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Understanding Neighborhood of Linearization  
in Undergraduate Control Education

The first undergraduate control course is usually on 
automatic control theory. Correctly understanding the 
concepts in that course has far-reaching implications 

for students. Linearization is a standard topic covered in 
this introductory course. A nonlinear measurement-based 
approach is presented here to aid in the teaching of linear-
ization. The pedagogical objective is to help students un-
derstand the concept of the neighborhood of linearization. 
The pedagogical approach is illustrated by measuring the 
nonlinearity of the cart-pole system, an example commonly 
used in control education. Drawing on student surveys in 
two consecutive academic years, we recommend combin-
ing demonstration software visualization with relevant 
mathematic introduction.

INTRODUCTION 
Automatic control theory (ACT), also commonly called 
linear system analysis, is a basic introductory course on the 
analysis and design of automatic control systems [1], [2]. 
This course is usually the first time that undergraduates 
are exposed to control systems. The course covers many 
concepts [21], and correctly understanding these concepts 
has far-reaching implications for the students’ subsequent 
control-related courses. 

Linearization is a standard part of control education [1]– 
[3] because it is a powerful tool to analyze system behavior, 
such as system stability, disturbance rejection, and refer-
ence tracking. Generally speaking, the mathematical foun-
dation of linearization is the Taylor series expansion [4]. 
After expanding a nonlinear function in a Taylor series at 
an operating point, the function is linearized by neglecting 
terms of an order greater than one. To ensure the applica-
bility of the linearized model, it is strictly assumed that the 
nonlinear system is operated within a small neighborhood 
of the operating point [3]. Reference [5] notes that students 
very often forget the operating point of linearization and 
suggests an effective method to improve the teaching of 
linearization, which is to use a coordinate system in which 
the operating point is not at the origin.

In the School of Control and Computer Engineering at 
the North China Electric Power University (NCEPU), Bei-
jing, P.R. China, about 180 students per year take the ACT 
course. The teaching method in [5] has been used in two 
consecutive academic years, 2010–2011 and 2011–2012. 
The course has a project after all of the lectures have been 
completed for the semester. The project is on the stabiliza-
tion control of a cart-pole system, which is one of the most 

enduringly popular and important laboratory models for 
teaching control systems engineering [6]. The purpose of 
the project is a synthesis of the main concepts and meth-
ods of the course, including system modeling, lineariza-
tion, controller design, and simulation. The project objec-
tive is to balance the pole in its inverted (upward) position 
with small angular deviations from the upright position by 
applying a driving force to the cart, with or without con-
sidering the cart position. By employing root locus com-
pensation, frequency response compensation, or closed-
loop pole-zero assignment, more than 95% of the students 
can complete the controller design and realize the project 
objective in matlab after modeling the system and linear-
izing it around its upward position. The simulation files are 
downloadedable [7].

Some of the more inquisitive students extend the project 
objective and gradually increase the initial angular devia-
tion of the pole to verify the effects of nonlinearity. A sur-
prising fact puzzles them: the linearized model-based con-
troller can actually balance the pole even when an initial 
deviation is large. Sometimes, the controller can stabilize 
the pole with an initial deviation as large as /3!r  rad. In 
Taylor series-based linearization, often called “local lin-
earization,” The cart-pole system is linearized at the top 
inverted position, so it is not surprising that the linearized 
model-based controller can stabilize the system in a small 
neighborhood of that position. The fact that the controller is 
able to work well in a large range around the upright posi-
tion seems contrary to the technical assumptions of linear-
ization. This observation motivates the question of how we 
should teach the neighborhood of linearization when edu-
cating students.

Although neighborhood is a simple concept in math-
ematics, it is not correctly understood by many students, 
especially undergraduates taking a control course for the 
first time. The students often assume that the neighbor-
hood in which a linearized model is useful is very small. 
One reason for this assumption is that Taylor series-based 
linearization is presented loosely in most textbooks, for 
instance in [1]–[3]. After presenting the linearization 
approach, books often emphasize the fact that the lin-
earized model at an operating point is able to accurately 
describe the dynamics of the nonlinear system only when 
the states of the nonlinear dynamical system are very close 
to the operating point. The initial purpose of this emphasis 
is to ensure that the linearization method is very accurate, 
but this emphasis may mislead students into thinking that 
a controller designed based on a linearized model can only 
work in a small neighborhood of the operating point. 
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To help students correctly understand the significance 
of the neighborhood of linearization, we introduce the stu-
dents to the gap-metric-based nonlinearity measure. Due to 
the nonlinearity measure being too advanced of a concept 
to be taught in its entirety to undergraduates, a case-driven 
pedagogical approach is used. Surveys in two consecutive 
academic years suggest a recommended teaching practice. 
To the best of the authors’ knowledge, this is the first time 
that the gap metric has been successfully used for teaching 
undergraduates about nonlinearity. To help undergradu-
ates understand control concepts and lay a solid founda-
tion for subsequent courses, a case-driven pedagogical 
approach is used that combines demonstration software 
and a relevant mathematical introduction. 

In the next section, the gap-metric-based nonlinearity 
measure is introduced. The subsequent section applies the 
nonlinearity measure to a cart-pole system and discusses 
the implications. Then the impact of the proposed method 
is assessed via student survey results. The final section has 
some conclusions.

GAP-METRIC-BASED NONLINEARITY MEASURE 
As mentioned, students find their controller designed 
based on a linearized model is able to control the pole in a 
large range around the inverted position. The contradiction 
between their simulations and the technical assumptions 
of linearization encourages both teachers and students to 
find a rational explanation.

One answer could be that the difference between the 
real nonlinear dynamical system and the linearized sys-
tem may be treated as a disturbance, and that the controller 
has the ability to reject the disturbance. Such a qualitative 
answer could be proposed as a partial explanation, but a 
quantitative answer is more convincing and more inter-
esting. Here we introduce the teaching of the gap-metric-
based nonlinearity measure to give students a quantitative 
answer. 

A nonlinearity measure is a powerful tool to assess 
the degree of inherent nonlinearity of a system, instead 
of roughly judging the system as being linear or nonlin-
ear [8], [9]. The gap-metric-based nonlinearity measure is 
one of the most extensively used measures for nonlinear-
ity [10]. In short, the gap metric is an extension of the com-
mon measure of the 3-norm of the difference between two 
systems. The gap-metric-based nonlinearity measure is to 
measure the gap between a linearization of a nonlinear 
system at its operating point and a fixed linear system. In 
[11], the method was reported to assess the nonlinearity of 
a boiler-turbine unit in industry. The gap metric has also 
been employed to measure the nonlinearity of a chemical 
process [12]. 

Definition 1
The gap-metric-based nonlinearity measure go  is defined 
as [10] 

 ( , ),L NP Lg p0o d=  (1)

where L NPp0  is the linearized system of a nonlinear system 
NP at its operation point ,p L0  is a linear system, and ( , )$ $d  
is the gap between two linear systems P1  and P2  defined 
by [13]

 ( , ) || ( ) ( ) ( ) || ,P P I P P P P I P P1 2 2 2 2
1

2 1 1 1 2
1

d = + - + 3
- -  (2)

where , , ,P i 1 2i =  and || ||$ 3  denote complex conjugate and 
3-norm, respectively.

Remark 1
As defined in (2), this measure go  is bounded between 
zero and one [13]. If go  between two systems is close to 
zero, then the two systems have similar dynamics in the 
expected operating space. On the other hand, if go  is close 
to one, then the two systems behave quite differently. 

Remark 2
One of the main features encountered in the gap metric is 
that it is not only applicable to stable systems, but also to 
integrating and unstable systems [11]. For example, consider 
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where s is a complex variable in the Laplace domain. The 3
norm of the difference between P1  and P2  is infinite, while 
the distance in the sense of gap metric is ( , ) . .P P 0 09951 2d =

Remark 3
The reason why the gap metric applies to integrating and 
unstable systems is that it measures the distance in the 
closed-loop sense instead of the open-loop sense [12]. Even 
though the open-loop systems may have quite different 
dynamics, their distance in terms of the gap metric can be 
close. For example, consider 
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The two open-loop systems have very different dynamics, 
since P1  is stable and P2  is unstable. However, the gap met-
ric between P1  and P2  is ( , ) . ,P P 0 02051 2d =  which shows 
that they are very close in terms of their closed-loop behav-
ior. In fact, the closed-loop transfer function for P1  and P2  
with unity feedback are close:
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The theoretical underpinnings of the nonlinearity 
measure in Definition 1 are profound and far beyond 
an undergraduate’s education. When the pedagogical 
approach was first presented in 2010, it was controversial 
among our colleagues at NCEPU but the idea was still 
put into practice. During the fall semester of 2010, the 
gap metric was introduced in detail. The feedback from 
students indicated that they did not appreciate its com-
plicated mathematical derivation. The student comments 
suggested that the basic concepts of linear systems pro-
vided sufficient background for the students to compre-
hend the main idea and application of the nonlinearity 
measure, provided that the measure was introduced to 
them with a proper pedagogical approach.

In the fall 2011 semester, a change was made in the 
instruction. The detailed derivation of the gap metric 
was abandoned. The general idea of the gap metric was 
introduced by contrasting the gap metric with the idea 
of a norm from linear algebra. Since students knew that 
a norm is defined for measuring the distance between 
two points, the gap metric could be simply treated as a 
tool to measure the distance between two linear systems. 
After the concept of the gap metric was introduced, how 
to calculate the gap metric was described. Actually, it 
was hardly possible to calculate the measure without its 
mathematical definition. Fortunately, matlab software 
offered a gapmetric command to compute the gap metric 
between two systems in the form of transfer functions [18]. 
The command, acting as a calculator, made it possible for 
students to directly produce a desired result rather than 
having to focus on the numerical algorithms used to pro-
duce the result. The teachers’ role was to show how to cor-
rectly use this calculator.

NONLINEARITY MEASURE  
fOR ThE CART-POLE SYSTEM 

Dynamics
Since the 1960s, the cart-pole system has been an excellent test 
bed for research and education because it is simple enough for 
complete dynamic analyses and experiments, while having 
strong nonlinearities and dynamic couplings [14], [15]. Its stabi-
lization also became the de facto benchmark for verifying the 
feasibility of novel methods in control research and illustrating 
the significance of concepts of control education [16].

Shown in Figure 1, the cart-pole system is made up of 
the two main components suggested by its name, a cart and 
a pole. The symbols in Figure 1 are the cart mass M, the 
pole mass m, the half length of the pole l, the cart position x 
with respect to the origin, the driving force f that is positive 
in the direction of the positive x-axis, and the pole angle i  
with respect to its upright position, where i  is positive in 
the clockwise direction.

The uncontrolled pole has two equilibria. The stable 
equilibrium is in its downward position with ( , )i i =o
( rad, 0 rad/s),r  and the unstable equilibrium is in its 
inverted position with ( , ) 0 rad, 0 rad/si i =o ^ h [17]. The 
objective of its stabilization control is to keep the pole angle 

0i =  rad by applying a control input to the cart. The objec-
tive can be further classified in terms of whether the cart 
position x is considered. In the course project, either variant 
on the control problem is acceptable.

Under the standard assumptions of the cart with a point 
mass, the rigid pole with uniform mass, no friction, etc., 
the dynamics of the cart-pole system [19] can be written as

 ( ) ,sin cosJ ml mgl mlx 0p
2 i i i+ - + =p p  (3)

 ( ) ,cos sinml ml M m x f2 2i i i i- + + + =p o p  (4)

where /J ml 3p
2=  is the moment of inertia around the cen-

troid and . m/sg 9 81 2=  is the gravitational acceleration. 
The equations of motion of the pole and cart are (3) and (4), 
respectively. If the driving force f is chosen as the control 
input u [17], then
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Figure 1 Schematic of the cart-pole system.
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On the other hand, if the cart acceleration xp  is defined 
as the control input u, then the dynamics of the cart-pole 
system from (3) in another form [17] can be described by
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Remark 4
The form of the expressions (5) and (6) show that the 
cart-pole system is inherently nonlinear. Although the 
two equations are in different forms, both are equivalent 
in the sense that they both describe the system dynam-
ics. However, the models do not behave the same when 
a control input u is applied. While the pole dynamics in 
both (5) and (6) are nonlinear, the cart dynamics in (5) are 
nonlinear and are linear in (6). Thus, the pole component 
may be regarded as integrating the nonlinearity of the 
cart-pole system and is a window for investigation of the 
system nonlinearity.

Measuring Nonlinearity of Cart-Pole System
Since the pole position is an integral of the system nonlin-
earity, the nonlinear pole model in (6) is linearized to mea-
sure the extent of nonlinearity of the cart-pole system. The 
operating interval of the pole is ( , ] .rad radr r-  To linear-
ize the pole model, we divide the interval into 360 equal 
parts every /180r  rad in the interval to obtain 360 operat-
ing points. For any operating point 0i  the linearized pole 
model at that point is derived from (6) by
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(7)

The transfer function of the linearized model at the operat-
ing point 0i  is
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where s is a complex variable in Laplace domain and o  and 
u  are Laplace transforms of i  and u, respectively. For all 
the operating points in ,( rad, radr r- @  there are 360 lin-
earized pole models in the form of a transfer function from 
(8). Since the desired position of the pole is inverted at the 
top position, the linearized pole model at 00i =  in transfer 
function form is adopted as a benchmark for all the linear-
ized models.

For . ml 0 25=  in (5), Figure 2 shows the gap metric 
between each linearized model and the benchmark. As 
seen in Figure 2, the gap metric go  changes dramatically 
near / rad,20 !i r=  which is the horizontal position of the 
pole, which indicates the real system dynamics below the 
horizontal line are completely different from the linear-
ized model at rad.00i =  moreover, Figure 2 shows that 

go  is very small for all [ / ,3 rad0 li r-  / ],rad3r  with 
.vmax 0 05g =  at / .3 rad0 !i r=  This analysis indicates 

the real system model in [ / ,3 radr-  / ]3 radr  is almost the 
same as the linearized model at 00i =  rad. This analysis 
explains why the designed controller for the linearized 
model at 00i =  rad is able to solve the control problem for 
all [ / , / ],rad rad3 30

0 li r r-  where 0
0i  is an initial angu-

lar deviation of the pole—the plants within this range are 
quantifiably close to the nominal plant in terms of their 
closed-loop behavior.

As far as the two equilibria of the pole are concerned, 
it is straightforward from Figure 2 to see that v 1g =  at 

0i r=  rad, which means that the linearized models at the 
two equilibria are completely different. Thus, linear system 
design methods based on the linearized model at 00i =  
cannot be employed to stabilize all initial angular devia-
tions for all ( rad, rad]0

0 li r r- . The matlab commands to 
create Figure 2 are available for download [20].

Remark 5
When designing a controller based on a linearized model to 
stabilize the cart-pole system, one of the standard assump-
tions is that the operating region of the system is subject 
to 1%i  rad, as mentioned in [1]. The constraint indicates 
that the operating region for the linearized model-based 
controller should be around the inverted upward posi-
tion of the pole. The initial purpose of this constraint is to 
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ensure the open-loop accuracy of the linearized model, but 
emphasizing this constraint makes it easy to mislead stu-
dents into thinking the linearized model-based controller 
can only work in a small neighborhood of the operating 
point because the controller is designed based on the lin-
earized model at .00i =  With the introduction of the gap 
metric, visualization as in Figure 2 can be used to reduce 
the chances that students gain this misconception.

STUDENT ASSESSMENTS 
In the School of Control and Computer Engineering at 
NCEPU, about 180 students per year take ACT. The stan-
dard control theory textbooks [1]-[3] are recommended 
as reference books. Before the lesson on the gap metric, 
most students have the same misunderstanding about the 
neighborhood of linearization, that is, they assume that the 
neighborhood of linearization is just a small region about 
an operating point and are puzzled by the fact that a linear-
ized model-based controller is able to stabilize the cart-pole 
system in a large range around the operating point.

When we adopted the approach in [5] for the first time 
in the fall 2010 semester, the gap-metric-based nonlinear-
ity measure was also introduced into the ACT course for 
undergraduates. To verify the effectiveness of the adopted 
method, students taking the class were divided into two 
groups. For the first group, the neighborhood concept of 
linearization was taught according to the gap metric-based 
nonlinearity measure. For the second group, the neighbor-
hood concept of linearization was taught according to the 
standard control theory textbooks.

A survey was taken after all the course material had 
been covered. The survey questions are shown in Table 1. 
The five questions covered five areas of instruction: Q1 for 
the complexity of the course content, Q2 for understanding 
and teaching effectiveness, Q3 for higher level conceptual 
thinking, Q4 for student interest, and Q5 for student confi-
dence in applying the methods to other problems.

The first group was made up of 86 students in the fall  
2010 semester, and all of them took part in the survey. Stu-
dents ranked the statements in Table 1 with strongly dis-
agree (SD) = 1, disagree (D) = 2, neutral (n) = 3, agree (A) = 4,  

and strongly agree (SA) = 5. Table 2 shows the students’ 
responses to the survey questions in detail. The mean val-
ues indicate that the students’ responses were not very posi-
tive. Without question, the undergraduate students did not 
have the mathematical background to fully understand and 
appreciate the gap-metric-based nonlinearity measure. So 
we had to reflect on the teaching process. At the time, we 
had introduced too many theoretical derivations about the 
gap metric and nonlinearity measures. Our initial purpose 
was to give students a lot of background knowledge, but the 
additional instruction actually made it more difficult for the 
students to comprehend the material and most likely con-
fused them more.

Within the first group, more than 80% of the students 
had trouble understanding the content on the gap metric 
and its use as a nonlinearity measure. Comparisons with 
a second group of students indicated that the approach of 
teaching the gap metric did not seem to be very effective 
or attractive to the students. To our surprise, one student in 
the first group, who changed his major from applied math-
ematics to control, became very interested in our method, 
which suggested that students needed a solid mathematics 
background to appreciate the complicated mathematical 
derivations of the gap metric. This survey was contrary to 
our expectation. We learned that too many mathematical 
derivations actually confused the students and made stu-
dents feel the content was too complex to be understood.

The next fall semester, we adopted the combination of 
the approach of [5] and our approach. Students were again 
divided into two groups, and there were still 86 students 
in the first group. With the lesson from the previous fall 
semester, we voluntarily avoided all the complicated deri-
vations about gap metric and nonlinearity measures. Only 
the basic ideas were introduced to help students from being 
confused by complicated mathematical derivations. With-
out the detailed mathematical foundation, calculating this 
gap-metric-based nonlinearity measure was not easy. We 
resorted to computer software. matlab, which is widely 
used for control education [18], includes a gapmetric com-
mand to compute the value of the gap metric between two 
systems in transfer function form. With the help of this 
tool, it was possible to directly obtain the desired result 
rather than focusing on how to get the result.

Table 1 Survey for teaching evaluation.

Q1 I feel the extended technical contents are complex.

Q2 I can understand the contents by teacher’s explanation 
and my review.

Q3 The contents can help me think at a higher level and 
understand difficult concepts.

Q4 I enjoy the contents more than the textbooks.

Q5 The contents increase my confidence in my solutions 
to other contents.

Table 2 Students’ responses of the first group in 2010; 
STD = standard deviation.

Sa a N D SD Mean STD

Q1 64 15 7 0 0 4.66 0.625

Q2 1 7 37 37 4 2.58 0.758

Q3 2 14 67 3 0 3.17 0.513

Q4 1 13 65 6 1 3.08 0.557

Q5 1 8 27 46 4 2.49 0.774
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In fall 2011, the gap metric was briefly introduced by 
contrasting it with the concept of a norm in linear algebra. 
Drawing on this background knowledge, we chiefly dem-
onstrated how to use the gapmetric command for plotting 
Figure 2 and explained the meaning of the curve in the fig-
ure. The same survey was completed by the students after 
all course material was covered in 2011. Table 3 shows the 
students’ responses to the 2011 survey. The mean values 
indicate that the students had a highly positive attitude 
toward this new teaching approach. The conclusion that can 
be drawn is that visual depiction of the gap metric shown in 
Figure 2 with a very brief theoretical introduction made the 
neighborhood concept easy to correctly understand.

Within the first group, more than 80% of the students 
could understand the presented pedagogical approach. 
Based on the mean response to Q5, the approach extended 
their knowledge and helped them correctly comprehend 
related material in the ACT course. On the other hand, 
students in the second group still had only a hazy notion 
of neighborhood and did not completely understand the 
subject.

Figure 3 compares the mean values for all the five ques-
tions in the 2010 and 2011 surveys. Unlike in 2010, the stu-
dents in 2011 did not feel that the material (gap metric and 
nonlinear measures) was too complex. most students in 
2011 positively evaluated the method and considered the 
material good for their future. In the light of our presented 
case-driven pedagogical approach, students more eas-
ily learned that whether or not a linearized model-based 
controller can realize its control objective for the cart-pole 
system is decided by the extent of closed-loop similarity 
between the real system and the linearized model, rather 
than by the size of a neighborhood. The combination of the 
approach in [5] and ours was effective for students to com-
prehend the technical concepts on linearization.

Figure 4 compares the standard deviations for all five 
questions in the 2010 and 2011 surveys. The standard devia-
tions are very similar for Q1, Q2, and Q4 for the two sur-
veys. The standard deviations for Q3 and Q5 are obviously 
different. Q3 is an assessment by the students of whether 
the course helped the students in higher level thinking and 
understanding of difficult concepts. In 2010, most students 

did not understand the gap metric and nonlinearity mea-
sure (see Q2 in Figure 3), so most of the students felt no ben-
efits were obtained in their intellectual development (see 
Q3 in Figure 3). In 2011, most students could understand 
the method (see Q2 in Figure 3), but students at different 
intellectual levels could have different degrees of benefits, 
leading to a larger standard deviation for Q3 in Figure 4. 
Q5 is concerned with increasing student confidence in 
applying the methods to other problems. The mean score 
for Q5 in 2011 was so high, as seen in Q5 in Figure 3, that 
the standard deviation in the scores was much lower than 
in 2010, as seen in Q5 in Figure 4.

CONCLUSION 
The concept of linearization is a standard part of under-
graduate control education but is often not correctly 
understood by students. Students assume that the neigh-
borhood in which a linearization is useful for controller 
design is small. To help students correctly understand and 
quantify the neighborhood for which a linearized model 
is useful for controller design, the gap-metric-based non-
linearity measure was introduced to undergraduates’ 
control education. Since a thorough description of the 
underlying mathematics of the gap metric is beyond the 
ability of most undergraduates, a case-driven pedagogical 
approach was developed. Its effectiveness was evaluated 
based on two consecutive years of experience and sur-
veys in the School of Control and Computer Engineering  
at NCEPU.
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Table 3 Students’ responses of the first group in 2011; 
STD = standard deviation.

Sa a N D SD Mean STD

Q1 4 12 64 5 1 3.15 0.642

Q2 16 57 8 5 0 3.97 0.719

Q3 12 55 12 6 1 3.81 0.744

Q4 14 61 9 2 0 4.01 0.603

Q5 11 66 9 0 0 4.02 0.485
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The effectiveness of the approach was apparent and 
acceptable for undergraduates in an introductory control 
course. With the help of a visual software demonstration 
and relevant mathematical introduction, the approach was 
carried out by measuring the inherent nonlinearity of a 
cart-pole system. The application of the approach shows 
students are not required to know all the complex back-
ground knowledge and are able to correctly comprehend 
the significance and quantification of the neighborhood 
of linearization. The presented case-driven pedagogical 
approach is effective for inspiring students’ interests in 
automation science and technology. The main contribu-
tions are 1) an important concept in nonlinear control 
theory is introduced into undergraduate control education 
and 2) an effective case-driven pedagogical approach was 
presented.
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