi-scale contexts are captured with
spatial pyramid pooling [6], atrous spatial pyramid pooling [15] or
joint pyramid upsampling [58]. However, features of encoders may
be insufficient for training semantic segmentation models with small
dataset, so data generation is an essential step to improve segmenta-
tion performances. For instance, motion vectors are estimated with
a three-dimensional convolutional neural network, and to scale up
training data, given previous frames and motion vectors, bilinear
operations are applied to predict future frames [59]; part of visual
cues are used to regenerate full objects which are later combined
with local inputs filled with margins to predict contexts [60].

2.3 Losses

Pixel-wise losses can be directly applied for training segmentation
models, and to balance binary or multiple classes, dice coeffi-
cient [46] and class-balancing cross-entropy loss [61] are used to
train models. In our work, different losses are integrated into a
unified loss function to supervise the segmentation task.

Perceptional losses may preserve more global structures com-
pared to pixel-wise ones. Inspired by generative adversarial net-
works, generated masks are usually judged with a discriminator [62,
63]. For example, ground truth masks and predicted ones are sep-
arated with a classifier in image level [6], patch level [43], or
both [60]. Moreover, their consistencies can be supervised with
earth-mover distances in the Wasserstein generative adversarial net-
works [64, 65]. To enlarge dataset while preserving geometric
information in synthetic data, depth images are auxiliary inputs of a
generative adversarial network generating color images in real-world
domain [17].

Except for distances between predictions and ground truths
directly measured, they can also be indirectly computed. For exam-
ple, the reconstruction error between original labels and compressed
ones by transformations applied in data-dependent upsampling is
minimized [33]; based on teacher-student networks, the dense gram
matrix of feature maps in the source network should be close to that
in the target model [20].

2.4 Ensembles

Global structures and local details in a high-resolution image may
not be simultaneously captured well with a semantic segmentation
model. Therefore, different information flows should be ensembled
to address this problem.

Global information and local details can be independently pro-
cessed. For instance, regions of pancreas are localized with a deep
Q network and then segmented with a deformable U-net [41]; shape
details of target regions are recovered with saliency transformation
modules and refined recurrently with a finer-scaled network [66];
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Fig. 2: An overview of the semantic segmentation framework: the proposed method consists of two modules: the multi-scale Linknet and the
recurrent Linknet. Specifically, images in multiple scales are obtained by resizing the original high-resolution image at first; then every resized
image is independently segmented with a multiscale Linknet, and all the outputs are averaged into a single map which is later combined with
the original image; in the end, the combined features are collaboratively refined with a recurrent Linknet and updated in each iteration. It should
be noted that all the relevant images are resized into the same size before the element-wise averaging.

cell-level architecture search spaces and network-level ones are used
to optimize the semantic segmentation architecture [27].

Images [67], intermediate feature maps [26], or predictions at dif-
ferent scales [4] can be fused to refine segmentation masks. Without
changing model inputs and outputs, joint learning might be another
direction for segmentation refinement. Specifically, refinement and
classification of bounding boxes combined with segmentation can
be jointly and cascade learned [16, 21, 31].

2.5 Motivation

In this paper, we mainly focus on the multi-stage semantic seg-
mentation, and masks can be progressively refined using cascade
structures. For example, feature maps belonging to support images
and query ones are refined with an iterative optimization mod-
ule [68]; intermediate feature maps in different scales are fused with
cascade feature fusion modules [67].

To reduce the number of parameters in a cascade architecture,
inspired by recurrent U-net [69], the current image are recurrently
combined with previous segmentation masks, and weights among
basic networks are shared in our method, even though weights are
better not shared in stacked hourglass networks [70].

3 Method

3.1 Linknet

Linknet [13] is used as the baseline of our approach due to the
following two reasons: on the one hand, since the accuracy and effi-
ciency of pixel-wise semantic segmentation are leveraged in Linknet,
it is quite suitable for real-time robotic instrument segmentation; on
the other hand, test speeds tend to decrease after refining mask recur-
rently, so a fast segmentation model must be chosen to ensure the
overall efficiency of our framework.

Linknet is based on the encoder-decoder structure, relatively
higher-level feature maps from the decoder layer and lower-level
ones from the corresponding encoder layer are channel-wisely
summed to output the feature maps for the decoder layer in a next
level. A pretrained 18-layer residual network is the backbone of
encoding layers, and its first convolutional block consists of a con-
volutional layer with 64 filters with 7× 7 kernel sizes and 2× 2
strides, a batch normalization layer, and a max-pooling layer with
stride 2. Therefore, areas of feature maps from this block becomes
1
16 as those of inputs, which accelerates feature maps computed with
higher-level convolutional layers. Transposed convolutions enlarge
the sizes of feature maps in the decoder module instead of bilin-
ear or nearest interpolation. Batch normalizations and ReLUs are
integrated after convolutional blocks and transposed convolutional
blocks.

3.2 Attention Linknet

The main topic in this paper is to what extent multiscale influ-
ences semantic segmentation of parts, while spatial attention [57] is
a popular module to improve semantic segmentation performances.
Therefore, spatial attention is integrated into the basic Linknet
for comparisons. Specifically, channel-wise sums are used to con-
nect encoding layers and decoding ones in the basic Linknet and
attention gates are integrated into the attention counterpart. Feature
maps containing unrelated background regions can be progressively
suppressed using attention gates.

Given feature maps from the encoding layer and those from
the decoding layer, the attention module connects them and output
decoding feature maps attened by the encoding features.

Fo = Fd × α

= Fd × ho
(
σ
(
hd(Fd) + he(Fe)

)) (1)

where Fe, Fd, Fo are respectively feature maps from the encoding
layer, those from the corresponding decoding layer, and outputs of
the attention gate. α has only one channel, and its size is the same as
that of Fd. hd/e(·) is the convolutional block including a convolu-
tional layer and a batch normalization layer, but ho has an additional
sigmoid layer except for the above two layers. σ is an activation
function, and ReLU is used in this model.

3.3 Multiscale Linknet

Image inputs in multiple resolutions are adopted to concurrently cap-
ture multiscale contexts. Specifically, images in each resolution are
indpendently passed through a weight-shared basic Linknet, and the
output probability maps are averaged because both local textures and
global structures are important for the final decisions:

M0 =
1

p

p∑
k=1

un
(
fI

(
ub(I,

1

sk
)
)
, sk

)
(2)

where I and M0 respectively represents an image and probability
maps, fI is the multiscale Linknet, un and ub are upsampling opera-
tions with nearest interpolation and those with bilinear interpolation,
and sk is the k-th upsampling scale.

3.4 Recurrent Refinement

Probability maps from the multiscale Linknet and images are con-
catenated as the input of a recurrent Linknet. Specifically, at each
iteration, inputs of the recurrent model are the original image and
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probability maps from previous iterations, and its outputs are used
to update probability maps at the next iteration.

Mt =

{
M0, t = 0
1

t+1

(∑t−1
i=0 Mi + fM

(
g(I,Mt−1)

))
, t > 0

(3)

where Mt represents probability maps at t-th iteration, fM is the
recurrent Linknet, and g is the concatenation operator. All the
probability maps are averaged channel-wisely.

3.5 Training

To train the end-to-end recurrent semantic segmentation model, focal
loss [71] and dice one are applied. Specifically, the overall loss for a
single input in each class is defined as L, and summerization of L in
all the classes is a complete loss used for training.

L = Lfcl + Ldce (4)

where Lfcl, Lce, and fdce respectively represents focal loss, cross-
entropy loss, and dice loss, and focal loss is used to balance the
weights of easily-classified examples and hard-classified ones.

Lce = −
m∑
j=1

m∑
k=1

Mgt(j, k)log(MT (j, k)) (5)

where m is the side length of the square probability map MT at the
last iteration T .

Ldce = 1−
∑m

j=1

∑m
k=1 Mgt(j, k)Mpd(j, k) + ϵ∑m

j=1

∑m
k=1 Mgt(j, k) +Mpd(j, k) + ϵ (6)

where Mgt and Mpd are respectively the groundtruth prob-
ability map and the predicted one after a softmax function:
Softmax(MTi) =

eMTi∑nc−1
j=0 eMTj

, and the numerical issue of the

loss function divided by 0 is solved by using ϵ.

4 Experiments

4.1 Datasets

Datasets in this paper are from endovis-robotic instrument segmenta-
tion subchallenges including Endovis15 ("Instrument Segmentation
and Tracking" in MICCAI 2015), Endovis17 ("Robotic Instrument
Segmentation" in MICCAI 2017) [1], and Endovis18 ("Robotic
Scene Segmentation" in MICCAI 2018) [2]. It should be noted that
only the part segmentation results are used for evaluations.

4.1.1 Endovis15: Rigid instruments and robotic counterparts
are respectively recorded with images and videos in this dataset.
Training data and test ones are already separated, but gaps between
the distribution of training data containing robotic instruments and
that of test one are relatively small. Therefore, rigid instrument seg-
mentation is chosen and experimented. Specifically, the selected
dataset contains 160 images from four surgeries, and the size of
every image is 640× 480. Parts of rigid instruments only include
shaft and manipulator.

4.1.2 Endovis17: This dataset consists of eight videos captured
with stereo cameras from a da Vinci Xi robot, and there are 225
frames in every video, and they are recorded at 30 Hz in the origi-
nal video and are sampled at two Hz to remove video redundancy.
To obtain 1280× 1024 frames, original 1960× 1280 frames should
be cropped starting from the pixel (320, 28). Components of instru-
ments include rigid shafts, articulated wrists, and claspers. The same
as dataset splitting in prior works [6], the first six videos and the last
two ones are respectively used as training data and test one.

4.1.3 Endovis18: This dataset includes 16 videos from stereo
cameras using da Vinci Xi systems, and there are 149 frames
in each sequence, the original videos are sampled at 60 Hz
and are downsampled at two Hz to accelerate the dense pixel
labeling. Different from the above two datasets, both instru-
ments and context objects are labeled. As a result, classes
in this dataset includes background-tissue, instrument-shaft,
instrument-clasper, instrument-wrist, kidney-parenchyma, covered-
kidney, thread, clamps, suturing-needle, suction-instrument, and
small-intestine. Similar to the above dataset splitting rules, these
datasets are divided into the first 12 sequences for training and the
last three ones for test.

4.2 Evaluation Protocol

To quantitatively evaluate the segmentation performance of every
image, several metrics are used for each class to measure the simi-
larity between a predicted mask and a ground truth one. Specifically,
to obtain the predicted mask, the segmentation model firstly outputs
a multi-channel probability map, then it is transferred to a single-
channel mask where each pixel corresponds to the category index
with the maximum probability at the same location among all the
channels in the previous multi-channel map, finally, the provided
mask is transferred back to a one-hot map as the predicted mask.

Metrics including dice coefficient, intersection over union, pre-
cision, recall, acurracy, and F1 score are used for evaluation. The
specific metrics are defined as follows:

Dice =
2× TP

2× TP + FP + FN
(7)

IoU =
TP

TP + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

F1 score =
2× Precision×Recall

Precision+Recall
(12)

where TP , FP , TN , and FN respectively represent the number
of true positives, the number of false positives, the number of true
negatives, and the number of false negatives.

To measure the overall performance using each metric, sim-
ilarities for all the images in a test set are computed with the
corresponding metric and are averaged. As a result, mean dice coeffi-
cient mDice, mean intersection over union mIoU , mean precision
mPrec, mean recall mRec, mean accuracy mAcc, and mean F1
score mF1 are provided.

4.3 Implementation Details

To prepare high-resolution images as inputs of the model, all the
cropped frames are resized to 640× 640 using bicubic interpola-
tion over 4× 4 pixel neighborhood. Sizes of the resized images later
become 320× 320 to construct an image pyramid. Data Augmenta-
tion on color images such as randomly converting to gray ones and
changing their brightness and contrast are applied, specifically, the
probability of converting is 0.1, and both the factor of brightness and
that of contrast are 0.01.

RAdam [72] is used to optimize the model, and its base learning
rate is 0.0005. Batch size for each training epoch is 4. All the infer-
ences are run on an 8-core Alienware Laptop with an Intel CPU of
2.80 GHz and 15-GB RAM, and all the baseline models are exe-
cuted with a GeForce GTX1070 GPU. It should be noted that the
same implementation details are followed among all the baselines
and our methods except their various architectures.
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Table 1 Comparisons of Part Segmentation with Different Ensembles on Endovis15

Attention Multiscale Image Mask mDice ↑ mIoU ↑ mPrec ↑ mRec ↑ mF1 ↑ mAcc ↑
0.743 0.708 0.810 0.741 0.743 0.962

✓ 0.757 0.716 0.809 0.757 0.756 0.962
✓ 0.715 0.667 0.750 0.740 0.714 0.955

✓ ✓ 0.729 0.688 0.769 0.759 0.727 0.956
✓ 0.765◦ 0.728⋆ 0.817∗ 0.767◦ 0.764◦ 0.964◦
✓ ✓ 0.773∗ 0.733∗ 0.816⋆ 0.782∗ 0.772∗ 0.965∗
✓ ✓ 0.711 0.667 0.789 0.701 0.710 0.959
✓ ✓ ✓ 0.755 0.715 0.806 0.764 0.754 0.965⋆

✓ 0.736 0.699 0.789 0.747 0.735 0.960
✓ ✓ 0.741 0.702 0.792 0.751 0.740 0.961
✓ ✓ 0.510 0.476 0.578 0.523 0.509 0.928
✓ ✓ ✓ 0.738 0.695 0.795 0.733 0.736 0.961
✓ ✓ 0.767⋆ 0.723◦ 0.811◦ 0.771⋆ 0.766⋆ 0.964
✓ ✓ ✓ 0.747 0.705 0.786 0.766 0.746 0.960
✓ ✓ ✓ 0.651 0.607 0.686 0.694 0.650 0.942
✓ ✓ ✓ ✓ 0.739 0.700 0.804 0.738 0.738 0.961

Table 2 Comparisons of Part Segmentation with Different Ensembles on Endovis17

Attention Multiscale Image Mask mDice ↑ mIoU ↑ mPrec ↑ mRec ↑ mF1 ↑ mAcc ↑
0.734 0.674 0.763 0.739 0.724 0.959

✓ 0.752 0.694⋆ 0.781 0.747 0.743 0.962⋆
✓ 0.738 0.666 0.775 0.717 0.725 0.960

✓ ✓ 0.741 0.675 0.775 0.744 0.735 0.960
✓ 0.738 0.671 0.770 0.743 0.728 0.955
✓ ✓ 0.746 0.680 0.769 0.754 0.735 0.959
✓ ✓ 0.701 0.638 0.729 0.717 0.695 0.942
✓ ✓ ✓ 0.772∗ 0.705∗ 0.782 0.793∗ 0.766∗ 0.966∗

✓ 0.748 0.676 0.792◦ 0.731 0.738 0.954
✓ ✓ 0.758 0.693◦ 0.778 0.763⋆ 0.747 0.960
✓ ✓ 0.719 0.676 0.742 0.747 0.716 0.957
✓ ✓ ✓ 0.707 0.645 0.731 0.716 0.698 0.961
✓ ✓ 0.743 0.681 0.807∗ 0.716 0.733 0.962◦
✓ ✓ ✓ 0.760◦ 0.686 0.784 0.761◦ 0.748◦ 0.961
✓ ✓ ✓ 0.679 0.621 0.665 0.740 0.673 0.952
✓ ✓ ✓ ✓ 0.769⋆ 0.691 0.794⋆ 0.756 0.753⋆ 0.962

Table 3 Comparisons of Part Segmentation with Different Ensembles on Endovis18

Attention Multiscale Image Mask mDice ↑ mIoU ↑ mPrec ↑ mRec ↑ mF1 ↑ mAcc ↑
0.604 0.587 0.515 0.513 0.490 0.763

✓ 0.684 0.633⋆ 0.588 0.591 0.566 0.789
✓ 0.687 0.589 0.569 0.572 0.545 0.773

✓ ✓ 0.603 0.587 0.519 0.520 0.493 0.748
✓ 0.643 0.607 0.550 0.548 0.524 0.788
✓ ✓ 0.755∗ 0.602 0.637∗ 0.638∗ 0.609∗ 0.766
✓ ✓ 0.736⋆ 0.573 0.622⋆ 0.603 0.579◦ 0.797
✓ ✓ ✓ 0.670 0.646∗ 0.584 0.578 0.559 0.813∗

✓ 0.628 0.582 0.536 0.530 0.504 0.765
✓ ✓ 0.729◦ 0.561 0.604 0.597 0.570 0.744
✓ ✓ 0.691 0.516 0.581 0.521 0.505 0.687
✓ ✓ ✓ 0.716 0.560 0.616 0.602 0.566 0.745
✓ ✓ 0.728 0.617 0.621◦ 0.619⋆ 0.595⋆ 0.801⋆
✓ ✓ ✓ 0.696 0.625◦ 0.597 0.607◦ 0.575 0.799◦
✓ ✓ ✓ 0.624 0.566 0.519 0.537 0.501 0.768
✓ ✓ ✓ ✓ 0.666 0.577 0.559 0.564 0.531 0.754

mDice mIoU mPrec mRec mF1 mAcc
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Fig. 3: Comparisons of part segmentation with state-of-the-arts on datasets from Endovis15, Endovis17, and Endovis18: we compare our
method with semantic segmentation models including Ternausnet [73], ICnet [67], DUnet [33], and DAnet [19], and we evaluate all the
methods on five different metrics: mDice, mIoU, mPrec, mRec, mF1, and mAcc. It can be easily seen that our method consistently outperforms
others on the three datasets.
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Fig. 4: Segmentation masks of baselines and our method: three columns respectively corresponds to results in Endovis15, Endovis17, and
Endovis18, and every color corresponds to a specific semantic class. Most of the baselines can be used to accurately segment instruments, but
sometimes our method outperforms baselines by a large margin on surgical contexts.

4.4 Ablation Studies

To search for the best architectures on test sets in Endovis15,
Endovis17, and Endovis18, experimental results are respectively
listed in Table 1, Table 2, and Table 3. To simplify descriptions about
experimental comparisons, results are analyzed according to the dice
coefficient. Besides, [·]∗, [·]⋆, and [·]◦ correspond to models which
performance ranks the first, second, and third.

4.4.1 Effectiveness of Spatial Attention: Spatial attention
slightly improves the segmentation results. Its influences on the
basic Linknet are mainly in both Endovis17 and Endovis18, but
its positive effects on the multiscale Linknet are in Endovis15 and
Endovis17. Specifically, after adding spatial attention, the mean dice
coefficient of the basic Linknet is dropped from 0.743 to 0.736 in
Endovis15, but it increases from 0.734 to 0.748 in Endovis17, and
similar improvements also happen in Endovis18.

4.4.2 Effectiveness of Multiple Scales: Segmentation perfor-
mances are consistently improved after adding images in multiple
scales. It improves the basic Linknet in all the datasets, and it signif-
icantly improves the attention Linknet in Endovis15 and Endovis18.
For instance, the mean dice coefficient of the basic Linknet respec-
tively increases from 0.743, 0.734, and 0.604 to 0.765, 0.738, and
0.643 in Endovis15, Endovis17, and Endovis18. Moreover, those of
attention Linknets respectively increases from 0.736 and 0.628 to
0.767 and 0.728 in Endovis15 and Endovis18, but it slightly drops
by 0.005 in Endovis17.

4.4.3 Effectiveness of Recurrent Refinement: Recurrent
refinement is largely affected by the input types. Images combined
with probability maps partially alleviate this problem, and the mean
dice coefficient of multiscale Linknet with recurrent refinement
modules can reach 0.772 in Endovis17.

It should be noticed that models with only images in the recurrent
refinement perform better than those with additional masks. This
may due to the following reasons: all their weights for extracting
visual features are inherited from the pretrained residual networks
trained with large-scale datasets, but the first convolutional layer
using both images and probability maps has different numbers of
channels from RGB ones in pretrained networks, therefore, they
have to be trained from scratch and lead to more overfitting on
datasets in small scales. Concretely, categories in Endovis15 are the
least among all the datasets, which the first convolutional layer has
the fewest channels, so training from scratch might have less effects
when images are fused with probability maps; classes in Endovis17
is also similar to those in Endovis15, but there are much more
data in Endovis17, therefore, the combination of images and masks
improves by a large margin; semantic types in Endovis18 is signifi-
cantly larger than those in the aforementioned datasets, but data size
is almost the same as that in Endovis17, so training the first convo-
lutional layer may be more difficult, and the performance gap before
and after combining masks expands.

4.4.4 Iteractions between Spatial Attention and Multiple
Scales: All the aforementioned components can be used to
improve overall performances to different extents, and interactions
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among various components are further analyzed. Specifically, Com-
pared to the mean dice coefficient of multiscale Linknets, these
models combined with spatial attention respectively increases from
0.765 to 0.767 in Endovis15, from 0.738 to 0.743 in Endovis17,
from 0.643 to 0.728 in Endovis18, which demonstrates the easy inte-
gration and effectiveness of spatial attention after combining with
multiple scales. Moreover, models only combining recurrent refine-
ment and multiple scales achieve the best performances. Specifically,
their mean dice coefficients are respectively 0.773, 0.772, and 0.755
in Endovis15, Endovis17, and Endovis18. However, attention par-
tially improves segmentation performances of multiscale recurrent
Linknets in Endovis17 but deteriorates them in both Endovis15 and
Endovis18. For example, the mean dice coefficient of multiscale
Linknet using recurrent refinement of images increases from 0.746
to 0.760 after adding spatial attention in Endovis17, but that of mul-
tiscale Linknet using refinement of both images and masks decreases
from 0.772 to 0.769 after using spatial attention in Endovis17.
Similar conclusions remain true in both Endovis15 and Endovis18.

4.5 Comparison with State of the Art Methods

Among all the experimented semantic segmentation models, our
method ranks the first in all the datasets, as illustrated in Figure 3.
Not only instruments but also backgrounds are essential to be seg-
mented for manipulators to interact with environments in Endovis18,
so our method have more potentials than others. Specifically, com-
pared with other baseline methods, ICNet [67] seems the most
unsuitable for this task, and the mean dice coefficients in all the
datasets are less than 0.7. Ternausnet [73] may be good at classi-
fying foreground pixels with relatively small numbers of parame-
ters (32.20 million in Endovis17), but the metric is only 0.565 in
Endovis18, which might limit its further applications.

Characteristics of segmentation results using different methods
are further compared, as illustrated in Figure 4. Generally, there are
three columns from left to right, which respectively represent the
images and segmentation results with various methods in Endovis15,
Endovis17, and Endovis18. Specifically, even though ICNet per-
forms the worst in all the datasets, but it captures the global semantic
structures quite well. More details are preserved using DUnet [33]
and DAnet [19], but downsampling operations might be a little
more in DUnet, and some false positives exist in DAnet. Ternaus-
net sometimes obtains spotted semantic regions and damages the
global structure. Contrastly, our method removes the spotted areas
and properly classifies pixels belonging to both instruments and
environments.

5 Conclusion

In this paper, a multiscale recurrent refinement model is proposed
to segment parts of instruments in various surgery. Specifically, to
remove the spotted semantic regions, images in multiple resolu-
tions are segmented using a weight-shared Linknet, then the above
coarse outputs are further refined recurrently with another seman-
tic segmentation module. Unlike other models with fixed blocks
and connections, flexibly connected modules are introduced and
integrated into different models, and neural architectures are explic-
itly searched according to segmentation performances in the target
dataset. Compared with other methods, our model is more flexible
and easier to be searched. Extensive experimental results demon-
strate state-of-art performances of our model with significantly fewer
parameters for part segmentation of instruments.

It should be noted that there are still some issues in our method:
even though weight sharing significantly reduces the number of
parameters in a cascade refinement architecture and progressively
improve the segmentation result. However, fusing the image and
the predicted mask for the next iteration remains naive, and the test
speed inevitably becomes slower when predicted masks are refined
more times. For future work, we plan to build a recurrent refinement
model for temporal semantic segmentation and establish an effective
framework to segment instruments across multiple domains.
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