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Abstract This paper studies the monotonic type-2 fuzzy

neural network (T2FNN), which can be adopted in many

identification and prediction problems where the mono-

tonicity property between the inputs and outputs is

required. Sufficient conditions on the parameters of the

T2FNN are first presented to ensure the monotonicity

between the inputs and outputs. Then, data-driven design

model for the monotonic T2FNN is built. Also, under the

monotonicity constraints, a hybrid algorithm is provided

to optimize the parameters of the monotonic T2FNN. This

hybrid algorithm utilizes the constrained least squares

method and the penalty function-based gradient descent

algorithm to realize reasonable parameter initialization

and optimization. At last, an application to the thermal

comfort index prediction is given to verify the effective-

ness of the monotonic T2FNN. Comparisons with other

methods are also made.

Keywords Type-2 fuzzy � Neural network �
Monotonicity � Constrained least squares method � Gradient

descent algorithm � Thermal comfort

1 Introduction

Fuzzy logic systems [1] that can incorporate human

knowledge or experience into system design have been

proved to be an effective approach to deal with imprecise

information and to solve many engineering problems that

cannot be solved by classical methods. However, the

conventional ways for fuzzy logic systems design face the

difficulties to transform human experience into the rule

base and to tune the parameters of the membership func-

tions (MFs) so as to maximize (minimize) the performance

index. In order to overcome such drawbacks, several

approaches have been developed, one of which is fuzzy

neural network (FNN) [2], such as adaptive-network-based

fuzzy inference system [3], dynamic FNN [4, 5], genetic

dynamic FNN [6], and self-organizing FNN [7]. FNNs that

can combine the merits of fuzzy logic systems and neural

networks have been widely applied in many real-word

applications.

Unfortunately, in real-world environments or applica-

tions, there exist high-level uncertainties, which cannot be

modeled or handled by classic fuzzy sets (type-1 fuzzy

sets: T1FS) or classic fuzzy logic systems (type-1 fuzzy

logic systems: T1FLS). In order to tackle this problem,

Zadeh [8] proposed the concept of type-2 fuzzy set (T2FS),

which is an extension of T1FS. And a complete theory of

type-2 fuzzy logic systems (T2FLS) [9–14] has been

developed by researchers recently. T2FLS not only has the

merits of T1FLS, but also can provide the capability to

model high levels of uncertainties and produce more

complex input–output mappings and better results [9–14],

as T2FLS utilizes T2FSs which can provide additional

degrees of freedom and more parameters. But, how to

identify the structure of T2FLSs and to estimate the

parameters of type-2 MFs are still the main issues associ-

ated with T2FLSs. One way to solve this problem is to

combine T2FLSs with neural networks.

Type-2 fuzzy neural network (T2FNN), which has

advantages of both T2FLS and neural network, has been
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studied and applied in many real-world problems. The

design of T2FNN is first described in [15]. The optimal and

back-propagation training algorithms of T2FNN are given

in [16] and [17]. In [18], a self-evolving T2FNN that can

learn its structure and parameters online is presented. In

[19], a recurrent T2FNN is explored for dynamic system

modeling. In [20], the hierarchical type-2 neuro-fuzzy BSP

model is studied. In [21], the authors adopt the fuzzy

clustering and differential evolution optimization to con-

struct T2FNN. T2FNN has also found lots of applications,

for example, linear ultrasonic motor control [22], coupled-

tank liquid level control [23], inverse control of cable-

driven parallel mechanism [24], identification and control

of time-varying plants [25], speech detection in noisy

environments [26], control of permanent magnet linear

synchronous motor drives [27], and channel equalization

[28]. Most of such T2FNNs are constructed by data-driven

methods.

In system identification or prediction problems, it is

usually hard to obtain exact physical structure knowledge

of some systems. However, some kind of qualitative

knowledge of these systems can be observed easily, such

as monotonicity, bounded range, and symmetry. Such

qualitative knowledge can partly reflect the characteristics

of the unknown systems. Hence, we can make full use of

the information from the qualitative knowledge to achieve

better performance when data-driven methods are used for

system identification or prediction problems. One partic-

ular but common qualitative knowledge is the monoto-

nicity property between the inputs and outputs. For

example, in the water heating system, the temperature of

water will change with respect to the heat power mono-

tonically. In recent years, several researches [29–36] have

studied how to incorporate the monotonicity property into

T1FLSs. However, for the monotonicity of T2FLSs, there

has been only a few studies till now because of the

complexity of the input–output mappings. In [37, 38], we

have studied the parameter conditions for the monoto-

nicity of T2FLS. But, we have only considered single-

input T2FLSs or SIRMs connected T2FLSs, which

essentially are linear combinations of single-input

T2FLSs. To the best of the authors’ knowledge, there is

no work concerning the parameter conditions and design

of monotonic FNNs including both the type-2 and type-1

cases. To be more practical, more works need to be done

on FNNs.

In this paper, the theoretical analysis, design, and

optimization issues of the monotonic FNNs are studied.

As type-1 fuzzy neural networks (T1FNNs) are special

cases of T2FNNs, in this study, we only take T2FNNs

into account. Similar results can be extended to the type-

1 case readily. First, sufficient conditions on the

parameters of T2FNNs are derived to ensure the

monotonicity between the inputs and outputs. And then,

data-driven model for the design of monotonic T2FNNs

is presented. In order to design satisfactory monotonic

T2FNNs, a hybrid algorithm that is a combination of the

constrained least squares method and the penalty func-

tion-based gradient descent algorithm is provided

to optimize the parameters of the T2FNNs. Finally,

to verify the effectiveness of the monotonic T2FNNs, we

apply the monotonic T2FNNs to realize the prediction of

the thermal comfort index. Also, comparisons with other

methods are made. Simulation result and comparisons

demonstrate that the monotonic T2FNN can achieve

satisfactory performance and performs better than its

counterpart—T1FNN.

The primary contributions of this work are summarized

as follows:

1. Parameter conditions of T2FNNs are derived to ensure

the monotonicity property between their inputs and

outputs. Such conditions are useful for the design of

monotonic T2FNNs. Also, the derived conditions are

for multi-input T2FNNs. The parameter conditions for

multi-input T2FNNs include but cannot be extended

from existing single-input results, since the existing

results are for the iterative Karnik–Mendel type-

reduction method–based T2FLSs, the input–output

mappings of which do not have closed-form expres-

sions. For this reason, it is a hard task to derive

monotonicity conditions for the multi-input T2FLSs

that adopt the Karnik–Mendel type-reduction method.

But the type-reduction method adopted in this study is

the Begian–Melek–Mendel (BMM) method [12].

With the BMM method, the input–output mappings

of multi-input T2FLSs or T2FNNs have closed-form

expressions. This makes it possible to obtain the

monotonicity conditions.

2. The mathematical model for the data-driven design of

monotonic T2FNNs is built. As pointed by this study,

the data-driven design of monotonic T2FNNs can

be seen as the constrained nonlinear optimization

problems, while the data-driven design of ordinary

T2FNNs can be seen as the nonconstrained nonlinear

optimization problems.

3. Optimization algorithm is given for parameter learning

of monotonic T2FNNs. To the best of the authors’

knowledge, most monotonicity studies are about

parameter conditions, and there exists no work on

the parameter optimization and design problems of

monotonic FNNs.

4. Application of the monotonic T2FNNs to the predic-

tion of the thermal comfort index is made. This

application demonstrates the usefulness of the mono-

tonicity property.
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2 Type-2 fuzzy neural network

In this paper, we consider the general multi-input–single-

output system, whose input variables are supposed to be

x ¼ ðx1; . . .; xpÞ 2 X1 � X2 � � � � � Xp:

By assigning the jth input variable Nj T2FSs, we can

obtain the following fuzzy rule base with
Qp

j¼1 Nj fuzzy

rules:

Ruleði1; i2; . . .; ipÞ: x1 ¼ eAi1
1 ; x2 ¼ eAi2

2 ; . . .; xp ¼ eAip
p !

yoðxÞ ¼ ½wi1i2...ip ;wi1i2...ip �; where ij ¼ 1; 2. . .;Nj; ½wi1i2...ip ;

wi1i2...ip �s are the interval weights, eA
ij
j s are T2FSs for the jth

input variable.

Corresponding to this type-2 fuzzy rule base, the

structure of the T2FNN can be constructed as shown in

Fig. 1. The T2FNN works as follows in each layer.

Layer 1-fuzzification layer: There are p nodes in this

layer. For analysis simplicity, singleton fuzzifier is adopted

in this layer.

Layer 2-type-2 MF layer: In this layer, each node per-

forms a T2FS, and there are
P

j=1
p Nj nodes in this layer.

With the choice of Gaussian T2FS (see Fig. 2), the T2FS

eA
ij
j can be represented as an interval bound by its lower MF

(LMF) leAij
j

ðxjÞ and upper MF (UMF) leAij
j

ðxjÞ :

leAij

j

ðxjÞ ¼ exp � 1

2

ðxj � c
ij
j Þ

2

ðdij
j Þ

2

2

4

3

5; ð1Þ

leAij
j

ðxjÞ ¼ exp � 1

2

ðxj � c
ij
j Þ

2

ðdij
j Þ

2

2

4

3

5; ð2Þ

where c
ij
j and ½ðdij

j Þ
2
; ðdij

j Þ
2
� are, respectively, the center and

uncertain widths of eA
ij
j ; and 0\ðdij

j Þ
2
�ðdij

j Þ
2
:

The output of each node can be represented as an

interval leAij
j

ðxjÞ; leAij
j

ðxjÞ
� �

:

Layer 3- Rule Layer: Each node in this layer represents

one fuzzy logic rule and performs precondition matching of

a rule. So, there are
Qp

j¼1 Nj nodes in this layer. The output

of a rule node represents the firing strength of this fuzzy

rule. For the node ði1; i2; . . .; ipÞ corresponding to Rule

ði1; i2; . . .; ipÞ, its firing strength is calculated by the prod-

uct operation as follows:

Fi1i2���ipðxÞ ¼
Yp

j¼1

leAij
j

ðxjÞ;
Yp

j¼1

leAij
j

ðxjÞ
" #

: ð3Þ

Layer 4-type-reduction layer: This layer is used to

achieve the type-reduction. In this layer, different type-

reducers may give different results. For simplicity, we

adopt Begian–Melek–Mendel (BMM) method proposed in

[12] to realize the type-reduction. With this type-reduction

method, the input–output mappings of T2FNNs have

closed-form expressions, which makes it convenient to do

theoretical analysis. Using the BMM method, the output of

the two nodes in the fourth layer can be computed as:

ylðxÞ ¼

PN1

i1¼1 � � �
PNp

ip¼1 wi1i2���ip Qp
j¼1 leAij

j

ðxjÞ
PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxjÞ
; ð4Þ

yuðxÞ ¼

PN1

i1¼1 � � �
PNp

ip¼1 wi1i2���ip Qp
j¼1 leAij

j

ðxjÞ
PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxjÞ
: ð5Þ

Layer 5-output layer: This layer performs the

defuzzification. Here, we use the linear combination of

ylðxÞ and yuðxÞ to generate the crisp output, that is,

yoðxÞ ¼ ð1� gÞylðxÞ þ gyuðxÞ; ð6Þ

where g is the defuzzification coefficient, and 0 B g B 1.

A T2FNN can be seen as a multivariable function yoðxÞ:
When all sources of uncertainty disappear, the T2FSs eA

ij
j s

in Layer 2 becomes T1FSs A
ij
j s, and the interval weights

½wi1i2...ip ;wi1i2...ip �s between Layer 3 and Layer 4 becomes

crisp weights wi1i2...ip s. Hence, the T2FNN turns to a

T1FNN.

1
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1 1
1
NA

1
1
NA

( )ly x
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1
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1
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Fig. 1 Structure of type-2 fuzzy neural network

Fig. 2 A Gaussian T2FS with uncertain widths
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3 Monotonicity of type-2 fuzzy neural network

In this section, we will derive the conditions on the param-

eters of T2FNN to ensure the monotonicity property between

its input and output. To begin, let us give the definition of

monotonicity for this special multivariable function first.

Definition 1 (Monotonic T2FNN) A T2FNN is said to be

monotonically increasing with respect to (w.r.t) xk, if

8x1
k � x2

k 2 Xk implies that yoðx1; . . .; x1
k ; : ::; xpÞ� yo

ðx1; . . .; x2
k ; . . .; xpÞ for all combinations of ðx1; . . .;

xk�1; xkþ1; . . .; xpÞ: And, a T2FNN is said to be monoton-

ically decreasing with respect to (w.r.t) xk, if 8x1
k � x2

k 2 Xk

implies that yoðx1; . . .; x1
k ; . . .; xpÞ� yoðx1; . . .; x2

k ; . . .; xpÞ
for all combinations of ðx1; . . .; xk�1; xkþ1; . . .; xpÞ:

In this study, we just take the increasing monotonicity

into account. Similar results can be obtained for decreasing

monotonicity. For the increasing monotonicity, we have

the following results:

Theorem 1 The T2FNN is monotonically increasing w.r.t

xk if the following conditions can be satisfied:

1. the T2FSs in layer 2 satisfy that

oleAl
k

ðxkÞ

oxk
�leAm

k

ðxkÞ �
oleAm

k

ðxkÞ

oxk
�leAl

k

ðxkÞ and

oleAl
k

ðxkÞ

oxk
� leAm

k

ðxkÞ�
oleAm

k

ðxkÞ

oxk
�

leAl
k

ðxkÞ; where 1 B l \ m B Nk;

2. the weighting factors between Layer 3 and Layer 4

satisfy that wi1...ik�1ik ikþ1...ip �wi1...ik�1ðikþ1Þikþ1...ip ;

wi1...ik�1ik ikþ1...ip �wi1...ik�1ðikþ1Þikþ1...ip for all combina-

tions of ði1; . . .; ik�1; ikþ1; . . .; ipÞ; where ik ¼ 1; . . .;

Nk � 1:

Proof Suppose that x1 ¼ ðx1; . . .; x1
k ; . . .; xpÞ� x2 ¼

ðx1; . . .; x2
k ; . . .; xpÞ:

Note that

ylðxÞ¼

PN1

i1¼1 ���
PNp

ip¼1 wi1i2���ipQp
j¼1leAij

j

ðxjÞ
PN1

i1¼1 ���
PNp

ip¼1

Qp
j¼1leAij

j

ðxjÞ

¼

PN1

i1¼1 ���
PNk�1

ik�1¼1

PNkþ1

ikþ1¼1 ���
PNp

ip¼1 ½
Qp

j¼1;j 6¼k leAij
j

ðxjÞ
PN1

i1¼1 ���
PNk�1

ik�1¼1

PNkþ1

ikþ1¼1 ���
PNp

ip¼1 ½
Qp

j¼1;j 6¼k leAij
j

ðxjÞ
PNk

ik¼1 wi1i2���ipleAik
k

ðxkÞ�
PNk

ik¼1leAik
k

ðxkÞ�

¼

PM
v¼1av

PNk

ik¼1 wvikleAik
k

ðxkÞ
PM

v¼1av
PNk

ik¼1leAik
k

ðxkÞ
; ð7Þ

where M ¼
Qp

j¼1;j 6¼k Nk; v ¼ vði1; . . .; ik�1; ikþ1; . . .; ipÞ is a

combination of i1; . . .; ik�1; ikþ1; . . .; ip; and av ¼
avði1;...;ik�1;ikþ1;...;ipÞ ¼

Qp
j¼1;j 6¼k leAij

j

ðxjÞ:

Then, we have

ylðx2Þ�ylðx1Þ¼

PM
s¼1as

PNk

l¼1 wslleAl
k

ðx2
kÞ

PM
s¼1as

PNk

l¼1leAl
k

ðx2
kÞ

�

PM
t¼1at

PNk

m¼1 wtmleAm
k

ðx1
kÞ

PM
t¼1at

PNk

m¼1leAm
k

ðx1
kÞ

¼1

e

XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼1

wslleAl
k

ðx2
kÞleAm

k

ðx1
kÞ

"

�
XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼1

wtmleAl
k

ðx2
kÞleAm

k

ðx1
kÞ
#

ð8Þ

where

e ¼
PM

s¼1 as
PNk

l¼1 leAl
k

ðx2
kÞ

� �
PM

t¼1 at
PNk

m¼1 leAm
k

ðx1
kÞ

� �

[ 0:

Consider the following fact

XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼1

wtmleAl
k

ðx2
kÞleAm

k

ðx1
kÞ

¼
XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼1

wsmleAl
k

ðx2
kÞleAm

k

ðx1
kÞ ð9Þ

Substituting (9) into (8) leads to

ylðx2Þ � ylðx1Þ

¼ 1

e

XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼1

ðwsl � wsmÞleAl
k

ðx2
kÞleAm

k

ðx1
kÞ

" #

¼ 1

e

XM

s¼1

XM

t¼1

asat
XNk

l¼1

XNk

m¼lþ1

ðwsm � wslÞ�
"

leAm
k

ðx2
kÞleAl

k

ðx1
kÞ � leAl

k

ðx2
kÞleAm

k

ðx1
kÞ

� ��

: ð10Þ

The first condition implies that o
oxk
½
leAm

k

ðxkÞ

leAl
k

ðxkÞ � � 0; which

means that

leAm
k

ðxkÞ

leAl
k

ðxkÞ is monotonically increasing w.r.t xk.

Hence,

leAm
k

ðx2
kÞ

leAl
k

ðx2
kÞ
�

leAm
k

ðx1
kÞ

leAl
k

ðx1
kÞ
� 0; ð11Þ

which implies that

leAm
k

ðx2
kÞleAl

k

ðx1
kÞ � leAl

k

ðx2
kÞleAm

k

ðx1
kÞ� 0: ð12Þ
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From the second condition, for m [ l

wsm � wsl� 0: ð13Þ

From (10), (12), and (13), we can observe that ylðx2Þ�
ylðx1Þ:

In the similar way, we can also obtain that yuðx2Þ�
yuðx1Þ:

Obviously, this theorem holds, as the output of the

T2FNN is a linear combination of ylðxÞ and yuðxÞ:
In [37], we have derived parameter conditions of trian-

gular, trapezoidal, and Gaussian T2FSs to satisfy that
oleAl

k

ðxkÞ

oxk
leAm

k

ðxkÞ�
oleAm

k

ðxkÞ

oxk
leAl

k

ðxkÞ and

oleAl
k

ðxkÞ

oxk
�leAm

k

ðxkÞ�
oleAm

k

ðxkÞ

oxk
� leAl

k

ðxkÞ: The related conclusion about Gaussian

T2FSs (see Fig. 2) is listed as follows:

For Gaussian T2FSs , if cl
k� cm

k ; ðd
l
kÞ

2 ¼ ðdm
k Þ

2 ¼ d2
k

and ðdl

kÞ
2

¼ ðdm

k Þ
2 ¼ d

2

k ; then the first condition in Theo-

rem 1 can be met. In other words, when Gaussian T2FSs

are adopted in Layer 2, the first condition in Theorem 1 can

be satisfied, if c1
k � c2

k � � � � cNk

k for k ¼ 1; 2; . . .p and the

uncertain widths of Gaussian T2FSs for each input variable

are set to be the same.

In this section, sufficient parameter constraints of

T2FNNs are derived. These monotonicity conditions pro-

vide the basis for the design of monotonic T2FNNs.

4 Data-driven design model for monotonic T2FNN

This section tries to build the mathematical model for the

data-driven design of monotonic T2FNNs. In our study,

the conditions in Theorems 1 are used to constrain the

parameters of T2FNNs, and the data are utilized to train

and optimize such parameters further.

Let us denote h as the vector of the constrained

parameters appearing in the two conditions in Theorem 1.

If Gaussian T2FSs are adopted, h will be the vector of the

centers of Gaussian T2FSs in Layer 2 and the weights

between Layer 3 and Layer 4.

From the conclusions in the previous section, if

Gaussian T2FSs are adopted, then the inequality con-

straints on the centers of T2FSs in Layer 2 and the interval

weights between Layer 3 and Layer 4 are linear. As a

result, h satisfies the linear inequality below:

Ah ¼

aT
1 h

aT
2 h

..

.

aT
Lh

2

6
6
6
4

3

7
7
7
5
� 0 ð14Þ

where L is the number of the inequalities for the monoto-

nicity constraint.

Suppose that there are N input–output data points

ðxt; ytÞ ¼ ðxt
1; xt

2; . . .; xt
p; y

tÞ; ðt ¼ 1; 2; . . .;NÞ: And, the

training criteria are chosen to minimize the following

squared error function:

E ¼
XN

t¼1

ðyoðxt;HÞ � ytÞ2 ð15Þ

where yoðxt;HÞ is the output of the T2FNN. H is the set or

vector of all the parameters that need to be tuned.

Therefore, the data-driven design of monotonic T2FNNs

can be realized by solving the following constrained opti-

mization problem:

minH
PN

t¼1

ðyoðxt;HÞ � ytÞ2

subject to Ah� 0:

8
<

:
ð16Þ

As the outputs of the T2FNNs are linear with respect to

the weights between Layer 3 and Layer 4, but nonlinear with

respect to the centers and widths of Gaussian T2FSs in

Layer 2, this optimization problem is one nonlinear

optimization problem. Such a problem can be solved using

classical constrained nonlinear optimization algorithms,

for example, the penalty function method, or using the

evolutionary computation algorithms, such as genetic

algorithms and particle swarm algorithms.

Based on above discussion, we provide the following

guidelines for the data-driven design of monotonic T2FNNs:

1. Set reasonable initial centers and widths of Gaussian

T2FSs in Layer 2 and the weights between Layer 3 and

Layer 4.

2. Optimize all or part of the parameters of the T2FNNs

under the monotonicity constraints using classical

constrained nonlinear optimization algorithms or the

evolutionary computation algorithms.

In the following section, we will provide a hybrid

algorithm to optimize the parameters of the monotonic

T2FNN.

5 Parameter learning of monotonic T2FNN

To achieve better performance and obtain precise identi-

fication or prediction result, this section provides a hybrid

algorithm to tune the parameters of the monotonic T2FNN.

In this hybrid algorithm, all the parameters of the T2FNN

are learned through the gradient descent algorithm after

parameter initialization. As well known, the gradient des-

cent algorithm that is the basis of the back-propagation

algorithm is sensitive to initial values. So it is very

Neural Comput & Applic (2013) 23:1987–1998 1991
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important to choose reasonable initial parameters. Below,

we will first discuss the parameter initialization problem

and then derive the gradient descent algorithm for the

parameter learning of the monotonic T2FNN.

5.1 Parameter initialization

For the T2FNN, the parameters that need to be optimized

are the parameters of T2FSs in Layer 2 (e.g., the centers

and uncertain widths of the Gaussian T2FSs), the interval

weights between Layer 3 and Layer 4, and the defuzzifi-

cation coefficient g.

Usually, we can choose 0.5 as the initial value of the

defuzzification coefficient g. And, it is easy to set reason-

able initial parameters of the T2FSs in Layer 2 through

intuitive fuzzy partition according to background knowl-

edge or by clustering algorithms. But it is relatively diffi-

cult to determine reasonable initial values for the interval

weights between Layer 3 and Layer 4. Fortunately, the

output of the T2FNN is linear with such weights, so we can

utilize the least squares method to realize their initializa-

tion. Below, we will discuss this issue in detail.

From (4)–(6),

yoðxÞ ¼ /TðxÞw; ð17Þ

where w ¼ ½w11...11;w11...12; . . .;w11...1Np ;w11...21; . . .w11...2Np ;

. . .; wN1N2...Np�1Np ; w11...11; w11...12; . . .; w11...1Np ; w11...21;

. . .; w11...2Np ; . . .; wN1N2...Np�1Np �T is a
Qp

j¼1 Nj vector, and

the orders of /i1i2���ipðxÞ and /
i1i2���ipðxÞ in the vector /ðxÞ

are the same as the orders of the elements in w: Here,

/i1i2...ipðxÞ ¼ ð1� gÞ

Qp
j¼1 leAij

j

ðxjÞ
PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxjÞ
; ð18Þ

/
i1i2...ipðxÞ ¼ g

Qp
j¼1 leAij

j

ðxjÞ
PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxjÞ
: ð19Þ

From (17), the output yoðxÞ of the T2FNN is linear with

the interval weights between Layer 3 and Layer 4.

Once the T2FSs in the second layer of the T2FNN are

determined by initial type-2 fuzzy partition, given N pairs

of input–output training data ðxt; ytÞ ¼ ðxt
1; xt

2; . . .; xt
p; y

tÞ;
ðt ¼ 1; 2; . . .;NÞ; reasonable initial interval weights

between Layer 3 and Layer 4 should minimize the fol-

lowing squared error criteria under the second constraint in

Theorem 1

E ¼
XN

t¼1

ðyoðxtÞ � ytÞ2 ¼
XN

t¼1

ð/TðxtÞw� ytÞ2

¼ ðUw� yÞTðUw� yÞ; ð20Þ

where

y ¼ ½y1; y2; . . .; yN �T; ð21Þ

U ¼ ½/ðx1Þ;/ðx2Þ; . . .;/ðxNÞ�T: ð22Þ

The linear constraints on the interval weights between

Layer 3 and Layer 4 of the monotonic T2FNN can be

rewritten in the matrix form as: Pw� 0:

From above discussion, reasonable initial weights

between Layer 3 and Layer 4 can be obtained by solving

the following linear-inequality constrained least squares

optimization problem:

minw ðUw� yÞTðUw� yÞ
subject to Pw� 0

�

ð23Þ

Many algorithms can be used to solve this problem, for

example, the MATLAB function lsqlin. Detailed materials

about constrained least squares method can be found in [39].

5.2 Gradient descent learning of monotonic T2FNN

After all the parameters are initialized reasonably, to

achieve better performance, we will optimize such

parameters further in this subsection.

Given the input–output training data ðxt; ytÞ; the opti-

mization algorithm is used to adjust all the parameters H of

the T2FNN by optimizing the following problem:

minH JðtÞ ¼ 1

2
e2ðtÞ ¼ 1

2
½yoðxtÞ � yt�2

subject to Ah� 0

8
<

:
ð24Þ

Through the penalty function method, this constrained

optimization problem can be transformed to the following

unconstrained optimization problem:

min
H

JðtÞ ¼ 1

2
e2ðtÞ þ kLðhÞ ð25Þ

where LðhÞ ¼
PL

i¼1 ½minf0; aT
i hg�2 is the penalty item and

k is a large number.

To solve such optimization problem, the gradient des-

cent algorithm can be used. Below, we will present the

parameter update rules for all the parameters of the

monotonic T2FNN, in which Gaussian T2FSs are adopted.

For any parameter hk 2 h; its update rule is

hkðt þ 1Þ ¼ hkðtÞ � ahk

oJðtÞ
ohk

¼ hkðtÞ � ahk
eðtÞ oyoðxtÞ

ohk

� kahk

oLðhÞ
ohk

; ð26Þ

where ah_k is the learning rate, and
oLðhÞ
ohk

can be computed as

oLðhÞ
ohk

¼
X

i2I

2
oaT

i h
ohk

¼ 2
X

i2I

ai;k ð27Þ
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in which I ¼ fjjaT
j h\0;&j ¼ 1; . . .; Lg:

For any other parameter / 2 H� h; its update rule is

/ðt þ 1Þ ¼ /ðtÞ � a/
oJðtÞ
o/
¼ /ðtÞ � a/eðtÞ oyoðxtÞ

o/
ð28Þ

From (26) and (28), we can see that the most important

thing to obtain the update rules for parameters of the

monotonic T2FNN is to compute the derivatives
oyoðxtÞ

ohk
and

oyoðxtÞ
o/ :

5.2.1 Derivatives for the weights between Layer 3

and Layer 4

As the weights between Layer 3 and Layer 4 are con-

strained in the second condition in Theorem 1, the update

rules for these parameters should be chosen as the one in

(26), and

oyoðxtÞ
owi1i2���ip ¼ ð1� gðtÞÞ oylðxtÞ

owi1i2���ip

¼ ð1� gðtÞÞ

Qp
j¼1 leAij

j

ðxt
jÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ
;

ð29Þ
oyoðxtÞ
owi1i2���ip ¼ gðtÞ oyuðxtÞ

owi1i2���ip

¼ gðtÞ

Qp
j¼1 leAij

j

ðxt
jÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ
: ð30Þ

5.2.2 Derivative for the defuzzification coefficient g
between Layer 4 and Layer 5

As g is not constrained in Theorem 1, the update rules

for this parameter should be chosen as the one in (28),

and

oyoðxtÞ
og

¼ yuðxtÞ � ylðxtÞ ð31Þ

5.2.3 Derivatives for the centers of Gaussian T2FSs

in Layer 2

As the centers of Gaussian T2FSs in Layer 2 are con-

strained in the first condition in Theorem 1, the update

rules for these parameters should be chosen as the one in

(26), and

oyoðxtÞ
oc

ij
j

¼ ð1� gÞ oylðxtÞ
oc

ij
j

þ g
oyuðxtÞ

oc
ij
j

; ð32Þ

where

oylðxtÞ
oc

ij
j

¼

Pp
q¼1
q 6¼j

PNq

iq¼1 wi1���ip � ylðxtÞð Þ
oleAij

j

ðxt
jÞ

oc
ij
j

Qp
k¼1
k 6¼j

leAik
k

ðxt
kÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ

;

ð33Þ

oyuðxtÞ
oc

ij
j

¼

Pp
q¼1
q 6¼j

PNq

iq¼1 wi1���ip � yuðxtÞð Þ
oleAij

j

ðxt
jÞ

oc
ij
j

Qp
k¼1
k 6¼j

leAik
k

ðxt
kÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ

:

ð34Þ

in which
Pp

q¼1
q 6¼j

PNq

iq¼1

¼
PN1

i1¼1

� � �
PNj�1

ij�1¼1

PNjþ1

ijþ1¼1

� � �
PNp

ip¼1 :

5.2.4 Derivatives for uncertain widths of Gaussian T2FSs

in Layer 2

To meet the first condition in Theorem 1, the uncertain

widths of Gaussian T2FSs eA
ij
j ðij ¼ 1; 2; . . .;NjÞ for the

same input variable xj are assumed to be the same, denoted

as ½d2
j ; d

2

j �: Also, these parameters are not constrained by

inequity equations, so update rules for them should be

chosen as the one in (28), and

oyoðxtÞ
od2

j

¼ ð1� gðtÞÞ oylðxtÞ
od2

j

; ð35Þ

oyoðxtÞ
od

2

j

¼ gðtÞ oyuðxtÞ
od

2

j

: ð36Þ

where

oylðxtÞ
od2

j

¼

PN1

i1¼1 . . .
PNp

ip¼1 wi1���ip � ylðxtÞð Þ
oleAij

j

ðxt
jÞ

od2
j

Qp
k¼1
k 6¼j

leAik
k

ðxt
kÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ

;

ð37Þ

oyuðxtÞ
od

2

j

¼

PN1

i1¼1 . . .
PNp

ip¼1 wi1���ip � yuðxtÞð Þ
oleAij

j

ðxt
jÞ

od
2

j

Qp
k¼1
k 6¼j

leAik
k

ðxt
kÞ

PN1

i1¼1 � � �
PNp

ip¼1

Qp
j¼1 leAij

j

ðxt
jÞ

:

ð38Þ
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5.3 Hybrid learning algorithm for monotonic T2FNN

From above discussion, the centers and uncertain widths of

Gaussian T2FSs in Layer 2 can be initialized by reasonable

type-2 fuzzy partition, while the weights between Layer 3

and Layer 4 can be initialized through the constrained least

squares method. After parameter initialization, the penalty

function-based gradient descent algorithm can be adopted

for learning all the parameters of the monotonic T2FNN.

The flowchart of this hybrid algorithm is demonstrated in

Fig. 3.

6 Application to the thermal comfort index prediction

In this section, we will demonstrate how to design mono-

tonic T2FNN through applying it to thermal comfort index

prediction. Also, comparisons with linear regression

method and T1FNN are made to show the superiority of the

T2FNN.

6.1 Problem description

To evaluate the thermal comfort, a number of indices have

been studied, but the most widely used thermal comfort

index is the Predicted Mean Vote (PMV) index proposed

by Fanger [40]. Based on the PMV index, ASHRAE

(American Society of Heating, Refrigerating and Air-

Condition Engineers) suggested to measure the thermal

comfort level as: -3 (cold), -2 (cool), -1 (slightly cool), 0

(neutral), ?1 (slightly warm), ?2 (warm), ?3 (hot).

The PMV index is a function of six variables, such as air

temperature, radiant temperature, relative humidity, air

velocity, human activity level, and clothing thermal resis-

tance. The value of PMV ranges from -3 to 3 and can be

calculated by [40–43]

PMV¼ð0:303e�0:036Mþ0:028ÞfM�W�3:05�10�3

½5733�6:99ðM�WÞ�Pa��0:42½ðM�WÞ�58:15�
�1:7�10�5Mð5867�PaÞ�0:0014M �ð34� taÞ
�3:96�10�8fc1½ðtc1þ273Þ4�ðtrþ273Þ4�
� fc1hcðtc1� taÞg; ð39Þ

tc1 ¼ 35:7� 0:0278ðM �WÞ � Ic1f3:96 � 10�8fc1�
½ðtc1 þ 273Þ4 � ðtr þ 273Þ4 � fc1hcðtc1 � taÞ�g:

ð40Þ

where tc1, hc, fc1 and Pa can be computed, respectively,

as

hc ¼
2:38ðtc1 � taÞ0:25

2:38ðtc1 � taÞ0:25 [ 12:1
ffiffiffiffiffi
va
p

12:1
ffiffiffiffiffi
va
p

2:38ðtc1 � taÞ0:25\12:1
ffiffiffiffiffi
va
p

(

ð41Þ

fc1 ¼
1:00þ 0:2Ic1 Ic1\0:5clo

1:05þ 0:1Ic1 Ic1 [ 0:5clo

�

ð42Þ

Pa ¼
PsRH

100
ð43Þ

In above equations, PMV is the Predicted Mean Vote,

M is the human metabolic rate (W/m2), W is the external

work (W/m2), Pa is the water vapor pressure (Pa), ta is the

indoor air temperature (�C), tr is the radiation temperature

(�C), Ic1 is the thermal resistance of clothing (clo), va is the

relative air velocity (m/s), tc1 is the surface temperature of

clothing, RH is the relative humidity in percent, hc is the

convectional heat transfer coefficient (W/m2K), fc1 is the

ratio of clothed body surface area to nude body surface

area, and Ps is the saturated vapor pressure at specific

temperature (�C).

From the above PMV calculation equations, we can

observe that such equations are nonlinear and rather com-

plicated. Also, we need computing tc1 iteratively to obtain

the root of the nonlinear equation (40). This is a problem for

real-time applications. A promising way to solve this prob-

lem is to use a prediction model to approximate the input–

output characteristic of the PMV model. In this study, we

present one T2FNN prediction model for this PMV index.

The PMV index has six input variables, and, sometimes,

some input variables are rather complicated and not easy to

be measured online. In [43], the authors have discussed that

‘‘the results show that thermal comfort votes were highly

correlated with the two environmental conditions, namely,

temperature and humidity.’’ So, to make the proposed

Fig. 3 Hybrid algorithm for the monotonic T2FNN
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prediction model easier to apply in practice, in this study,

we adopt the air temperature ta and the relative humidity

RH as input variables of the T2FNN prediction model. And

the other variables are set under reasonable assumptions in

the next subsection.

On the other hand, we can see that the higher the air

temperature ta is, the larger the PMV index will be. So does

the relative humidity RH. In other words, the predicted model

for the PMV index should be monotonically increasing w.r.t.

the air temperature ta and the relative humidity RH. Hence, an

appropriate T2FNN prediction model for the thermal comfort

index should be monotonically increasing.

6.2 Monotonic T2FNN prediction model

for the thermal comfort index

Figure 4 shows the tuning schedule of the T2FNN pre-

diction model. To construct the T2FNN prediction model,

the training data are obtained from Fanger’s PMV model to

reflect the relationship between the inputs and the thermal

comfort index. The inputs of the training data are the

values of ta, RH, while the outputs of the training data are

the PMV index values. In the training process, the pro-

posed hybrid algorithm is utilized to update the parameters

of the prediction model.

The training data pairs are generated under the following

reasonable assumptions:

1. Generally speaking, occupants usually engage in light

work when they are indoor. In this case, the human

metabolic rate is 69.78 W/m2, so we suppose the

activity level to be 69.78 W/m2;

2. We set clothing thermal resistance to 0.7 (clo);

3. The radiant temperature is set to be equal to the air

temperature;

4. As the specifications of the air conditioning design

require the air velocity to be less than 0.25 m/s in

summer, the air velocity is set to 0.20 m/s.

6.3 Simulation results and comparison

Under the assumptions above, training data pairs are gen-

erated. The sampling range of the air temperature is

[10 �C, 36 �C], and the sampling step is 1 �C. The sampling

range of the relative humidity is [0, 100 %], and the sam-

pling step is 5 %. Thus, 567 training data pairs are obtained.

In the simulation, we assign each input variable 5 Gaussian

T2FSs as shown in Fig. 5a, b, that is, N1 = N2 = 5 and there

are N1*N2 = 25 fuzzy rules in this T2FNN. The initial

interval weights between Layer 3 and Layer 4 are set to zero,

and the initial defuzzification coefficient g is set to 0.5. In
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Fig. 4 Tuning schedule of the monotonic type-2 fuzzy neural
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the hybrid algorithm, the penalty factor k is chosen to be

100, and the learning rates are chosen as aw = 0.01,

ag = 0.001, ac = 0.5 for the air temperature and ac = 5e-6

for the relative humidity, ad = 1 for the air temperature, and

ad = 5e-7 for the relative humidity.

After being trained, g = 0.5527, and the T2FSs in Layer

2 are shown in Fig. 6a, b. The optimized interval weights

between Layer 3 and Layer 4 are shown in Table 1.

According to the conditions in Theorem 1, the optimized

T2FNN is monotonic.

For comparison, a T1FNN is designed and experi-

mented. The T1FSs in Layer 2 of the T1FNN are still

Gaussian fuzzy sets with the same centers c
ij
j as in the

T2FNN, but the widths of them are the average of d2
j and

d
2

j : In the same way, the crisp weights between Layer 3 and

Layer 4 of the T1FNN are set as the average of the interval

weights of the T2FNN.

A linear regression model is also provided. For the

above training data, the linear regression model can be

obtained as: -7.1160 ? 0.2818*ta ? 0.6883*RH.

For the 567 pairs of training data, the root-mean-square

error (RMSE) of the final T2FNN and T1FNN and the

linear regression model are 0.0692, 0.0774, and 0.1067,

respectively.

One hundred data pairs are generated randomly for

evaluation. And, such evaluation process is run for ten

times. In one of the ten runs, comparison between the PMV

value and the value obtained from the monotonic T2FNN

prediction model is demonstrated in Fig. 7. The prediction

errors are also shown in Fig. 7 (blue line). For the evalu-

ation data, in each run, the RMSEs of the final T2FNN and

Table 2 RMSEs of evaluation data

Case RMSE

T2FNN T1FNN Linear regression

1 0.0378 0.0478 0.0480

2 0.0387 0.0457 0.0484

3 0.0383 0.0516 0.0488

4 0.0386 0.0517 0.0513

5 0.0381 0.0516 0.1027

6 0.0340 0.0471 0.0943

7 0.0346 0.0462 0.0574

8 0.0354 0.0460 0.0657

9 0.0357 0.0511 0.0513

10 0.0375 0.0489 0.0821

Average 0.0369 0.0488 0.0650

Table 1 Final interval weights between Layer 3 and Layer 4

½wi1 i2 ;wi1i2 � i1

1 2 3 4 5

i2 1 [-4.00, -4.00] [-1.79, -1.78] [-0.86, 0.48] [0.55, 1.90] [3.68, 3.71]

2 [-4.00, -4.00] [-1.57, -1.56] [-0.60, 0.51] [0.60, 2.12] [4.35, 4.38]

3 [-3.99, -3.99] [-1.47, -1.40] [-0.50, 0.80] [0.65, 2.43] [4.48, 4.52]

4 [-3.94, -3.90] [-1.45, -1.38] [-0.47, 0.76] [1.23, 2.46] [5.00, 5.00]

5 [-3.87, -3.85] [-1.20, -1.10] [-0.29, 1.05] [1.90, 3.39] [5.00, 5.00]

Note: ½wi1i2 ;wi1i2 �s are the interval weights of the 25 fuzzy rules, where i1 = 1, 2, ..., 5 and i2 = 1, 2, ..., 5
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T1FNN and the linear regression model are listed in

Table 2.

From Fig. 7, we can see that the proposed prediction

model can achieve satisfactory performance and the pre-

diction error lies in a fine scale. Hence, the proposed

monotonic T2FNN prediction model can be used as a good

alternative in real-time applications where the PMV index

should be computed online. From Table 2, we can con-

clude that the monotonic T2FNN model performs better

than its counterpart—T1FNN model and the linear

regression model.

7 Conclusion

In lots of identification and prediction applications, specific

physical structure knowledge about systems may be difficult

to obtain. But, some properties (e.g., monotonicity) of the

system may be obvious. Hence, it is quite important for us to

utilize such properties to construct the identification or

prediction models. We have in this paper addressed the topic

on the monotonicity property of T2FNNs. We have pre-

sented sufficient monotonicity conditions on the parameters

of T2FNN—the conditions on T2FSs in Layer 2 and the

conditions on the interval weights between Layer 3 and

Layer 4—to meet the monotonicity property between its

input and output. Furthermore, data-driven design and

optimization of the monotonic T2FNN are studied. To

optimize the parameters of the monotonic T2FNN, we have

provided a hybrid algorithm which is the combination of the

constrained least squares method and the gradient descent

algorithm. Application to the thermal comfort index pre-

diction and comparisons with other methods have demon-

strated the effectiveness and advantage of the monotonic

T2FNN.
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