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a b s t r a c t

Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose
huge challenges to robust controller designs. In this paper, four major categories of
uncertainties are analyzed, that is, uncertainties associated with flexible effects, aero-
dynamic parameter variations, external environmental disturbances, and control-oriented
modeling errors. A uniform nonlinear uncertainty model is explored for the first three
uncertainties which lumps all uncertainties together and consequently is beneficial for
controller synthesis. The fourth uncertainty is additionally considered in stability analysis.
Based on these analyses, the starting point of the control design is to decompose the
vehicle dynamics into five functional subsystems. Then a robust trajectory linearization
control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each
subsystem controller, TLC is combined with the extended state observer (ESO) technique
for uncertainty compensation. The stability of the overall closed-loop systemwith the four
aforementioned uncertainties and additional singular perturbations is analyzed. Particu-
larly, the stability of nonlinear ESO is also discussed from a Liénard system perspective.
At last, simulations demonstrate the great control performance and the uncertainty
rejection ability of the robust scheme.

& 2014 Published by Elsevier Ltd. on behalf of IAA.
1. Introduction

Air-breathing hypersonic vehicles are viewed as a reliable
and cost-effective solution to access the space routine. Since
the 1960s, considerable effort has been made to develop
practical and affordable vehicles. Recent achievements include
the successful flight tests of NASA X-43A [1] and U.S. Air Force
X-51A [2]. However, the design of robust guidance and control
systems is still a challenging task due to complex coupling
effects and significant uncertainties [3–8]. Hypersonic flight
usually covers a large flight envelope during which the
environmental and aerodynamic characteristics undergo huge
alf of IAA.

(G. Fan),
variations. The slender geometries and light structures
required for these aircraft cause significant uncertain flexible
effects. Strong interactions also exist among propulsion,
structure, aerodynamics, and control. In addition, the lack of
experimental data makes the vehicle model far less accurate
[9–16].

In the recent literature, there are two dominant flexible
air-breathing hypersonic vehicle (FAHV) models: one is the
first-principle model developed by Bolender and Doman
[3,4], the other is the computational fluid dynamics (CFD)
based model of Mirmirani et al. [5]. Based on these models,
diverse control systems are designed with varying levels of
model fidelity. For the first model, linear approaches were
applied for control design in [8–10] based on model linear-
ization around trim conditions. In these cases, strategies in
the frequency domain could be easily applied to evaluate the
linear approaches. However, gain scheduling was needed

www.sciencedirect.com/science/journal/00945765
www.elsevier.com/locate/actaastro
http://dx.doi.org/10.1016/j.actaastro.2014.01.025
http://dx.doi.org/10.1016/j.actaastro.2014.01.025
http://dx.doi.org/10.1016/j.actaastro.2014.01.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.01.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.01.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.01.025&domain=pdf
mailto:zhiqiang.pu@ia.ac.cn
mailto:xiangmin.tan@ia.ac.cn
mailto:guoliang.fan@ia.ac.cn
mailto:jianqiang.yi@ia.ac.cn
http://dx.doi.org/10.1016/j.actaastro.2014.01.025


e
ElevatorFree stream

Forebody Aftbody

Center of gravity

Fig. 1. Geometry of the hypersonic vehicle model.
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among the trim conditions for a large flight envelope, thus
proof of the stability of the whole scheduled system became
a challenging task. As for the nonlinear methods, feedback
linearization [11], robust adaptive inversion-based design
[12], and quasi-continuous high-order sliding mode
approach [13] were proposed with less complex uncertain-
ties than those considered in this paper. For the second
model which is not discussed in this paper, Kuipers et al. [17]
developed an adaptive linear quadratic controller, while
Levin et al. [18] presented a control scheme that could
suppress unknown or changing flexible modes online.
Despite these research results, the design of robust control
systems is still an open problem because of the peculiarity of
the vehicle dynamics [12].

In the context of the aforementioned literature, the
current research focus of FAHV is to design a controller that
can achieve robust output tracking under diverse uncertain-
ties. This problem is considered in many papers [9–16] with
different kinds and varying levels of uncertainties. In [9–12],
however, the uncertainties were only applied to test the
system robustness. That means no particular technique was
adopted to deal with uncertainties, and the uncertainty
should be constrained within the stability domain of the
closed-loop system. For a model based control method, in
order to design a controller that owns the best uncertainty
rejection ability, a valid uncertainty model is assumed to be
available. Development of such a model, however, has
received far less attention in the literature. Rehman et al.
[14] developed an uncertainty model that considered 24
uncertain inertial and aerodynamic parameters. This model
was chiefly based on mathematical computation to make
feedback linearization applicable, but physical genesis of the
uncertainties was not discussed. Buschek et al. [15] and
Chavez et al. [16] presented another two uncertainty models
which were only applicable to linear control law synthesis. In
this paper, based on different physical and/or mathematical
geneses, uncertainties are characterized by four types: flex-
ibility effects, aerodynamic parameter uncertainties, external
environmental disturbances, and control-oriented modeling
errors. The first three uncertainties physically exist in vehicle
dynamics, thus open-loop behaviors of FAHV with these
uncertainties are analyzed, offering insights on the vehicle
features and guidelines for control design. Based on the
analysis, we develop a uniform nonlinear uncertainty model
that is more realistic for FAHV. This model lumps all these
three uncertainties together and is therefore beneficial for
compensation design. This model also features two “distur-
bance-matching matrices”which clearly describe the physics
of typical aerodynamic parameter uncertainties such as
propulsive perturbations and variations in control effective-
ness. The fourth uncertainty results from mathematical
derivation of the control law design and is not included in
the uncertainty model. However, it is considered in closed-
loop stability analysis.

Based on the uncertainty analysis and modeling, we
propose a robust control scheme that combines trajectory
linearization control (TLC) [19–25] and extended state obser-
ver (ESO) [26–28]. As a novel nonlinear control approach, TLC
can inherently guarantee the exponential stability of the
closed-loop system along nominal trajectories using linear
time-varying (LTV) system PD-spectral theory [29]. Moreover,
TLC provides a unique time-varying bandwidth (TVB) tech-
nique to feasibly improve control performance and system
robustness. Because of its simplicity and inherent robustness,
TLC has been applied to hypersonic vehicles [19–21],
unmanned aircraft [24], and mobile robots [25]. In this paper,
TLC is integrated with ESO for uncertainty estimation, form-
ing a robust TLC scheme. By adopting simple nonlinear
structures, ESO shows high estimation efficiency while main-
taining good flexibility as the control scheme can be easily
redesigned to determine whether ESO is used in one specific
control channel or in all channels. In addition, its great
simplicity can significantly shorten the computing time and
meet the fast computation requirement in practical hyperso-
nic missions, which is a great advantage over other time-
consuming estimation techniques such as fuzzy logic and
neural network.

To sum up, the objective of this paper is to design a
robust TLC scheme for FAHV in the presence of multiple
uncertainties. The paper is organized as follows. The FAHV
motion equations, together with force/moment expres-
sions, are given in Section 2. Uncertainty analysis and
modeling are discussed in Section 3. Section 4 addresses
the control scheme design. The vehicle dynamics are
decomposed into five functional subsystems. In each sub-
system, a basic TLC configuration, together with an adap-
tive TVB algorithm, is integrated with ESO for uncertainty
estimation. Section 5 presents stability analysis of the
perturbed closed-loop system, where the aforementioned
uncertainties and additional singular perturbations are
considered. The stability of nonlinear ESO is also analyzed
in this section from a Liénard system perspective. Section 6
contains multiple simulations to show the effectiveness of
the robust scheme. Finally conclusions are drawn in
Section 7.
2. Vehicle model

The vehicle studied in this paper is the model devel-
oped by Bolender and Doman [3,4] for the longitudinal
dynamics of a FAHV. Its sketch is illustrated in Fig. 1.
Flexibility effects are included by modeling the fuselage as
two cantilever beams clamped at the center of gravity,
rather than a single free–free beam as done in [7–9]. This
vibrational model captures the inertial coupling between
the rigid-body states and the flexible states, resulting in a
system that is more complex to control [4]. Assuming a flat
Earth and normalizing the vehicle to unit depth, the
equations of motion are written in the stability axes as [11]

_V ¼ ðT cos α�DÞ=m�g sin γ ð1Þ



Table 1
Mass densities under varying fuel levels.

Fuel level Case 1 Case 2 Case 3 Case 4

Mass (slugs/ft) 300 250 200 150
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_γ ¼ ðLþT sin αÞ=ðmVÞ�g cos γ=V ð2Þ

_h¼ V sin γ ð3Þ

_α¼Q� _γ ð4Þ

Iyy _Q ¼Mþ ~ψ f €ηf þ ~ψ a €ηa ð5Þ

kf €ηf ¼ �2ξfωf _ηf �ω2
f ηf þNf � ~ψ f M=Iyy� ~ψ f ~ψ a €ηa=Iyy ð6Þ

ka €ηa ¼ �2ξaωa _ηa�ω2
aηaþNa� ~ψ aM=Iyy� ~ψ a ~ψ f €ηf =Iyy ð7Þ

This model is composed of five rigid-body states
x¼ ½V ; γ;h; α;Q �T , where V ; γ; h; α; and Q are the velocity,
flight-path angle, altitude, angle of attack, and pitch rate,
respectively. It also includes four flexible states
η¼ ½ηf ; _ηf ; ηa; _ηa�T which correspond to the first generalized
elastic deformations and their derivatives of the forebody
(denoted with subscript f) and aftbody (denoted with
subscript a). The outputs to be controlled are selected as
y¼ ½V ;h�T . The elevator deflection δe and the fuel equiva-
lence ratio ϕ constitute the control inputs u¼ ½δe;ϕ�T ,
which indirectly affect the vehicle states through the lift
L, drag D, thrust T, pitching moment M, and the general-
ized forces Nf and Na. Readers may refer to [11] for a full
description of the model variables.

The aforementioned forces and moment are complex
nonlinear functions of the vehicle states and control
inputs, which makes the FAHV control design a challen-
ging task. Based on the vehicle database, Parker et al. [11]
developed a curve-fitted model (CFM) to approximate the
forces and moment, which is described as

L� qSCLðα; δeÞ; D� qSCDðα; δeÞ
T � Cα3

T α3þCα2

T α2þCα
TαþC0

T

M� zTTþqSc½CM;αðαÞþCM;δe ðδeÞ�
Nf �Nα2

f α2þNα
f αþN0

f

Na �Nα2

a α2þNα
aαþNδe

a δeþN0
a

8>>>>>>>><
>>>>>>>>:

ð8Þ

The coefficients are expressed as

CL ¼ Cα
LαþCδe

L δeþC0
L

CD ¼ Cα2

D α2þCα
DαþCδ2e

D δ2e þCδe
D δeþC0

D

CM;α ¼ Cα2

M;αα
2þCα

M;ααþC0
M;α; CM;δe ¼ ceδe

Cα3

T ¼ β1ðh; qÞϕþβ2ðh; qÞ; Cα2

T ¼ β3ðh; qÞϕþβ4ðh; qÞ
Cα
T ¼ β5ðh; qÞϕþβ6ðh; qÞ; C0

T ¼ β7ðh; qÞϕþβ8ðh; qÞ

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

The numerical values of these coefficients can be found
in [11]. The dynamic pressure is calculated as q¼ 0:5ρV2,
where the air density ρ is modeled as ρ¼ ρ0expð�h=h0Þ.
Actuators are modeled as first-order low-pass filters with
certain gains. Limits on the actuator outputs are set as

�151rδer151; 0:1rϕr1:2 ð10Þ

3. Uncertainty analysis and modeling

3.1. Flexibility uncertainty

The slender geometries and light structures of FAHV
cause significant flexibility effects that severely affect the
aerodynamics of the aircraft. However, due to lack of
experimental data support, any assumed flexible mode ηi
considered in the current model is imperfectly modeled,
resulting in uncertainties of structural mode shape, vibra-
tion modal frequency ωi, and damping ratio ξi. Here, for all
modes the damping ratio is constant ξi ¼ 0:02 as done in
[8–10], which indicates a severe mode vibration condition.
However, the other two factors may undergo huge varia-
tions. Particularly, the fuel is consumed during hypersonic
flight, which generates significant uncertainties of the
structural dynamics [7]. In the following analysis, we will
find out how the mode shape and the frequency change
with four different fuel levels. The corresponding vehicle
mass densities are listed in Table 1.

In the nominal case (Case 1), mode shapes for the first
three flexible modes are shown in Fig. 2a. It is seen that, as
the fuselage is modeled as two cantilever beams clamped
at the center of gravity (55 ft away from the nose), the
displacement and rotation at the center of gravity are zero.
This is different from the free–free model in [7–9]. Fig. 2b
shows the second mode shape with mass density ranging
from 300 slugs/ft to 150 slugs/ft. As a general rule, the
displacement increases as the mass density decreases,
resulting in changes of the vehicle dynamics. Besides the
second mode shape, all other mode shapes lead to the
same rule. This means that more fuel consumption or
lighter vehicle structures cause larger flexibility effects.

As for the mode frequency, consider the frequency
equation [3,4]:

β4 ¼ω2m̂=ðEIÞ ð11Þ
where ω is the mode frequency, m̂ is the mass density, and
EI is regarded as a constant. β is also a constant, corre-
sponding to the solution of the equation

cos ðβlÞcoshðβlÞÞ ¼ �1 ð12Þ
where l is the beam length. In view of (11) and (12), we
have

ω2p1=m̂ ð13Þ
Thus, increased mass density leads to decreased flexible

mode frequencies. If the decreasing flexible frequencies
approach the natural frequency of the rigid body, signifi-
cant coupling occurs and the vehicle dynamics become
more complex.

The above analysis indicates that variations in the mass
density may result in large uncertainties of mode shape
and natural frequency. This flexibility uncertainty is
labeled as Uncertainty 1 hereafter.

3.2. Environmental uncertainty

FAHV exhibits complex time-varying coupling effects
not only between the rigid and flexible states, but also



Table 2
Open-loop eigenvalues of the linearized system.

Eigen value Damping
ratio

Natural freq.
(rad/s)

Mode

�0.354717.7j 0.02 17.7 Forebody flexibility
�0.433721.6j 0.02 21.6 Aftbody flexibility
�1.78 1 1.78 Short period
1.71 �1 1.71 Short period
3.37�10�6 �1 3.37�10�6 Altitude
�0.00080970.0398j 0.0203 0.0398 Phugoid
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Fig. 2. Mode shapes: (a) the first three mode shapes in nominal case and (b) the second mode shape with varying mass densities.
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between the aerodynamics and the environment. As a key
uncertainty factor, the variation of dynamic pressure q
influences all the forces and moment. For this reason, an
open-loop analysis is conducted with q ranging from
2000 psf to 500 psf. We trim the vehicle at each q level,
and then use the MATLAB function linmod (based on first-
order Taylor expansion theory) to linearize the original
model (1)–(7) around the trim conditions as

½x; η�T ¼ A½x; η�T þBu ð14Þ
Here, the values of the Jacobian matrices AAℜ9�9 and
BAℜ9�2 are omitted for simplicity. For demonstration, the
poles of the linearized open-loop model for dynamic
pressure of 2000 psf are listed in Table 2. Fig. 3 shows
how the poles and zeros migrate as q changes. As
expected, three poles corresponding to the phugoid and
altitude modes are near the origin. The two complex
conjugate pairs correspond to the flexible dynamics. It is
seen that the varying q almost has no impact on the
flexible modes, which is primarily because the generalized
forces Nf and Na are modeled as independent of q. The pair
of poles that appear to be symmetric about the imaginary
axis correspond to the rotational dynamics (the angle of
attack and pitch rate). The unstable pole complicates the
control design. As the dynamic pressure decreases, both
the positive and negative rotational poles migrate to the
origin. This is reasonable because with a smaller q all
forces and moments decrease. On one hand, it makes the
unstable dynamics much milder; on the other hand, it
yields a larger oscillation in the stable dynamics. Finally,
the positive zero indicates a nonminimum phase behavior,
which stems from the coupling of the elevator to the lift
and drag forces. This phenomenon was also reported in
[11,12], where an additional canard was therefore added to
deal with it.

Besides the dynamic pressure uncertainty, additional
environmental uncertainties may result from wind gusts
and other unpredictable factors. All these environmental
uncertainties are labeled as Uncertainty 2 later.

3.3. Aerodynamic parameter uncertainty

FAHV typically utilizes a scramjet propulsion system
which is highly integrated into the airframe. This results in
an increased sensitivity to variations in the angle of attack.
The most significant impact of this propulsive disturbance
is on the pitching moment leading to large elevator
deflection to stabilize the vehicle [15]. Thus, a typical
aerodynamic uncertainty source is the parametric uncer-
tainty of the coefficient Cm;α. Fig. 4 shows the migrations of
the poles and zeros with varying uncertainty levels of Cm;α

ranging from þ50 to �50% for a trim condition at Mach 8
and 85,000 ft. It is seen that the rotational dynamics are
significantly affected. For a decreasing Cm;α, both the poles
and zeros of the rotational dynamics migrate to the origin.
For example, with þ50% uncertainty the unstable pole is
located at 1.81 rad/s, while with �50% uncertainty it



Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

-4 -3 -2 -1 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

0%
25%
50%
-25
-50%

Decreasing C m,

Fig. 4. Pole-zero map with varying uncertainty levels of Cm;α .

Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

-4 -3 -2 -1 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

 

 

2000 psf
1500 psf
1000 psf
500 psf

Decreasing dynamic pressureFlexible
effects

Fig. 3. Pole-zero map with varying dynamic pressures.

Z. Pu et al. / Acta Astronautica 101 (2014) 16–3220
migrates to 1.07 rad/s. This exhibits the same feature as
that in the dynamic pressure variation analysis because
both cases decrease the pitching moment as described in
the term qScCM;α. This indicates that the parameter uncer-
tainty can seriously change the vehicle features and there-
fore make the control design much more challenging.

Parameter uncertainty is one of the most common
issues in practical flight. To avoid clouding the main idea
of this paper, we only take the propulsive disturbance just
noted for demonstration to show the necessity of devel-
oping an uncertainty model to analyze its underlying
physical influences to vehicle behaviors. Other typical
uncertainties include variations in control effectiveness
related to the two control variables: the elevator deflection
and the fuel equivalence ratio. All these uncertainties are
labeled as Uncertainty 3 later.

3.4. Control-oriented modeling error

The aforementioned three uncertainties stem from the
practical physical system of the vehicle. From a control-
oriented perspective, one more uncertainty needs to be
considered, that is, the control-oriented modeling error.
This uncertainty results from the approximation and/or
simplification during the controller design, and therefore
is dependent on each specific control method. In TLC, the
linearization errors during the stabilizing control law
design need to be included. In addition, any approximation
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for yielding an affine model to make TLC applicable is also
viewed as an uncertainty source. These uncertainties are
labeled as Uncertainty 4 and need to be considered for
stability analysis.

3.5. Uncertainty modeling

Consider the rigid-body dynamics (1)–(5). All the flex-
ibility uncertainties, as well as environment disturbances
and aerodynamic parameter uncertainties, can be repre-
sented by the following uniform additive uncertainty
model:

_x¼ f ðx;uÞþ f Δ1ðx;u; tÞþ f Δ2ðx;u; tÞþ f Δ3ðx;u; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δf

ð15Þ

where _x¼ f ðx;uÞ and x; f ðU ÞAℜ5 denote the nominal
dynamics, while f Δ1ðx;u; tÞ; f Δ2ðx;u; tÞ; f Δ3ðx;u; tÞAℜ5 denote
Uncertainties 1, 2, and 3, respectively. Here we lump these
uncertainties together in Δf , which is convenient to design an
observer for uncertainty compensation. Uncertainty 4 is not
included in Δf because, as already stated, it is artificially
introduced during mathematical derivation of the controller
design and therefore is determined by each specific control
method. In this paper, this control-oriented modeling error
should be overcome by the inherent controller robustness.
However, it is considered in the closed-loop stability analysis
addressed later.

For Uncertainty 1, 725% uncertainties in mode shapes
and modal frequencies are introduced, yielding f Δ1ðx;u; tÞ
implicitly. As for Uncertainty 2, environmental uncertain-
ties considered in this paper include air density uncer-
tainty, air temperature uncertainty, and unpredictable
wind disturbances. Uncertainties of air density and tem-
perature lead to an uncertainty of dynamic pressure, and
then affect the vehicle behaviors as shown in Fig. 3. In
addition, the uncertain air temperature also leads to an
uncertain airspeed, and then the Mach number is uncer-
tain, which brings uncertainties to all forces and moments.
In this paper, 740% uncertainties in air density and
temperature are introduced, yielding f 1Δ2ðx;u; tÞ and
f 2Δ2ðx;u; tÞ (the first two components of Uncertainty 2)
implicitly. Wind disturbances may affect the body-axis
velocities, and then affect other states. Two uncertainty
cases are considered to describe diverse unpredictable
wind disturbances. In the first case, a time-varying vector
is directly added to the vehicle motion equations to
describe the influences of wind gusts to each channel.
For demonstration, this uncertainty (denoted as f 3Δ2ðx;u; tÞ)
is chosen as sine wave signals [10]

f 3Δ2ðx;u; tÞ ¼ ½2 sin t; 5cost; 0:3 sin t; 0:3 sin t; 0:05 sin t�T

ð16Þ
One advantage of modeling the wind gusts as (16) lies

in the fact that if the uncertainty observing technique is
applied (as done in this paper), it is quite convenient to
validate the effectiveness of the observer in each channel
using these explicit expressions. The other case of wind
disturbances is modeled as a large instant disturbance to
the pitching moment. This model captures features of
unpredictable strong airflows that may only last several
seconds or even shorter. Under such strong airflows, the
forebody and aftbody of the vehicle have quite different
aerodynamic behaviors, yielding a large disturbance to the
pitching moment. In such cases, the phugoid modes may
not have huge variations, while the short period modes
may be immediately disturbed. Here, assume that the
pitching moment disturbance only lasts a short time
interval ½t1; tt �. It is modeled as the sum of a pulse signal
with large amplitude Mw and a relatively small sine wave
signal Aw sin ðwwtÞ with high frequency (10–20 Hz). Then
the fourth environmental uncertainty (denoted as
f 4Δ2ðx;u; tÞ) can be modeled as

f 4Δ2ðx;u; tÞ ¼ ½0;0;0;0;Δf q�T ; where

Δf q ¼
ðMwþAw sin ðwwtÞÞ=Iyy; t1rtrt2
0; other time

(
ð17Þ

To sum up, the total environmental uncertainty
f Δ2ðx;u; tÞ is modeled as

f Δ2ðx;u; tÞ ¼ ∑
4

j ¼ 1
f jΔ2ðx;u; tÞ ð18Þ

Modeling of Uncertainty 3 remains an important task
because aerodynamic parameter uncertainty commonly
exists in hypersonic flight. In view of (8) and (9), three
variables that majorly determine the forces and pitching
moment are the flight state α and the control inputs δe,
ϕ. Each variation of these variables may separately gen-
erate several parameter uncertainty sources. For this
complicated type of uncertainty, we intend to present a
model that (a) has a unified form to cover all of these
uncertainty sources; (b) can clearly describe the physical
connections between the uncertainty sources and relevant
disturbed vehicle dynamics, thus offering a better under-
standing of the vehicle behaviors; and (c) is beneficial for
the validation of uncertainty rejection control laws. Fol-
lowing this idea, we present a novel uniform model for
Uncertainty 3 as

f Δ3ðx;u; tÞ ¼ ∑
nΔ

k ¼ 1
f kΔ3ðx;u; tÞ ð19Þ

The total value f Δ3ðx;u; tÞ of Uncertainty 3 is the sum of
multiple uncertainty sources (denoting the total number of
aerodynamic parameter uncertainty sources as nΔ). For
each uncertainty casef kΔ3ðx;u; tÞAℜ5, it is modeled as

eΔk ¼ AT
ΔkF1ðΔlkÞBΔk

f kΔ3ðx;u; tÞ ¼ F2ðeΔkÞAΔk

8<
: ð20Þ

here, Δlk denotes the uncertainty level. F1Aℜ4�3 and
F2Aℜ5�4 are two disturbance-matching matrices. F1
describes how the three primary parameter uncertainty
sources affect the four forces/moment fL;D; T ;Mg, while F2
tells how the four forces/moment affect the five rigid-body
dynamics. The vectors AΔkAℜ4 and BΔkAℜ3 are chosen to
“pick out” the matched uncertainty source and the dis-
turbed dynamics. Both F1 and F2 have fixed forms which
are separately derived from the force/moment expressions
(8) and (9) and the equations of motion (1) and (5).
Removing the function arguments Δlk and eΔk for brevity,
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we denote F1 and F2 as

F1 ¼

Lα Lδe 0
Dα Dδe 0
Tα 0 Tϕ

Mα Mδe Mϕ

2
66664

3
77775; F2 ¼

0 VD VT 0
γL 0 γT 0
0 0 0 0
αL 0 αT 0
0 0 0 QM

2
6666664

3
7777775 ð21Þ

The elements of F1 are given as follows:

LαðΔlkÞ ¼ qSCα
LαΔlk

DαðΔlkÞ ¼ qSðCα2

D α2þCα
DαÞΔlk

TαðΔlkÞ ¼ ðCα3

T α3þCα2

T α2þCα
TαÞΔlk

MαðΔlkÞ ¼ ½qScðCα2

M;αα
2þCα

M;ααÞþCα3

T α3þCα2

T α2þCα
Tα�Δlk

LδeðΔlkÞ ¼ qSCδe
L δeΔlk

DδeðΔlkÞ ¼ qSðCδ2e
D δ2e þCδe

D δeÞΔlk

MδeðΔlkÞ ¼ qScceδeΔlk

TϕðΔlkÞ ¼ ðβ1α3þβ3α
2þβ5αþβ7ÞϕΔlk

MϕðΔlkÞ ¼ ðβ1α3þβ3α
2þβ5αþβ7ÞzTϕΔlk

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð22Þ
The elements of F2 are given as follows:

γLðeΔkÞ ¼ eΔk=mV

αLðeΔkÞ ¼ �eΔk=mV

VDðeΔkÞ ¼ �eΔk=m
VT ðeΔkÞ ¼ eΔk cos α=m

γT ðeΔkÞ ¼ eΔk sin α=mV

αT ðeΔkÞ ¼ �eΔk sin α=mV

QMðeΔkÞ ¼ eΔk=Iyy

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ

It is seen that through the models (19)–(23), the physical
connections of the uncertainty sources and the relevant
disturbed dynamics can be clearly depicted. In addition, by
setting different AΔk and BΔk, either single or multiple
uncertainties can be simply included. In this paper, three
typical parameter uncertainties are considered: propulsive
Fig. 5. Overall con

Stcy yCommand
Processor

y

sensey

Conceptual TLC
Configuration

Fig. 6. Structure of each su
uncertainty and control effectiveness variations related to
elevator deflection and fuel equivalence ratio, which are
separately denoted as f 1Δ3, f

2
Δ3, and f 3Δ3. As mentioned in the

uncertainty analysis, the scramjet propulsion system of FAHV
is highly integrated into the airframe. The variation of α has a
great impact on the pitching moment, which is represented
by Mα in F1. Furthermore, the disturbed pitching moment
chiefly influences the pitch rate dynamics, which can be
represented by QMin F2. Therefore, to model this propulsive
uncertainty f 1Δ3, we set the vectors AΔ1 ¼ ½0;0;0;1�T ; B
Δ1 ¼ ½1;0;0�T to pick out Mα and QM as expressed in (22)
and (23). As for the control effectiveness variations, f 2Δ3, f

3
Δ3

are modeled as parametric uncertainties in pitching moment
sensitivity to elevator deflection (represented by Mδe ) and
in thrust sensitivity to fuel equivalence ratio (represented
by Tϕ), respectively. Thus, the vectors are set as AΔ2 ¼
½0;0;0;1�T ;BΔ2 ¼ ½0;1;0�T and AΔ3 ¼ ½0;0;1;0�T ; BΔ3 ¼
½0;0;1�T .
4. Robust TLC scheme design

In this section, the robust TLC scheme is designed for
FAHV. Due to the complexity of the vehicle dynamics, the
starting point is to decompose the vehicle dynamics into
functional subsystems. Based on the time-scale separation
and singular perturbation theory [30,31], the vehicle
dynamics are divided into five subsystems, i.e. the velocity,
altitude, flight-path angle (FPA), angle of attack (AOA), and
pitch rate subsystems. Accordingly, the overall scheme
consists of five robust subsystem controllers as depicted
in Fig. 5, where the virtual control inputs are drawn as
dashed lines. Feedback lines are omitted for simplicity.
Fig. 6 shows the structure of each robust controller, which
mainly integrates TLC with ESO. TLC contains a pseudo-
inversion and a stabilizing controller, constructing a basic
control law; ESO estimates the uncertainties to form a
trol scheme.

Pseudo-Inversion

abilizing Controller
u

u utotal

ESO

comuTVB

bsystem controller.
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compensation control law. In addition, a command processor
is added, the effects of which will be addressed later.

4.1. TLC design

Mostly, the control objective is to design a control law
that drives the system output to track a nominal output
trajectory. In TLC, the original system is firstly linearized
along a nominal trajectory, thus the tracking problem is
cast into a regulation problem for the error dynamics along
the nominal trajectory. Asymptotic tracking can then be
achieved by combining a feed-forward pseudo-inversion
of the nominal model and a feedback stabilizer of the
linearized tracking error dynamics, as shown in the dashed
box of Fig. 6. Next, this configuration is adopted to build a
basic controller for each subsystem mentioned above.

4.1.1. TLC for the velocity subsystem
In view of the force expressions in (8) and (9), the

velocity dynamics (1) can be rewritten as an affine form:

_V ¼ f V þgVuV ð24Þ
where

f V ¼ ½ðβ2α3þβ4α
2þβ6αþβ8Þ cos α�D�=m�g sin γ

gV ¼ ðβ1α3þβ3α
2þβ5αþβ7Þ cos α=m; uV ¼ ϕ

Denote the nominal velocity to be tracked as V . Repla-
cing V by V in f V and gV yields f V and gV , respectively.
Assume that gV is invertible, which is validated in the
whole admissible variable range given in [11]. Then a
nominal control law uV can be obtained by the pseudo-
inversion:

uV ¼ g�1
V ð _V� f V Þ ð25Þ

here _V is generated by the command processor, which is
addressed later.

To design the stabilizing controller, system (24) is first
augmented with integral action for disturbance accommo-
dation and performance enhancement. Defining the aug-
mented state xV ¼ ½R Vdt;V �T and nominal state xV ¼
½R Vdt;V �T yields the augmented system

_xV ¼ ½V ; f V �T þ½0; gV �TuV ð26Þ
and augmented nominal system

_xV ¼ ½V ; f V �T þ½0; gV �TuV ð27Þ
Define the velocity tracking error as eV ¼ xV �xV . Then

(26) minus (27) yields a tracking error system. Linearizing
this tracking error system along the nominal state yields

_eV ¼ AV ðtÞeV þBV ðtÞ ~uV ð28Þ
where

AV ðtÞ ¼
0 1
0 �ρVSCD=m

" #
; BV ðtÞ ¼

0
gV

" #
; ~uV ¼ uV �uV

Note that modeling error is generated during this
linearization procedure because of the nonlinearity of the
drag Dwith respect to V. This modeling error is included in
Uncertainty 4. For (28), select a feedback control law as

~uV ¼ KV ðtÞeV ð29Þ
where KV ðtÞ ¼ ½kV1ðtÞ; kV2ðtÞ� are the control gains. Assume
the desired closed-loop system matrix AVcðtÞ as

AVcðtÞ ¼
0 1

�τV1ðtÞ �τV2ðtÞ

" #

To guarantee the closed-loop stability, LTV PD-spectral
theory [29] is adopted to assign the desired dynamics as

τV1ðtÞ ¼ ω2
VnðtÞ

τV2ðtÞ ¼ 2ξVωVnðtÞ� _ωVnðtÞ=ωVnðtÞ

(
ð30Þ

Then according to AV þBVKV ¼ AVc, the control gains are
computed as

kV1ðtÞ ¼ �τV1ðtÞ; kV2ðtÞ ¼ �τV2ðtÞþρVSCD=m ð31Þ
and the feedback control law (29) is obtained.

The total TLC basic control law of the velocity sub-
system is

uV ¼ uV þ ~uV ð32Þ
In (30), the constant damping ratio ξV and the time-

varying bandwidth ωVnðtÞ are the control parameters to be
tuned. Particularly, TLC provides such a TVB technique to
dynamically assign the closed-loop bandwidth, which can
feasibly improve the control performance.

4.1.2. TLC for other subsystems
The control design for the velocity subsystem exhibits a

standard TLC design procedure, which can be concluded in
six steps: (a) write the original dynamics in an affine form;
(b) calculate the pseudo-inversion control law; (c) augment
the original dynamics with integral action; (d) linearize the
tracking error dynamics along nominal trajectories; (e)
assign desired closed-loop dynamics with PD-spectral theory
and obtain the stabilizing control law; and (f) add the
pseudo-inversion control and the stabilizing control to form
the total control law. These six steps can be similarly applied
to the other four subsystems. Due to page limitations, the
detailed design procedure is omitted here. However, each
subsystem has a different affine form. In some cases the
affine form may not explicitly exist so that approximation
must be made. Therefore, next we will derive all the affine
forms for the other four subsystems. Moreover, we will
develop an adaptive TVB algorithm.

4.1.2.1. Affine form for the altitude subsystem. Consider the
altitude dynamics (3), which can be safely approximated
as

_h¼ V sin γ � Vγ ð33Þ

by using the approximation sin γ � γ which is valid in
the whole hypersonic flight. The affine form can be directly
obtained as

_h� f hþghuh ð34Þ
where

f h ¼ 0; gh ¼ V ; uh ¼ γ

Note that the modeling error yielded by the approx-
imation in (33) is included in Uncertainty 4.
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4.1.2.2. Affine form for the FPA subsystem. Due to the
nonlinear relationship between the thrust and angle of
attack in (8) and (9), the FPA dynamics (2) cannot be
directly written in an affine form with respect to the
virtual control input α. Thus, it is first written in the
following form:

_γ ¼ f γ1þgγ1 ð35Þ
where

f γ1 ¼ qSðCδe
L δeþC0

L Þ=ðmVÞ�g cos γ=V

gγ1 ¼ ½qSCα
LαþðCα3

T α3þCα2

T α2þCα
TαþC0

T Þ sin α�=ðmVÞ
here f γ1 is independent of α, while gγ1 is a nonlinear
function of α. In order to obtain a linear expression, we
utilize the first-order Taylor expansion at the last sampling
value α0 to approximate the nonlinear function gγ1.
Additionally using sin α� α, gγ1 is approximated as

gγ1ðαÞ � gγ1ðα0Þþg0γ1ðα0Þðα�α0Þ ¼ ½gγ1ðα0Þ�g0γ1ðα0Þα0�þg0γ1ðα0Þα
ð36Þ

where

gγ1ðα0Þ ¼ ðqSCα
Lα0þCα3

T α40þCα2

T α30þCα
Tα

2
0þC0

Tα0Þ=ðmVÞ
g0γ1ðα0Þ ¼ ðqSCα

Lþ4Cα3

T α30þ3Cα2

T α20þ2Cα
Tα0þC0

T Þ=ðmVÞ

Substituting (36) into (35) produces an affine form as

_γ � f γþgγuγ ð37Þ
where

f γ ¼ f γ1þgγ1ðα0Þ�g0γ1ðα0Þα0; gγ ¼ g0γ1ðα0Þ; uγ ¼ α

Note that because the Taylor expansion is updated during
every sampling period, the approximation is highly reliable.
The modeling error is again included in Uncertainty 4.

4.1.2.3. Affine form for the AOA subsystem. The angle of attack
dynamics can be easily written in an affine form by taking
(2) into (4):

_α¼ f αþgαuα ð38Þ
where

f α ¼ �ðLþT sin αÞ=ðmVÞþg cos γ=V ; gα ¼ 1; uα ¼Q

4.1.2.4. Affine form for the pitch rate subsystem. With the
pitching moment expression in (8) and (9), the pitch rate
dynamics (5) is cast into the affine form

_Q ¼ f Q þgQuQ ð39Þ
where

f Q ¼ ðzTTþqScCM;αþ ~ψ f €ηf þ ~ψ a €ηaÞ=Iyy;
gQ ¼ qScce=Iyy; uQ ¼ δe

Note that the flexible modes exist in f Q , resulting in
strong coupling effects to rigid body dynamics. We design
a pitch rate subsystem controller that directly considers
these elastic deformations, so these coupling effects can be
well suppressed. Another way is to take the flexible effects
as disturbances, as done in [11].
4.1.3. Adaptive TVB algorithm
As stated in Section 3.2, the dynamic pressure q has a

great impact on the vehicle characteristics. In large velo-
city or altitude maneuvers, q shows a fast time-varying
feature. Linearization of the vehicle model at trim condi-
tions [8] indicates that the following approximate relation-
ship holds between the dynamic pressure and the natural
frequency ωpnðtÞ of the phugoid mode:

ω2
pnðtÞpq ð40Þ
Therefore, to enhance the system robustness and track-

ing performance, we design an adaptive TVB algorithm as

ωpnðtÞ ¼ωpn0
ffiffiffiffiffiffiffiffiffiffi
q=q0

p
ð41Þ

where ωpn0 and q0 are the bandwidth and dynamic
pressure at an initial trim condition, respectively. The
physical interpretation of (41) lies in the fact that with
an increasing dynamic pressure all forces and moments
increase, which makes all flight dynamics change faster,
thus the relevant bandwidth should be increased and vice
versa. Simulation indicates that the above TVB algorithm
can also be applied to short period and altitude modes.
Additionally, later the stability analysis in Section 5 will
show that this algorithm can suppress a larger disturbance
and yield a smaller tracking error.

As shown in Fig. 3, q significantly affects the rotational
dynamics. Thus this adaptive TVB algorithm is primarily
applied to the angle of attack and pitch rate subsystems.

4.2. Extended state observer design

Perturbation analysis shows that the basic TLC frame
can guarantee local exponential stability only when per-
turbation is limited in a certain range [22]. To enhance the
system robustness, nonlinear ESO [26–28] is integrated
with the basic TLC frame. The core idea of ESO is to take all
internal and external uncertainties modeled in Section 3.5
as a new extended state, and then establish a state
observer to estimate these uncertainties.

Still take the velocity subsystem for demonstration.
Assume the disturbed velocity dynamics as

_V ¼ f V þgVuV þΔV ð42Þ
with ΔV denoting the total uncertainty. Let xV1 ¼ V ;
xV2 ¼ ΔV , where xV2 is an extended state. Suppose that
_ΔV ¼ �wV ðtÞ with wV ðtÞ unknown but bounded. Then (42)
can be written as a second-order extended system:

_xV1 ¼ f V þgVuV þxV2; _xV2 ¼ �wV ðtÞ ð43Þ
An ESO is established for (43) as

~zV ¼ zV1�xV1
_zV1 ¼ f V þgVuV þzV2�βV1 ~zV
_zV2 ¼ �βV2f alð~zV ; αV ; δV Þ

8><
>: ð44Þ

where ~zV denotes the estimation error of the output
variable, zVi is the estimation value of xVi, and βVi is the
estimation gain, i¼ 1; 2: fal is a nonlinear function of ~zV ,
expressed as [28]

f alð~zV ; αV ; δV Þ ¼
j~zV jαV signð~zV Þ; j~zV j4δV
~zV=δ1�αV ; j~zV jrδV

(
ð45Þ
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where δV ; αV are constants with δV 40 and 0oαV o1. The
meanings of these parameters can be found in [28]. By
properly choosing the parameters βV1, βV2, αV , and δV , we
have zV1-V , zV2-ΔV . Here the gains βV1 and βV2 may
affect the estimation dynamic process. Redefine estimation
errors as eV1 ¼ zV1�V , eV2 ¼ zV2�ΔV . For a constant dis-
turbance (wV ðtÞ ¼ 0), the phase portraits of the estimation
error dynamics with the same initial values but four
different groups of estimation gains are depicted in
Fig. 7. All solution trajectories converge to (0, 0), indicating
that ESO can perfectly estimate both the original state and
the extended state (the disturbance). However, the esti-
mation dynamic processes in these four cases are quite
different. Considering both the rapidity and the overshoot,
we choose βV1 ¼ βV2 ¼ 15 in the final robust scheme.

The estimation value zV2 can then be applied to obtain a
compensation control law as

uVcom ¼ g�1
V zV2 ð46Þ

This together with the basic TLC control law (32)
produces the final robust control law for the velocity
subsystem:

uV ¼ uV þ ~uV �uVcom ð47Þ
4.3. Command processor design

As shown in Fig. 6, the control command needs to pass
through a command processor. It has two functions: to cast
the original command into one that is more realizable and to
generate the derivative of the nominal trajectory used in the
pseudo-inversion. In this work, it is implemented by the
arranged transient process (ATP) technique [26–28], which
is expressed in the following discrete-time form:

ϑ1ðkþ1Þ ¼ ϑ1ðkÞþτϑ2ðkÞ
ϑ2ðkþ1Þ ¼ ϑ2ðkÞþτf hanðϑ1ðkÞ�ϑðkÞ; ϑ2ðkÞ; rϑ; τÞ

(
ð48Þ

where τ stands for the sampling period, ϑ is the original
command, while ϑ1 and ϑ2 are the arranged process and its
derivative with initial values ϑ1ð0Þ ¼ ϑð0Þ, ϑ2ð0Þ ¼ 0. Here, the
function fhan is the time-optimal control law for a discrete
double integral system and its expression can be found in
[28]. rϑ is the only parameter to be tuned. Compared with the
so-called “prefilter” which is widely applied such as in
[8–12,14], ATP uses only one parameter rϑ to feasibly arrange
the desired transient time according to

T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4c=rϑ

p
ð49Þ

where c is the original step value and T0 is the trans-
ient time.

5. Stability analysis

In this section, the stability of the overall closed-loop
system (consisting of five interconnected subsystems) with
the robust TLC scheme is analyzed. Although the PD-spectral
theory can guarantee the stability of the linearized tracking-
error dynamics (28) (for the velocity subsystem, for example),
three additional issues need to be considered for the stability
analysis of the overall closed-loop system: (a) Uncertainty 4
generated during the mathematical derivation procedure of
TLC; (b) Uncertainties 1, 2, and 3, since ESO is applied to
estimate these uncertainties, the stability of nonlinear ESO
and the estimation error need to be further considered; and
(c) the singular perturbation effects among the five intercon-
nected subsystems. Overall analysis involves PD-eigen-
value assignment and stability theories of systems with reg-
ular and singular perturbations, which is beyond the focus of
this paper. Therefore, we only present the main analysis
results and an outline of the proof here. The analysis offers
us guidelines to design the TVB algorithm in real-time. In the
following analysis, we first investigate the stability of each
single subsystem with Uncertainties 1–4. The nonlinear ESO
stability and estimation error are analyzed. Based on the
analysis results for each subsystem, the stability of the overall
closed-loop system with singular perturbations is discussed
at last.

Still take the velocity subsystem for demonstration. The
closed-loop disturbed system with integration augmenta-
tion can be rewritten as

_xV ¼ ½V ; f V �T þ½0; gV �TuV þ½0;ΔV �T ð50Þ
where xV ¼ ½R Vdt;V �T . f V and gV are given in (24), and the
robust control law uV is given in (47). Defining nominal
state xV ¼ ½R Vdt;V �T produces the augmented nominal
system (27). Then (50) minus (27) yields the closed-loop
tracking error system as

_eV ¼ _xV � _xV ¼ ½V�V ; f V þgV ðuV þ ~uV �uVcomÞ
þΔV �ðf V þgVuV Þ�T

¼ ½V�V ; f V þgV ðuV þ ~uV Þ�ðf V þgVuV Þ�T þ½0; eΔ�T ð51Þ
where eΔ ¼ ΔV �gVuVcom ¼ ΔV �zV2 is the uncertainty esti-
mation error of the velocity subsystem. As done in Section
4.1.1, linearizing the undisturbed system along nominal
states and control inputs yields the linearized tracking
error system (28), then the stabilizing control law is
obtained in (29). During this procedure, however, linear-
ization error is produced, denoted as mðt; eV Þ. So (51) can
be written as the sum of a LTV part, a modeling error part,
and an uncertainty estimation error part

_eV ¼ ½AV ðtÞþBV ðtÞKV ðtÞ�eV þmðt; eV Þþ½0; eΔ�T
¼ AVcðtÞeV|fflfflfflfflffl{zfflfflfflfflffl}

LTV part

þ mðt; eV Þ|fflfflfflffl{zfflfflfflffl}
modeling error part

þ ½0; eΔ�T|fflfflffl{zfflfflffl}
uncertainty estimation error part

ð52Þ
where mðt; eV Þ is defined as

mðt; eV Þ ¼ ½V�V ; f V þgV ðuV þ ~uV Þ�ðf V þgVuV Þ�T �AVcðtÞeV
With the PD-spectral theory, KV ðtÞ is chosen such that

the LTV tracking error dynamics

_eV ¼ AVcðtÞeV ð53Þ
is exponentially stable. The following theorem indicates

that under some bounded modeling error mðt; eV Þ and
bounded estimation error eΔ, the tracking error eV in (52)
is bounded.

Theorem 1. [22] For the nonlinear tracking error dynamics
(52), suppose that eV Aℜn and
(i)
 KV ðtÞ is designed following the standard TLC procedure
such that the closed-loop linearized tracking error system
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Fig. 7. Phase portraits of the estimation error dynamics with different gains.
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(53) is exponentially stable. AVcðtÞ has the finite and
smooth PD-spectrum fρiðtÞgni ¼ 1, which satisfies

supðReρiðtÞÞ ¼ �mi; supjρiðtÞj ¼M

where mi and M are positive constants and ReρiðtÞ is the
real part of the time-varying eigenvalue ρiðtÞ.
(ii)
 For a given positive constant L2, there exists a positive
constant r such that the modeling error satisfies

‖mðt; eV Þ‖rL2‖eV‖2

in ½0;1Þ �ℑ and ℑ¼ feV Aℜnj‖eV‖org.

(iii)
 The uncertainty estimation error eΔ satisfies

‖eΔ‖rδf ¼
θ1θ2c3ν1
c4k

3
1

ffiffiffiffiffiffiffiffiffi
c3ν1
c4L1

r
s

for some constants 0oθ1o1, 0oθ2o1, 0oc3rc4,
k140, L140, and ν140.
Then, there exists positive constant bound b40 such
that for

‖eV ðt0Þ‖o
ffiffiffiffiffiffiffiffiffi
c3ν1
c4L1

r
s
k1

the solution of (52) satisfies

‖eV‖rk2expð�ν2ðt�t0ÞÞ‖eV ðt0Þ‖; 8 t0rtot1
‖e ‖rb; 8 tZt

(

V 1
for some finite time t1, where

ν2 ¼ ν1
ð1�θ2Þθ1c3

k21c4
; k2 ¼ k1

ffiffiffiffiffiffiffiffiffi
c4L1
c3ν1

s
;

b¼ k31c4δf
ν1c3θ1θ2

ffiffiffiffiffiffiffiffiffi
c4L1
c3ν1

s
; s¼ min r;

ð1�θ1Þc3ν1
k21c4L2

( )
:

The proof of Theorem 1 is omitted here and was given in

[22], which utilized the PD-eigenvalue assignment and the
stability theory of regular perturbed system (Lemma 9.2, [32]).
s is the tracking error bound for (52) when eΔ ¼ 0, while b is
the tracking error bound when eΔa0; eΔrδf where δf is the
uncertainty estimation error bound. The independent para-
meters above include fθ1; θ2; c3; c4; r; L2; L1; k1; ν1g, where
θ1; θ2; c3; c4 are related to the Lyapunov function for stability
analysis of (53), r; L2 describe the condition that the lineariza-
tion error should obey, and L1; k1; ν1 are closely related to the
PD-eigenvalue assignment defined as

L1 ¼ sup‖AVcðtÞ‖2; ν1 ¼ min fmig; ‖ΦV ðt; τÞ‖rk1expð�ν1ðt�τÞÞ
ð54Þ

here ‖U‖2 is the induced 2-norm, and ΦV ðt; τÞ is the transition
matrix for (53). Physically, ν1 corresponds to the slowest
convergence rate of (53). In view of the expressions of b and
δf , if ν1 is increased by a TVB algorithm such as (41), the
ultimate tracking error bound is decreased and the
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uncertainty estimation error bound is increased, thus the
system robustness is enhanced. This offers a guide to design
a TVB algorithm.

Theorem 1 requires that the uncertainty estimation
error eΔ is bounded. This involves the stability analysis of
nonlinear ESO. For this problem, Han et al. obtained some
sufficient conditions to guarantee the stability via two
methods: the Lyapunov method [33] and the self-stable
region approach [34]. Subsequently, the estimation error
bound can be obtained. In this work, we present another
different method to investigate the nonlinear ESO stability
where the ESO estimation error dynamics is treated as a
generalized Liénard system with forcing item [35,36]. New
results are obtained, particularly on the asymptotic beha-
vior of the estimation error when derivatives of the
uncertainties are absolutely integrable. Consider the ext-
ended system (43) and its ESO (44). Redefine the estima-
tion errors as eV1 ¼ zV1�xV1; eV2 ¼ zV2�xV2. An equivalent
system can be constructed as

_z1 ¼ z2
_z2 ¼ �βV1z2�βV2f alðz1; αV ; δV ÞþwV ðtÞ

(
ð55Þ

where z1 and z2 are defined as z1 ¼ eV1; z2 ¼ eV2�βV1eV1.
Without loss of generality, write (55) in a general form as

_z1 ¼ z2
_z2 ¼ � f ðz1Þz2�gðz1ÞþwðtÞ

(
ð56Þ

This is a standard form of generalized Liénard system
with forcing item wðtÞ. We have the following asymptotic
stability theorem.

Theorem 2. For system (56), suppose that
(i)
 f ðz1Þ, gðz1Þand wðtÞare continuous;

(ii)
 z1gðz1Þ40ðz1a0Þ; gð0Þ ¼ 0;R

(iii)
 f ðz1Þ40 and Fðz1Þ ¼ z1

0 f ðuÞdu-71 as z1-71;
and R
(iv)
 WðtÞ ¼ t
0 jwðsÞjdso1.
Then all solutions of (56) satisfy z1-0; z2-0 as t-1.
The proof needs Theorem 8.8 and Theorem 10.3 in [35].

Due to page limitations, these two theorems are not given
here, but separately denoted correspondingly as Lemma 1
and Lemma 2. Then we use them to prove Theorem 2.

Proof. According to Lemma 1, the solutions of (56) are
uniformly bounded. Construct a continuous function as

Vðt; z1; z2Þ ¼ e�2WðtÞ½Gðz1Þþz22=2þ1�
where

Gðz1Þ ¼
Z z1

0
gðuÞduZ0

we have

Vðt; z1; z2ÞZe�2Eð1Þz22=2Z0

and

_V ¼ e�2WðtÞf�2 wðtÞ
�� ��ðGðz1Þþz22=2þ1Þþgðz1Þz2

� f ðz1Þz22�gðz1Þz2þz2wðtÞg
re�2WðtÞf�jwðtÞjðz22þ2�jz22jÞ� f ðz1Þz22g
¼ e�2WðtÞf�jwðtÞj½ðjz2j�1=2Þ2þ7=4�� f ðz1Þz22g
r� f ðz1Þz22e�2WðtÞr� f ðz1Þz22e�2Wð1Þ

Define

Wðz1; z2Þ ¼ f ðz1Þ z22e
�2Wð1Þ

thenWðz1; z2Þ is a positive definite function with respect to
the set Ωz ¼ fðz1; z2Þjz2 ¼ 0g. According to Lemma 2, all
solutions of (56) approach Ωz. Moreover, in view of the
system form in Lemma 2, we rewrite (56) as

_z¼ Fzðt; zÞþGzðt; zÞ;
where

z¼
z1
z2

" #
; Fzðt; zÞ ¼

z2
� f ðz1Þz2�gðz1Þ

" #
; Gzðt; zÞ ¼

0
wðtÞ

" #

For ðz1; z2ÞAΩz, as t-1, we have

Fðt; zÞ-
0

�gðz1Þ

" #

According to Lemma 2, every solution of (56) app-
roaches the largest semi-invariant set of the system

_z1 ¼ 0
_z2 ¼ �gðz1Þ

(

By the condition on gðz1Þ, the largest semi-invariant set
contained in Ωz is only the origin. Therefore, we conclude
that z1-0; z2-0 as t-1. □

Since z1-0; z2-0, the estimation errors eV1; eV2 are
bounded. So this theorem indicates that, for uncertainties
that own absolutely integrable derivatives, if the nonlinear
ESO is designed as illustrated in (44) and (45), the ultimate
estimation errors will be bounded.

Now that the stability behaviors of nonlinear ESO and
each subsystem are, respectively, described in Theorems 2
and 1, the final issue is to investigate the stability of the
overall system that includes the five interconnected sub-
systems. Singular perturbations need to be considered.
A detailed discussion was given in [23], which primarily
relied on the PD-spectral theory and the stability theory in
[32] (Theorem 11.4). The main conclusion is that, if the
boundary-layer system (fast-state system) is exponentially
stable (guaranteed by Theorem 1), and the linearized
tracking error dynamics of the reduced order system
(slow-state system) can be stabilized by PD-eigenvalue
assignment, then the overall system is exponentially stable
for the time-scale ratio εoεn. Here εn is the time-scale
ratio bound, which is related to the PD-eigenvalue para-
meter ν1 (defined in (54)). For a given time-scale ratio ε , if
ν1 is increased by a TVB algorithm such as (41), εn can be
increased. Subsequently, the system robustness to singular
perturbations is enhanced. A guide to introduce the
singular perturbation and time-scale separation theory
into aerospace systems can be found in [30,31].

6. Simulations

To illustrate the effectiveness of the proposed robust
TLC scheme, two representative flight cases for FAHV are
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studied: a climbing maneuver at constant dynamic pres-
sure (Case 1) and a climbing maneuver with longitudinal
acceleration using separate reference commands for alti-
tude and velocity (Case 2). The initial trim condition is
listed in Table 3. Parameters for ATP and TLC are given in
Table 4. Parameters for ESO are all set as βi1 ¼ βi2 ¼ 15,
αi ¼ 0:5, δi ¼ 0:01, i¼ V ;h; γ; α;Q , which shows a great
parameter adaption property.
Table 3
Initial trim condition.

State Value State Value State Value Input Value

V 7700 ft/s α 1.51531 _ηf 0 δe 11.46351
h 85,000 ft Q 01/s ηa 1.2114 ϕ 0.2514
γ 01 ηf 1.5122 _ηa 0

Table 4
Control parameters.

Parameter Value Parameter Value Parameter Value

rV 0.15 ωV 0.02 ξV 0.7
rh 1 ωh 0.02 ξh 0.7
rγ 0.001 ωγ 0.05 ξγ 1
rα 0.05 ωα 0.25 ξα 0.7
rQ 0.5 ωQ 1 ξQ 0.7
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Fig. 8. Tracking results and the control inputs wit
In Case 1, the altitude command is given to let the
vehicle climb from 85,000 ft to 95,000 ft, whereas the
velocity command is generated by solving the air density
model to maintain constant dynamic pressure at 2000 psf.
When no uncertainty is added, robust tracking results are
depicted in Fig. 8. Both the outputs and the internal states
are tracked well. Note that the response of the altitude
exhibits a typical undershoot behavior due to the non-
minimum phase feature as already analyzed. As a general
rule, the control inputs increase in the first half of
transient time while decreasing in the second half. This
is due to the ATP feature which accelerates the arranged
transient process in the first half of transient time while
decelerating it in the second half.

To make the test more demanding, uncertainties are
added next. First, air density variations are verified in the
robust TLC scheme. �40%, 0%, and þ40% of air density
uncertainties are separately considered, yielding the simula-
tion results depicted in Fig. 9. It is seen that the commanded
velocity and altitude are tracked well under all these three
conditions, indicating a good uncertainty rejection ability of
the robust TLC scheme. In addition, increased air density
leads to increased control effectiveness for both the elevator
and the engine system, thus the tracking performances are
improved, see Fig. 9a and b. Accordingly, the required angle
of attack and elevator deflection angle are decreased, see
Fig. 9c and e. In contrast, the required fuel equivalence ratio
is increased due to the decrease of the angle of attack
(Fig. 9f), indicating a strong coupling between the aerody-
namics and the engine system.
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h no uncertainty in the robust TLC scheme.
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Fig. 9. Responses under air density uncertainty in the robust TLC scheme.
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Next, effects of strong instant airflows modeled as (17)
are verified. The pitching moment disturbance is set as

Δf q ¼
ð106þ105 sin ð40πtÞÞ=Iyy; 50 srtr55 s

�ð106þ105 sin ð40πtÞÞ=Iyy; 250 srtr255 s
0; other time

8>><
>>:

ð57Þ
This disturbance includes pulse perturbations with large

amplitude (106 lbf ft) and sine wave perturbations with high
frequency (20 Hz). It is activated in two stages to separately
verify the disturbance influences during the transient process
and the steady-state process. For comparison purposes, we
denote the control scheme that includes TCL without ESO
compensation as a basic TLC frame, differing from the robust
TLC scheme. Comparison simulation results are shown in
Fig. 10. In the basic frame, shown as the dotted lines in Fig. 10
(a)–(d), oscillation occurs in the output and control input
responses due to the airflow disturbance. On the contrary, this
disturbance is suppressed in the robust scheme by ESO
compensation, shown as the solid lines in Fig. 10(a)–(d). The
disturbed pitching moment is shown in Fig. 10(e). The true
and estimated values of the disturbance are shown in Fig. 10
(f). It is seen that ESO can estimate the disturbance with a
high accuracy; in addition, it also behaves as a low-pass filter
to suppress the high frequency component of the disturbance.

In the next simulation, multiple uncertainties are
simultaneously added. First consider a small uncertainty
case: 25% of flexibility uncertainties, 40% of variations in
thrust control effectiveness, and wind gust uncertainty
merely in the velocity dynamics (setting f 3Δ2ðx;u; tÞ ¼
½2 sin t; 0; 0; 0; 0�T ). In this case both the basic TLC
frame and the robust TLC scheme provide stable tracking
results, as shown in Fig. 11a and b, but the basic TLC frame
exhibits a large oscillation in the velocity response. Next,
40% of propulsive perturbations and 40% of variations
in elevator control effectiveness are also added, and the
wind gusts in (16) are included. For this large uncertainty
case, the robust scheme still performs well, as shown in
Fig. 11c and d. However, the basic TLC frame completely
loses its control ability and the responses diverge quickly
(thus the tracking figures are omitted here). In the robust
scheme, the true and estimated values of uncertainties in
the velocity and pitch rate dynamics are given in Fig. 11e
and f, where the excellent estimation ability of ESO is
exhibited.

Case 2 conducts a more aggressive maneuver where the
velocity and altitude commands are independently given
as 1000 ft/s and 12,000 ft, respectively. All uncertainties
considered in Case 1 are included. Tracking results in the
basic TLC frame are omitted because all responses diverge
quickly, while tracking results in the robust scheme are
depicted in Fig. 12. Although the dynamic pressure experi-
ences a slightly large decrease, which may significantly
affect the vehicle characteristics, the velocity and altitude
tracking results still remain excellent. The internal states
such as the angle of attack chatter due to the uncertainties,
but they all stay in admissible ranges.

7. Conclusions

Robust control design is a fundamental issue for FAHV
with multiple uncertainties. In this work, comprehen-
sive uncertainties resulting from flexibility, aerodynamic
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Fig. 10. Comparison responses under strong instant airflows.
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Fig. 11. Comparison responses under multiple uncertainties.
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parameter variations, environmental disturbances, and
control-oriented modeling errors are analyzed, offering a
better understanding of the complex vehicle features.
A uniform nonlinear uncertainty model is developed, which
lumps the first three uncertainties together and therefore is
beneficial for compensation law design and closed-loop
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Fig. 12. Tracking results with mixed uncertainties in the robust TLC scheme for Case 2.
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stability analysis. For control design, the vehicle dynamics
are decomposed into five functional subsystems based on
time-scale separation and singular perturbation theory. Then
a robust control scheme is proposed, which consists of five
subsystem controllers, each for a subsystem. This robust
scheme is based on the TLC method and the ESO technique,
where TLC can guarantee the exponential stability of each
subsystem along nominal flight trajectories, and ESO can
estimate the uncertainties with high efficiency. The stability
of the overall closed-loop system is analyzed, where the four
aforementioned uncertainties and additional singular per-
turbations among the five subsystems are considered. Com-
parison simulation demonstrates the great tracking
performance and the uncertainty rejection ability of the
proposed robust scheme.
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