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a b s t r a c t

An adaptive controller which is designed with a priori consideration of actuator saturation effects and

guarantees H1 tracking performance for a class of multiple-input–multiple-output (MIMO) uncertain

nonlinear systems with extern disturbances and actuator saturations is presented in this paper.

Adaptive radial basis function (RBF) neural networks are used in this controller to approximate the

unknown nonlinearities. An auxiliary system is constructed to compensate the effects of actuator

saturations. Furthermore, in order to deal with approximation errors for unknown nonlinearities and

extern disturbances, a supervisory control is designed, which guarantees that the closed loop system

achieves a prescribed disturbance attenuation level so that H1 tracking performance is achieved.

Steady and transient tracking performance are analyzed and the tracking error is adjustable by explicit

choice of design parameters. Computer simulations are presented to illustrate the efficiency of the

proposed controller.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

All physical actuators in control systems have amplitude and
rate limitations. For example, the elevator of an aircraft can only
provide a limited force or torques in a limited rate. Actuator
amplitude limitation or rate limitation constitutes a fundamental
limitation on many linear or nonlinear control design techniques
and has attracted the attention of numerous researchers. The
controllers that ignore actuator limitations may cause the closed
loop system performance to degenerate or even make the closed
system unstable, and decrease the lifetime of the actuators, or
damage the actuators. Higher performance may be expected if a
controller is designed with a priori considering of the actuator
saturation effects.

The design of stabilizing controllers with a priori consideration
of the actuator saturation effects for nonlinear systems with
unknown nonlinearities and external disturbances is a challen-
ging problem. Zhou [1] proposed an adaptive backstepping
scheme to design an adaptive controller for a class of uncertain
nonlinear single-input–single-output (SISO) systems in the pre-
sence of input saturations. To deal with saturations, an auxiliary
system with the same order as that of the plant was constructed
to compensate the effect of saturation. Farrell et al. [2–5]
presented an adaptive backstepping approach and an online
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approximation based adaptive backstepping approach for
unknown nonlinear systems with known magnitude, rate, band-
width constraints on intermediate states or actuators without
disturbance. Those approaches also used auxiliary systems for
generating a modified tracking error to guarantee stability during
saturation. Command filtered adaptive backstepping approaches
[6–9] were also proposed to deal with the constraints on the
control surfaces and the control states. For single input uncertain
nonlinear systems in the presence of input saturation and
unknown external disturbance, robust adaptive backstepping
control algorithms were also developed by introducing a well
defined smooth function and using a Nussbaum function which
was used to compensate for the nonlinear term arising from the
input saturation [10].

Dynamic inversion [11,12] approach is a widely used nonlinear
control technique. However, the effects of actuator saturations
have not been addressed with nominal dynamic inversion algo-
rithm, so certain modifications are required. Tandale [13] pro-
posed an adaptive dynamic inversion controller for a class of
nonlinear systems with control saturation constraints. Enomoto
[14] investigated the dynamic inversion control for nonlinear
systems with control saturation constraints by Lyapunov synth-
esis. For a class of uncertain nonlinear dynamical systems in
Brunovsky form, Lavretsky [15] proposed a dynamic inversion
based adaptive control framework to provide stable adaptation in
the presence of input constraints. The proposed design methodol-
ogy can protect the control law from actuator position saturation.
For a class of nonlinear systems which, in the presence of
saturation, were controlled by nonlinear dynamic inversion
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controllers, an anti-windup compensation scheme was also pro-
posed [16–18]. Neural network technique [19,20] was also used
to handle actuator saturations problem. Calise [21] introduced a
neural network based method termed as Pseudo-Control Hedging
(PCH) for addressing a wide class of plant input characteristics
such as actuator position limits, actuator rate limits, time delay,
and input quantization. Chen et al. [22] also introduced a radial
basis function neural network based controller for uncertain
MIMO nonlinear systems with input saturations. The control
design for nonlinear systems with actuator saturations was also
be investigated by optimal control [23], nearly optimal control
[24], nonlinear model predictive control [25] and fault tolerant
scheme [26], etc. However, there are still few results for the
control of uncertain nonlinear systems by taking actuator satura-
tions into account in the controller design and analysis.

In [27], the authors proposed an adaptive controller for MIMO
nonlinear systems with control input limitations by using an
auxiliary system and extended tracking errors which were used in
neural network parameter update laws to compensate the effects
of control input limitations. In this paper, for the control of a class
of MIMO uncertain nonlinear systems in the presence of distur-
bances and actuator saturations, dynamic inversion [11] based
controller which can generate constrained control signal is
designed. Adaptive RBF neural networks are used to approximate
unknown nonlinearities. An auxiliary system is constructed to
compensate the effects of actuator amplitude and rate satura-
tions. This auxiliary system and compensation scheme are differ-
ent from [27], so that the extended tracking error in [27] is no
longer needed. A supervisory control is designed to attenuate the
effects of approximation errors and external disturbance so as to
guarantee a H1 tracking performance. The performance of the
closed loop system is obtained through Lyapunov analysis. The
bounds of tracking errors can be adjusted by tuning the design
parameters. The proposed controller can generate control signals
satisfying actuator amplitude and rate limitations, and guarantee
a H1 tracking performance of the closed loop system.

The rest of this paper is organized as follows. In Section 2, the
problem statement is presented. In Section 3, the adaptive control
scheme is discussed, and the closed loop system performance is
analyzed. A numerical example is shown in Section 4. Section 5
concludes the paper. Throughout this paper, 9 � 9 indicates the
absolute value, J � J indicates the Euclidean vector norm, and J � J2

indicates the L2 norm.
2. Problem formulation

Consider the class of MIMO systems described by the following
differential equations:

_xi1 ¼ xi2

^
_xi,ri�1 ¼ xiri

_xiri
¼ f iðxÞþ

Xm

j ¼ 1

gijðxÞujþdi

yi ¼ xi1, i¼ 1, . . . ,m

ð1Þ

which also can be rewritten in the following compact form:

yðnÞ ¼ FðxÞþGðxÞuþd ð2Þ

where y¼ ½y1, . . . ,ym�
T ARm is the output vector; yðnÞ ¼

def
½yðr1Þ

1 , . . . ,
yðrmÞ

m �
T ARm,

Pm
i ¼ 1 ri ¼ n; yðriÞ

i ¼ dri yi=dtri ; x¼ ½x11, . . . ,x1r1
, . . . ,

xm1, . . . ,xmrm �
T ARn is the state vector available for measurement;

u¼ ½u1, . . . ,um�ARm is the control vector with

9ui9ruimax, _uirvimax ð3Þ
where uimax and vimax denote the actuator amplitude and rate limits
respectively. FðxÞ ¼ ½f 1ðxÞ, . . . ,f mðxÞ�ARm, GðxÞ ¼ ½gijðxÞ�m�mA Rm�m

(½��m�m represents a m�m matrix) are continuous unknown
functions of the state x. di denotes the external disturbances which
is unknown but bounded and satisfies

R T
0 d2

i dto1. d¼
½d1, . . . ,dm�ARm.

The control objective is to force yi to follow a given bounded
reference signal yid in the presence of actuator saturations and
extern disturbances. For (2) to be controllable, we assume that
sðGðxÞÞa0 for x in certain controllability region Uc ARn, where
sðGðxÞÞ denotes the minimum singular value of the matrix GðxÞ.
3. Design of adaptive controllers

To begin, define t1, . . . ,tm as follows:

ti ¼ yðriÞ

id þ
Xri

j ¼ 1

lije
ðj�1Þ
i , i¼ 1, . . . ,m

where yid, i¼ 1, . . . ,m are the reference signals,
ei ¼ yid�yi ði¼ 1, . . . ,mÞ are the tracking errors, li1, . . . ,liri

are
parameters which make sure that the roots of the equation
sriþliri

sri�1þ � � � þli2sþli1 ¼ 0 are all in the open left-half
complex plane.

If FðxÞ and GðxÞ are known and the constrains on control inputs
are ignored, then based on dynamic inversion algorithm, the
control law:

uc0 ¼ G�1
ðxÞð�FðxÞþsÞ ð4Þ

can be applied to (2) to achieve the following asymptotically
stable tracking:

eðr1Þ

1 þ
Xr1

j ¼ 1

l1je
ðj�1Þ
1

^

eðrmÞ
m þ

Xrm

j ¼ 1

lmje
ðj�1Þ
m

2
66666664

3
77777775
¼ 0 ð5Þ

in the case of no external disturbances.
Because FðxÞ and GðxÞ are unknown vector and matrix respec-

tively, the above control law (4) cannot be implemented in
practice. Besides, there is no guarantee that uc0 satisfies the
actuator constraints (3). It is well known that neural networks
[19,20] can be used as universal approximators to approximate
any continuous functions at any arbitrary accuracy as long as the
network is big enough. In this work, in order to treat this tracking
control design problem, radial basis function (RBF) neural net-
works are used to approximate the unknown functions, that is,
f iðxÞ, i¼ 1, . . . ,m, and gijðxÞ, i,j¼ 1, . . . ,m are approximated as
follows:

f iðxÞ � f̂ iðx9Hf i
Þ ¼HT

f i
Uf i
ðxÞ, i¼ 1, . . . ,m ð6Þ

gijðxÞ � ĝ ijðx9Hgij
Þ ¼HT

gij
Ugij
ðxÞ, i, j¼ 1, . . . ,m ð7Þ

where Hf i
ARMf i , Hgij

ARMgij are weight vectors, and Uf i
ðxÞA

RMf i ðxÞ, Ugij
ðxÞARMgij ðxÞ are radial basis vectors, Mf i

, Mgij
are the

corresponding dimensions of the basis vectors. Denote

F̂ðx9HFÞ ¼

f̂ 1ðxÞ

^

f̂ mðxÞ

2
664

3
775, Ĝðx9HGÞ ¼

ĝ11ðxÞ � � � ĝ1mðxÞ

^ & ^

ĝm1ðxÞ � � � ĝmmðxÞ

2
64

3
75 ð8Þ

Then F̂ðx9HFÞ is an estimation of FðxÞ, and Ĝðx9HGÞ is an estima-
tion of GðxÞ.
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Using the approximation (8), and considering the control
inputs constraints and extern disturbances, we modify the control
law (4) as follows:

uc ¼ Ĝ
#
ðx9HGÞð�F̂ ðx9HFÞþsþgþudÞ ð9Þ

u¼ satðucÞ ð10Þ

g¼�Cn� _n ð11Þ

where satðucÞ represents the amplitude and rate limitations on uc.
s¼ ðt1, . . . ,tmÞ

T is the robust control term. udARm, which will be
determined later, is a supervisor control used to attenuate the
extern disturbance d. G#

ðxÞ represents the generalized inversion
[28] of GðxÞ. n¼ ðx1, . . . ,xmÞ

T ARm is the state of the following
constructed auxiliary system (12) which uses the difference of uc

before and after amplitude and rate limitations as input:

_n ¼�CnþĜðx9HGÞDu ð12Þ

C¼ diagðc1, . . . ,cmÞARm�m, ci ði¼ 1, . . . ,mÞ are positive para-
meters, Du¼ u�uc . n is used to compensate the effect of actuator
saturations.

uc is obtained according to certainty equivalence principle [29]
which is widely used in adaptive control schemes. However, there
is also no guarantee that uc satisfies the constraints (3), hence
amplitude and rate limitations satðucÞ are imposed on uc to
generate u which satisfies the constraints (3).

The amplitude and rate limitations on uc , i.e., satðucÞ, can always
be implemented by assuming a first-order model or second-order
model for the dynamics of each component of uc , for example,
_ui ¼ satRðoiðsatAðuciÞ�uiÞÞ or €ui ¼ satRðo2

i ðsatAðuciÞ�uiÞ�2zioi _uiÞ,
where ui, uci are the i-th elements of u, uc respectively, oi, zi are
positive constants, satRð�Þ, satAð�Þ represent the rate and amplitude
saturation functions respectively. The function satRðxÞ is defined as
follows:

satRðxÞ ¼

R if xZR

x if 9x9oR

�R if xr�R

8><
>:

and satAðxÞ is defined similarly. Fig. 1 gives visual descriptions for
the first-order and second-order models respectively. In the linear
range of the function satAðxÞ and satRðxÞ, the transfer function for the
first-order model is

Ui

Uci
¼

oi

sþoi
ð13Þ

and the transfer function for the second model is

Ui

Uci
¼

o2
i

s2þ2zioisþo2
i

ð14Þ
Fig. 1. Schematic for amplitude and rate limitations. (
This means that by choosing appropriate parameters oi, zi, not only
the actuators amplitude and rate saturations but also the dynamics
of the actuators, like dampings and frequencies, can be integrated
into the controller.

Remark 1. We known that for the first-order system:

_x ¼ f ðxÞþu ð15Þ

if f ðxÞ is known, then we can construct a new system

u¼ _v�f ðvÞ ð16Þ

with v as input and u as output. Eqs. (15) and (16) yield a closed-
loop system:

_x�f ðxÞ ¼ _v�f ðvÞ ð17Þ

For system (17), the output x is totaly the same as the input v if
and only if xð0Þ ¼ vð0Þ. The transform function from v to x is 1.
Actually, the zeros of (16) is the poles of (15), and (16) is the zero
assignment based inverse system of (15). Similarly, for the
auxiliary system (12), if we view the component Ĝðx9HGÞDu as
the control input, then the new system:

Ĝðx9HGÞDu¼ Ckþ _k ð18Þ

with k as the input and Ĝðx9HGÞDu as the output is the zero
assignment based inverse system of (12), (18) and (12) yield a
closed loop system:

_nþCn¼ _kþCk ð19Þ

The output n is totaly the same as the input k if and only if
nð0Þ ¼ kð0Þ. So _nþCn or _kþCk can be used as a prediction of
Ĝðx9HGÞDu which is the effect of actuator saturations and can be
used to compensate the effect of actuator saturations. From
(9)–(12), we have

u¼ satðucÞ ¼ Ĝ
#
ðx9HGÞð�F̂ ðx9HFÞþsþudÞ ð20Þ

By ignoring the term ud, u which satisfies the constraints (3) has
the same form as uc0 which is obtained by dynamic inversion
algorithm [11], which makes the controller be a adaptive neural
network based dynamic inversion controller and the perfect
tracking be available.

Remark 2. From (12) we also have that

xiðtÞ ¼ e�cit xð0Þþ
Z t

0

Xm

j ¼ 1

ĝ ijðxðnÞÞDujðnÞecin dn

0
@

1
A

¼ e�citxð0Þþ
Z t

0

Xm

j ¼ 1

ĝ ijðxðnÞÞDujðnÞe�ciðt�nÞdn
a) First-order model and (b) second-order model.
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re�cit9xð0Þ9þ
Z t

0

Xm
j ¼ 1

9ĝ ijðxðnÞÞ9DujðnÞ9Þe�ciðt�nÞ dn

re�cit9xð0Þ9þ
m

ci
sup

0rnr t
9ĝ ijðxðnÞÞ9 sup

0rnr t
9DujðnÞ9 ð21Þ

where DujðnÞ ¼ ujðnÞ�ucjðnÞ. Because ci is positive, the auxiliary
system is bounded input bounded output stable.

Remark 3. Although the true value of GðxÞ are invertible accord-
ing to the assumption, the estimate matrix Ĝðx9HGÞ may become
singular during the adaptive process, so Moore–Penrose general-
ized matrix inverse [28] of Ĝðx9HGÞ is used.

Remark 4. In the case of known FðxÞ and GðxÞ and free of external
disturbances, the control low

u¼ satðucÞ ð22Þ

with

uc ¼G�1
ðxÞð�FðxÞþsþgÞ ð23Þ

g¼�Cn� _n ð24Þ

_n ¼�CnþGðxÞDu ð25Þ

can be applied to System (2) to obtain the asymptotically stable
tracking (5).

In the following, we will specify the update laws for the RBF
parameters Hf i

ði¼ 1, . . . ,mÞ, Hgij
ði,j¼ 1, . . . ,mÞ and the super-

visor control ud, so that desired tracking performance can be
achieved. Applying the control law (9) and (10) to System (2)
yields

s�YðrÞ ¼ F̂ðx9HFÞ�FðxÞþðĜðx9HGÞ�GðxÞÞu�ud�d ð26Þ

Define the optimal approximation weight vectors for
f i ði¼ 1, . . . ,mÞ, gij ði,j¼ 1, . . . ,mÞ as follows:

Hn

f i
¼ arg min

Hf i
AOF

sup
xAUc

9f iðxÞ�f̂ iðx9Hf i
Þ9

" #
ð27Þ

Hn

gij
¼ arg min

Hgij
AOG

sup
xAUc

9gijðxÞ�ĝ ijðx9Hgij
Þ9

" #
ð28Þ

where OF, OG, Uc denote the sets of suitable bounds on Hf i
, Hgij

,
and x respectively. Hn

f i
ði¼ 1, . . . ,mÞ, Hn

gij
ði,j¼ 1, . . . ,mÞ are con-

stant vectors. The optimal approximations for FðxÞ and GðxÞ are
denoted as F̂ðx9Hn

F Þ, Ĝðx9Hn

GÞ respectively. Define the minimum
approximation error as

w¼
def

F̂ðx9Hn

FÞ�FðxÞþ Ĝðx9Hn

GÞ�GðxÞ
h i

u ð29Þ

According to universal approximation property of neural net-
works [19,20], the following assumption is reasonable:

Assumption 1. The minimum approximation error is square
integrable, i.e.,Z T

0
wT w dto1 ð30Þ

Using the optimal approximation for FðxÞ, GðxÞ, the i-th
subsystem of (26) can be rewritten as

eðriÞ

i þ
Xri

k ¼ 1

likeðk�1Þ
i ¼ f̂ iðx9Hf i

Þ�f̂ iðx9H
n

f i
Þ�udi

�diþwi

þ
Xm

j ¼ 1

ðĝ ijðx9Hgij
Þ�ĝ ijðx9H

n

gij
ÞÞuj ð31Þ
where udi
, di,wi are the i-th element of ud, d, and w respectively.

Defining ei ¼ ½ei, . . . ,e
ðri�1Þ
i �T , ~Hf i

¼Hf i
�Hn

f i
, ~Hgij

¼Hgij
�Hn

gij
, then

Eq. (31) can be rewritten in the following form:

_e i ¼ AieiþBi
~H

T

f i
Uf i
ðxÞþ

Xm

j ¼ 1

ð ~H
T

gij
Ugij
ðxÞÞuj�udi

�diþwi

0
@

1
A ð32Þ

where

Ai ¼

0 1 0 � � � 0

0 0 1 � � � 0

^ ^ ^ & ^

0 0 0 � � � 1

�li1 �li2 �li3 � � � �liri

2
6666664

3
7777775

, Bi ¼

0

0

^

0

1

2
6666664

3
7777775

For the i-th subsystem of (26), the following theorem can be
obtained.

Theorem 1. For the i-th subsystem of (26), if we select the control

law (10), and the following parameters update laws and udi

_Hf i
¼�Gf i

Uf i
ðxÞBT

i Piei ð33Þ

_Hgij
¼�Ggij

Ugij
ðxÞBT

i Pieiuj ð34Þ

udi
¼

1

2r2
i

eT
i PiBi ð35Þ

then the following H1 tracking performance can be obtained:Z T

0
eT

i Q iei dtreT
i ð0ÞPieið0Þþ ~H

T

f i
ð0ÞG�1

f i

~Hf i
ð0Þ

þ
Xm

j ¼ 1

~H
T

gij
ð0ÞG�1

gij

~Hgij
ð0Þþr2

i

Z T

0
R2

i dt ð36Þ

where Gf i
, Ggij

ðj¼ 1, . . . ,mÞ are positive definite diagonal matrices,
ri ði¼ 1, . . . ,mÞ are positive parameters representing for prescribed

disturbance attenuation levels, Ri ¼
def
�diþwi, Q iARm�m is arbitrary

symmetric positive definite matrices, PiARm�m is the symmetric

positive definite solution of the following Lyapunov equation:

PiAiþAT
i Pi ¼�Q i ð37Þ

Proof. Define the Lyapunov function Vi for the i-th subsystem as
follows:

Vi ¼
1

2
eT

i Pieiþ
1

2
~H

T

f i
G�1

f i

~Hf i
þ

1

2

Xm
j ¼ 1

~H
T

gij
G�1

gij

~Hgij
ð38Þ

The time derivative of Vi is

_V i ¼
1

2
ð _eT

i PieiþeT
i Pi _e iÞþ

~H
T

f i
G�1

f i

_~H f i
þ
Xm

j ¼ 1

~H
T

gij
G�1

gij

_~H gij

¼
1

2
ðeT

i AT
i PieiþeT

i PiAieiÞþ
~H

T

f i
UFðxÞB

T
i Piei

þ
Xm

i ¼ 1

~H
T

gij
UGðxÞB

T
i Pieiujþ

~H
T

f i
G�1

f i

_~H f i
þ
Xm

j ¼ 1

~H
T

gij
G�1

gij

_~H gij

þ
1

2
ð�udi

þRiÞðB
T
i PieiþeT

i PiBiÞ

r�
1

2
eT

i Qeiþ
1

2
RiðB

T
i PieiþeT

i PiBiÞ�
1

2r2
eT

i PiBiB
T
i Piei

r�
1

2
eT

i Qeiþ
1

2
r2

i R
2
i �

1

2
riRi�

1

ri

eT
i PiBi

� �2

r�
1

2
eT

i Qeiþ
1

2
r2

i R
2
i ð39Þ

Integrating both sides of the above inequality from 0 to T yields

1

2

Z T

0
eT

i Q iei dtrVið0Þ�ViðTÞþ
r2

i

2

Z T

0
R2

i dt ð40Þ
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Since VðTÞ40, the inequality (40) implies the following inequality:

1

2

Z T

0
eT

i Q iei dtrVið0Þþ
r2

i

2

Z T

0
R2

i dt ð41Þ

According to the definition of Vi, the following inequality is
obtained:Z T

0
eT

i Q iei dtreT
i ð0ÞPieið0Þþ ~H

T

f i
ð0ÞG�1

f i

~Hf i
ð0Þ

þ
Xm

j ¼ 1

~H
T

gij
ð0ÞG�1

gij

~Hgij
ð0Þþr2

i

Z T

0
R2

i dt ð42Þ

This is (36). &

Finally, for the nonlinear system (2), the following theorem
can be obtained.

Theorem 2. For the nonlinear system (2), if we select the control

law

u¼ satðucÞ ð43Þ

with

uc ¼ Ĝ
#
ðx9HGÞð�F̂ ðx9HFÞþsþgþudÞ ð44Þ

g¼�Cn� _n ð45Þ

_n ¼�CnþĜðx9HGÞDu ð46Þ

_Hf i
¼�Gf i

Uf i
ðxÞBT

i Piei, i¼ 1, . . . ,m ð47Þ

_Hgij
¼�Ggij

Ugij
ðxÞBT

i Pieiuj, i,j¼ 1, . . . ,m ð48Þ

udi
¼

1

2r2
i

eT
i PiBi, i¼ 1, . . . ,m ð49Þ

then the following H1 tracking performance can be obtained:Z T

0
eT Qe dtreT ð0ÞPeð0Þþ

Xm

i ¼ 1

~H
T

f i
ð0ÞG�1

f i

~Hf i
ð0Þ

þ
Xm

i,j ¼ 1

~H
T

gij
ð0ÞG�1

gij

~Hgij
ð0Þþ

Xm

i ¼ 1

r2
i

Z T

0
R2

i dt ð50Þ

where Gf i
ði¼ 1, . . . ,mÞ, Ggij

ði,j¼ 1, . . . ,mÞ are positive definite diag-

onal matrices, ri ði¼ 1, . . . ,mÞ are positive parameters representing

for prescribed disturbance attenuation levels, e¼ ½eT
1, . . . ,eT

m�
T ,

Ri ¼
def
�diþwi, Q ¼ diagðQ 1, . . . ,Q mÞ and Q iARm�m

ði¼ 1, . . . ,mÞ
are arbitrary symmetric positive definite matrices, P¼
diag ðP1, . . . ,PmÞ and Pi ði¼ 1, . . . ,mÞ are the symmetric positive
Δ

Fig. 2. The overall structure of adapt
definite solutions of the following Lyapunov equations:

PiAiþAT
i Pi ¼�Q i, i¼ 1, . . . ,m ð51Þ

A scheme of the adaptive H1 tracking control scheme is shown in

Fig. 2.

Proof. Define the Lyapunov function V ¼
Pm

i ¼ 1 Vi where Vi is
defined in (38). According to the definition of Vi and Theorem 1,
it is easy to obtain (50). &

Corollary 1. The closed loop system is stable and the steady tracking

errors satisfy limt-1ei ¼ 0,i¼ 1, . . . ,m, i.e., limt-19yidðtÞ�yiðtÞ9¼ 0.
The bound of the transient tracking errors will be given by

JeiJ
2
2r

2ðeT
i ð0ÞPieið0Þþ ~H

T

f i
ð0ÞG�1

f i

~Hf i
ð0ÞÞ

lminðQ iÞ

þ
2
Pm

j ¼ 1
~H

T

gij
ð0ÞG�1

gij

~Hgij
ð0Þþr2

i

R T
0 R2

i dt

lminðQ iÞ
ð52Þ

where lminðQ iÞ represents the minimum eigenvalue of matrix Q i.

Proof. From (39), it can be obtained that

_Vi r�1
2 lminðQ iÞJeiJ

2
þ1

2r
2
i R

2
i ð53Þ

_V i is negative whenever JeiJZri9Ri9=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQ iÞ

p
. Hence the track-

ing error will stay in the region fei j JeiJrri9Ri9=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQ iÞ

p
g.

Obviously

e2
i rJeiJ

2r
�2 _Viþr2

i R
2
i

lminðQ iÞ
ð54Þ

hence

JeiJ
2
2 ¼

Z T

0
e2

i dtr
2ðVið0Þ�ViðTÞÞþr2

i

R T
0 R2

i dt

lminðQ iÞ

r
2Við0Þþr2

i

R T
0 R2

i dt

lminðQ iÞ

¼
2

lminðQ iÞ
ðeT

i ð0ÞPieið0Þþ ~H
T

f i
ð0ÞG�1

f i

~Hf i
ð0Þ

þ
2ð
Pm

j ¼ 1
~H

T

gij
ð0ÞG�1

gij

~Hgij
ð0Þþ 1

2r
2
i

R T
0 R2

i dtÞ

lminðQ iÞ
ð55Þ

Assumption 1 implies
R T

0 w2
i dto1, then

R T
0 R2

i dt¼R T
0 ðwi�diÞ

2 dto1. Eq. (55) means eiAL2. According to Barbalat

lemma, limt-1ei ¼ 0. &

Remark 5. According to Theorem 1, the i-th subsystem achieves
a H1 tracking performance with a prescribed disturbance
Δ

ive H1 tracking control scheme.
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Fig. 3. The trajectory of y1.
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attenuation level ri, i.e., the L2 gain from wi to the tracking error ei

is equal or less than ri.

Remark 6. Because the parameters lij, j¼ 1, . . . ,ri can make Ai be
a Hurwitz stable matrix, there exists unique symmetric positive
definite matrix Pi satisfying Lyapunov equation (37).

Remark 7. The bound for JyidðtÞ�yiðtÞJ2 is an explicit function of
the design parameters. According to Corollary 1, this bound
depends on the initial estimate errors ~Hf i

ð0Þ,
~Hgij
ð0Þ ðj¼ 1, . . . ,mÞ. The closer the initial estimates Hf i

ð0Þ,
Hgij
ð0Þ ðj¼ 1, . . . ,mÞ to the true values Hn

f i
ð0Þ, Hn

gij
ð0Þ ðj¼ 1, . . . ,mÞ,

the better the transient performance. The effects of initial esti-
mate errors on this bound can be decreased by increasing the
values of the diagonal adaptation gain matrices Gf i

,
Ggij
ðj¼ 1, . . . ,mÞ and by choosing positive definite symmetric

matrix Q i with larger minimum eigenvalue. On the other hand,
this bound also depends on the external disturbances and neural
network approximation errors. The effects of extern disturbances
and neural network approximation errors on the transient per-
formance can be reduced by decreasing ri and increasing lminðQ iÞ.
Large ri represents low disturbance attenuation level while small
ri represents high disturbance attenuation level.

Remark 8. If Du¼ 0 or Du tends to zero as t tends to infinity,
then xi-0.

4. Numerical example

In this section, we illustrate the above methodology on the
following example. We consider an affine nonlinear system with
actuator amplitude and rate limitations. The dynamic model of
this nonlinear system is as follows [27]:

_x1 ¼�ðx1þx2
2Þþ10u1þsin2

ðx2Þu2þ0:2d1ðtÞ

_x2 ¼�x2
1þx2

1u1þu2þ0:2d2ðtÞ

y1 ¼ x1, y2 ¼ x2, x1ð0Þ ¼ 1, x2ð0Þ ¼ 0 ð56Þ

where u1, u2 are control inputs and have the limitations 9ui9r5,
9 _ui9r10, i¼ 1,2, and d1ðtÞ, d2ðtÞ are bounded random noises in the
interval ½0,1�. It is desired to determine control the inputs u1, u2

such that y1, y2 follow those reference trajectories defined by
y1d ¼ sinðtÞ, y2d ¼ cosðtÞ respectively.

Rewrite the plant (56) as

_y1

_y2

" #
¼

f 1

f 2

" #
þ

g11 g12

g21 g22

" #
u1

u2

" #
þ0:2

d1

d2

" #

where f 1 ¼�ðx1þx2
2Þ, f 2 ¼�x2

1, g11 ¼ 10, g12 ¼ sin2
ðx2Þ, g21 ¼ x2

1,
g22 ¼ 1.

According to Theorem 2, the H1 tracking design is given as
follows.

We choose the following Gauss radial basis vector for approx-
imating f1, i.e.,

Uf 1
ðxÞ ¼ ½e�Jx�c1J

2=b2
1 , . . . ,e�Jx�c11J

2=b2
11 �T

where x¼ ðx1,x2Þ
T , ci ði¼ 1, . . . ,11Þ are the center of the radial

base, and are chosen as c1 ¼ ð�2,�2ÞT , c2 ¼ ð�1:6,�1:6ÞT ,
c3 ¼ ð�1:2,�1:2ÞT , c4 ¼ ð�0:8,�0:8ÞT , c5 ¼ ð�0:4,�0:4ÞT , c6 ¼

ð0,0ÞT , c7 ¼ ð0:4,0:4ÞT , c8 ¼ ð0:8,0:8ÞT , c9 ¼ ð1:2,1:2ÞT ,
c10 ¼ ð1:6,1:6ÞT , c11 ¼ ð2,2ÞT , bi ¼ 2, i¼ 1, . . . ,11. The radial bases
for f 2, g11, g12, g21, g22 are chosen the same as f1.

The robust control term s¼ ðt1,t2Þ
T
¼ ½ _y1dþl11ðy1d�y1Þ,

_y2dþl21ðy2d�y2Þ�
T and the coefficients l11 ¼ 5, l21 ¼ 5. Now we

have A1 ¼ ½�5�1�1, A2 ¼ ½�5�1�1, B1 ¼ B2 ¼ ½1�1�1, where ½��1�1

represents a 1� 1 matrix. Select Q 1 ¼ ½10�1�1 and Q 2 ¼ ½10�1�1.
Solving Lyapunov equations (51), we obtain P1 ¼ P2 ¼ ½1�1�1.
We choose the parameter update gain matrices for RBF neural
networks as Gf 1
¼Gf 2

¼ ¼Gg11
¼Gg12

¼Gg21
¼Gg22

¼ diagð1,1,
1,1,1,1,1,1,1,1,1Þ and set the parameters update laws as follows:

_Hf 1
¼�Gf 1

Uf 1
ðxÞBT

1P1e1, _Hf 2
¼�Gf 2

Uf 2
ðxÞBT

2P2e2

_Hg11
¼�Gg11

Ug11
ðxÞBT

1P1e1u1, _Hg12
¼�Gg12

Ug12
ðxÞBT

1P1e1u2

_Hg21
¼�Gg21

Ug21
ðxÞBT

2P2e2u1, _Hg22
¼�Gg22

Ug22
ðxÞBT

2P2e2u2

where e1 ¼ ½e1�1�1, e2 ¼ ½e2�1�1, e1 ¼ y1d�y1, e2 ¼ y2d�y2. The
initial values for Hf i

ð0Þ ði¼ 1,2Þ and Hgij
ð0Þ ði,j¼ 1,2Þ are chosen

as Hf 1
ð0Þ ¼Hf 2

ð0Þ ¼Hg21
ð0Þ ¼Hg12

ð0Þ ¼ 0, Hg11
ð0Þ ¼Hg22

ð0Þ ¼
diagð1,1,1,1,1,1,1,1,1,1,1Þ.

The auxiliary system is constructed as follows:

_x1 ¼�c1x1þ ĝ11Du1þ ĝ12Du2, x1ð0Þ ¼ 0

_x2 ¼�c2x2þ ĝ21Du1þ ĝ22Du2, x2ð0Þ ¼ 0

where c1 ¼ 25, c2 ¼ 25, Du1 ¼ u1�uc1,Du2 ¼ u2�uc2.
We select the prescribed disturbance attenuation levels

r1 ¼ r2 ¼ 0:5, and the supervisory control:

ud1
¼

1

2r2
1

eT
1P1B1, ud2

¼
1

2r2
2

eT
2P2B2 ð57Þ

According to (9), we can obtain

uc ¼
uc1

uc2

" #
¼

HT
g11

Ug11
HT

g12
Ug12

HT
g21

Ug21
HT

g22
Ug22

2
4

3
5
#

�
HT

f 1
Uf 1

HT
f 2
Uf 2

2
4

3
5

0
@

þ
t1

t2

" #
�

25x1þ
_x1

25x2þ
_x2

" #
þ

ud1

ud2

" #!
ð58Þ

and finally we get the dynamics of control u1, u2 by assuming a
first-order dynamics for uc1, uc2 as

_u1 ¼ sat10ð20:5sat5ðuc1Þ�u1Þ

_u2 ¼ sat10ð20:5sat5ðuc2Þ�u2Þ

The MATLAB solver ‘‘ode4’’ is used to simulate the overall
control system with step size 0.01. Simulation results are pre-
sented in Figs. 3–12. Fig. 3 shows the curves of output y1ðtÞ and its
reference trajectory, meanwhile Fig. 4 shows the curves of output
y2ðtÞ and its reference trajectory. Curves in Fig. 5 describe the
tracking errors for y1 and y2. These curves indicate that the
outputs track their reference values well, and the effects of
approximation error and extern disturbance on tracking errors
are effectively attenuated. The control signals u1ðtÞ, u2ðtÞ and their
derivatives _u1ðtÞ, _u2ðtÞ are given in Figs. 6 and 7. It is observed that
the control signals u1ðtÞ and u2ðtÞ satisfy the amplitude and rate
limitations. Fig. 8 shows the signals uc1ðtÞ, uc2ðtÞ. Obviously they
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do not satisfy the control input limitations. Fig. 9 shows the
signals Du1ðtÞ, Du2ðtÞ. These curves in Fig. 9 show that Du1ðtÞ,
Du2ðtÞ tend to zero soon as time goes. Fig. 10 shows the curves of
x1, x2. From Figs. 9 and 10, we can see that x1, x2 also tend to zero
soon as Du1ðtÞ, Du2ðtÞ tend to zero.

Figs. 11 and 12 show the tracking errors e1, e2 at different
prescribed disturbance attenuation levels r1 ¼ r2 ¼ 1,0:3,0:1.
These curves indicate that under low disturbance attenuation
level (ri is large, e.g. r1 ¼ r2 ¼ 1), the H1 tracking performance is
poor than that under higher disturbance attenuation level (ri is
small, i.e., r1 ¼ r2 ¼ 0:1).
In conclusion, the simulation results demonstrate that the
adaptive controller proposed in preceding section not only can
generate control signal that satisfies actuator amplitude and rate
saturations but also can make sure that the closed loop system
achieves H1 tracking performance.
5. Conclusions

In this work, the control problem for a class of uncertain
nonlinear MIMO systems with actuator amplitude and rate
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saturations is considered and an adaptive radial basis neural
network based controller which is designed with a priori con-
sideration of actuator saturation effects and guarantees H1

tracking performance is proposed. Adaptive radial basis function
neural networks are used to approximate the unknown nonlinea-
rities. An auxiliary system is constructed to compensate the
effects of actuator amplitude and rate saturations. A supervisory
control is designed to attenuate the effects of extern disturbance
and neural network approximation errors, so that the closed loop
system achieves a prescribed H1 tracking performance. Analysis
shows that the bound of tracking error is adjustable by an explicit
choice of design parameters. The proposed controller can gen-
erate control signals satisfying their constraints and guarantee a
desired closed loop performance. Simulation results illustrate the
effectiveness of the proposed controller.
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