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Abstract
Patient-specific quality assurance (PSQA) of volumetric modulated arc therapy (VMAT) to assure
accurate treatment delivery is resource-intensive and time-consuming. Recently, machine learning
has been increasingly investigated in PSQA results prediction. However, the classification
performance of models at different criteria needs further improvement and clinical validation
(CV), especially for predicting plans with low gamma passing rates (GPRs). In this study, we
developed and validated a novel multi-task model called autoencoder based
classification-regression (ACLR) for VMAT PSQA. The classification and regression were
integrated into one model, both parts were trained alternatively while minimizing a defined loss
function. The classification was used as an intermediate result to improve the regression accuracy.
Different tasks of GPRs prediction and classification based on different criteria were trained
simultaneously. Balanced sampling techniques were used to improve the prediction accuracy and
classification sensitivity for the unbalanced VMAT plans. Fifty-four metrics were selected as inputs
to describe the plan modulation-complexity and delivery-characteristics, while the outputs were
PSQA GPRs. A total of 426 clinically delivered VMAT plans were used for technical validation
(TV), and another 150 VMAT plans were used for CV to evaluate the generalization performance
of the model. The ACLR performance was compared with the Poisson Lasso (PL) model and found
significant improvement in prediction accuracy. In TV, the absolute prediction error (APE) of
ACLR was 1.76%, 2.60%, and 4.66% at 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively; whereas
the APE of PL was 2.10%, 3.04%, and 5.29% at 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively.
No significant difference was found between CV and TV in prediction accuracy. ACLR model set
with 3%/3 mm can achieve 100% sensitivity and 83% specificity. The ACLR model could classify
the unbalanced VMAT QA results accurately, and it can be readily applied in clinical practice for
virtual VMAT QA.

1. Introduction

With the rapid development of radiotherapy planning and delivery techniques, intensity-modulated
radiation therapy (IMRT) improved the target coverage conformity and normal tissue sparing compared
with three-dimensional conformal radiotherapy (Popescu et al 2010, Nicolini et al 2012). Volumetric
modulated arc therapy (VMAT) plans have better delivery efficiency with the equivalent or better plan

© 2020 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/abb31c
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/abb31c&domain=pdf&date_stamp=2020-11-25
https://orcid.org/0000-0002-3459-0075
https://orcid.org/0000-0001-6837-5966
mailto:kittysj@gmail.com
mailto:ruijyang@yahoo.com


Phys. Med. Biol. 65 (2020) 235023 L Wang et al

quality compared with IMRT. However, VMAT plans created by inverse planning algorithms often consist of
highly modulated beams with significant dosimetric uncertainty (Fog et al 2011). The accuracy of plan
delivery is heavily dependent on the treatment planning system (TPS) dose calculation and linear accelerator
(Linac) performance (Ong et al 2011). Comprehensive quality assurance (QA) and quality control (QC)
programs have been developed to assure the delivery accuracy of VMAT plans (Klein et al 2009, Van Esch
et al 2011, Smilowitz et al 2015, Miften et al 2018). Despite improving the safety and reliability of treatment
delivery, patient-specific QA (PSQA) is resource-intensive and time-consuming. With limited accessible
information from TPS, the delivery accuracy of VMAT plans are difficult to predict and interpret before QA
measurements. Recently, machine learning techniques have rapidly emerged in PSQA results prediction and
causal factors analysis (Valdes et al 2016, 2017, Interian et al 2018, Tomori et al 2018, Granville et al 2019,
Lam et al 2019, Mahdavi et al 2019, Ono et al 2019, Wall and Fontenot 2020).

Valdes et al first reported that Poisson regression with Lasso regularization model was trained using 78
complexity metrics and the PSQA results of 498 IMRT plans from multiple treatment sites (Valdes et al
2016). They found that the Poisson Lasso (PL) model could accurately predict 3%/3 mm gamma passing
rates (GPRs) with maximum errors smaller than 3%. However, in the multi-institutional validation study,
the generalization performance of the PL model decreased, only about 86.33% (120 of 139) predictions had
error smaller than 3.5% (Valdes et al 2017). Interian et al (2018) developed a convolution neural network
(CNN) model using fluence maps of IMRT plans as input, with comparable prediction accuracy obtained
with previously developed PL model, which used 78 metrics as input. However, about 15 to 20 plans with
prediction error higher than 3% were observed in both CNN model and PL model and the maximum
prediction error was higher than 5%. Deep learning models were also used for IMRT PSQA. Deep networks
(CNN with transfer learning) were found to be comparable to the PL model based on the expert-designed
features (Interian et al 2018).

Instead of predicting GPR for plans from multiple treatment sites, Tomori et al (2018) trained the CNN
model with 60 prostate IMRT plans. Planar dose distributions, geometric features of planning target volume
(PTV) and rectum, and MU for each field were used as inputs. The maximum prediction errors were 3.0%,
4.5%, and 5.8% at 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. The Spearman rank correlation
coefficients between the measured and predicted GPRs of 0.32–0.62 were found in the test set. CNN model
also achieved slightly better results in the prediction of dosimetric accuracy of VMAT plans using plan
complexity parameters, compared with regression tree analysis and multiple regression analysis by (Ono et al
2019) Linac QC metrics were also added into treatment plan characteristics to improve the prediction
accuracy for VMAT PSQA (Granville et al 2019). Artificial neural network (ANN) was investigated as an
application for the pretreatment dose verification of IMRT fields using two-dimensional fluence maps
acquired by an electronic portal imaging device (EPID) (Mahdavi et al 2019).

Deep learning with convolutional neural networks was also used to classify the presence or absence of
introduced radiotherapy treatment delivery errors from patient-specific gamma images. The performance of
the CNN was superior to a handcrafted approach with texture features, and radiomic approaches were better
than threshold-based passing criteria in classifying introduced radiotherapy treatment delivery errors from
patient-specific gamma image (Wootton et al 2018, Nyflot et al 2019). Some recent studies have used three
tree-based machine learning algorithms (AdaBoost, Random Forest, and XGBoost) (Lam et al 2019) and
SVMmodels (Wall PDH et al 2020) in predicting the plan QA GPRs, providing a helpful guide for physicists
to better identify the failed plans.

To date, several studies have shown the feasibility of predicting PSQA results with machine learning
models. When deciding whether the plan can be delivered accurately enough to be used for patient
treatment, it is critical to select the appropriate gamma criteria and tolerance/action limits. The AAPM TG
218 report recommended 95% and 90% as the tolerance and action limits under 3%/2 mm gamma criteria,
respectively (Miften et al 2018). Therefore, the most important function of a machine learning model is to
find plans that may fail to pass the tolerance/action limits before QA measurements. We have investigated the
impact of delivery characteristics on the dose delivery accuracy of VMAT (Li et al 2019b), the prediction and
classification accuracy of machine learning models under different gamma criteria and tolerance/action
limits for VMAT QA (Li et al 2019a). The performance of prediction and classification was affected by the
measured GPRs level (‘high’ GPRs and ‘low’ GPRs, or ‘failed’ or ‘passed’ plans) of the VMAT plans. Good
prediction accuracy was obtained for plans with higher GPR. However, the prediction accuracy needs to be
improved for the plans with lower GPR. Whereas the distribution of the data is unbalanced in the VMAT
plans, most of the plans have higher GPR and only small portion of plans have lower GPR. The VMAT plans
with lower GPRs are the failed plans, so the improvement of prediction accuracy for plans with lower GPR
would help physicists to take proactive action, thereby reducing QA workload while still assuring the delivery
fidelity and safety. If the model predicted the failed plans as passed (false negative), then the delivery fidelity
and safety would be compromised. If the model predicted the passed plans as failed (false positive), then the
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physicists’ workload would be increased. Besides, prediction and classification models were used separately
in the previous study (Li et al 2019a).

In this study, a novel deep learning model called autoencoder based classification-regression (ACLR) was
developed for VMAT QA from multiple treatment sites. We can consider the task of solving regression and
classification problems under three different gamma criteria through a single deep learning model as
multi-task learning (MTL). MTL uses related task-sharing representations to parallelize the specific domain
information contained in the training signal of the training task, thereby improving generalization (Caruana
1997). The deep neural network for object detection like Fast R-CNN (Girshick 2015) also used a model that
combining classification and regression model into a single-model and using multi-task loss. Inspired by
this, we proposed the classification and regression combined model. The classification model was used as an
intermediate result to improve the performance of the regression model by providing the measured GPRs
level label information. On the other hand, the regression model could naturally guide the classification
results for its ability to provide the prediction of the GPRs. By integrating classification and regression into a
multi-task model, the neural network architecture would also be simplified and training would be
accelerated because the two models share the same main network architecture. Different tasks of GPRs
prediction based on different criteria were solved in one model.

The aims of this study are: (1) to develop and validate a novel multi-task classification and prediction
model for patient-specific virtual VMAT QA; (2) to improve the prediction and classification accuracy for
unbalanced data compared with previous models.

2. Materials andmethods

2.1. Clinical data collection
426 VMAT plans previously used for patient treatment in our department, were retrospectively selected for
model training and technical validation (TV). Among these plans, 148 were gynecological cancer (GYN)
plans, 117 were head and neck cancer (H&N) plans, 69 were prostate cancer plans, and 92 were rectal cancer
plans. Additionally, a new independent prospectively collected cohort of 150 VMAT plans (from four
different treatment sites: 52 GYN, 41 H&N, 24 prostate, and 33 rectal plans) without cross validation were
used for clinical validation (CV).

All plans were generated using two full arcs with Eclipse TPS (Varian Medical Systems, Palo Alto, CA,
USA), each plan has 178 control points per arc. The prescription dose to the PTV for GYN and rectal cancer
patients was 50.4 Gy (1.8 Gy f−1), and 50 Gy (2.0 Gy f−1). For H&N cases, prescription doses of 60.04 Gy
(1.82 Gy f−1) and 69.96 Gy (2.12 Gy f−1) were delivered to PTV and planning gross target volume (PGTV),
respectively. For Prostate cases, prescription doses of 72 Gy (2.40 Gy f−1) were delivered to PTV. All plans
were delivered with Trilogy Linac and Millennium 120 MLC (Varian Medical Systems, Palo Alto, CA, USA),
the maximum gantry speed was 4.8 deg s−1 and the maximum dose rate was 600 MU min−1.

The PSQA measurement was performed with a MatriXX ion chamber array together with a Multicube
phantom (IBA Dosimetry, Schwarzenbruck, Germany). The dose calculation algorithm for the VMAT plan
was Analytical Anisotropic Algorithm (AAA, Eclipse TPS V.10.0), with a calculation grid of 2.0 mm. The
dose-effect of the treatment couch was taken into account in the dose calculation. Before the measurements,
the output of the Linac was calibrated, and the absolute dose calibration of MatriXX was performed. The
plan was delivered using true composite method, the radiation beams are delivered to a stationary detector
array on the couch using the actual treatment parameters for the patient, including MUs, gantry, collimator,
couch angle, jaws, and MLC leaf positions, recommended by AAPM TG 218 report (Miften et al 2018). The
reference field (20 cm∗20 cm) was used to evaluate setup errors in the VMAT QA measurement. The gamma
passing rate of the reference field was compared with the baseline. If the gamma passing rate of the reference
field was equal to or close to the baseline, we believed that the setup errors were small and we could continue
following measurements. If the gamma passing rate of reference field deviated from the baseline, we believed
that the setup errors were large and we would adjust the position of the phantom and repeat the above steps.
The angular dependence of the detector array was corrected using a gantry angle sensor (IBA Dosimetry,
Schwarzenbruck, Germany) during measurement. The measured dose distribution was set as a reference.
Gamma criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm with a 10% dose threshold, absolute dose mode, and
global normalization were used for gamma evaluations.

In this study, 54 metrics were used to characterize the modulation complexity of VMAT plans, a full
summary was given in table A1 (Li et al 2019a). To extract MLC leaf position and MU weights of all control
points in the VMAT plans, RT plans were exported from the TPS and converted into ASCII format. Then, an
in-house developed Matlab script was used to extract information and calculate the complexity metrics. In
the pre-processing, the 54 metrics were standardized by removing the mean and scaling the standard
deviation to unity before the training, cross validation, and testing process.
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Table 1. Summary of measured gamma passing rate (GPRs) under different gamma criteria.

3%/3 mm 3%/2 mm 2%/2 mm

Measured GPR(%) TV, % (N) CV, % (N) TV, % (N) CV, % (N) TV, % (N) CV, % (N)

100− 95 84.7 (361) 89.3 (134) 69.3 (295) 84.0 (126) 24.7 (105) 66.0 (99)
95− 90 11.2 (48) 5.3 (8) 20.7 (88) 8.0 (12) 31.7 (135) 18.0 (27)
<90 4.0 (17) 5.3 (8) 10.0 (43) 8.0 (12) 43.6 (186) 16.0 (24)

Abbreviations: TV= technical validation; CV= clinical validation; %= percentage in this column; N= number of plans.

Figure 1. The distribution of GPRs of volumetric modulated arc therapy plans at different gamma criteria. Abbreviations:
CV= clinical validation; TV= technical validation. Error bar=mean± standard deviation.

Figure 2. Schematic of the model design, technical validation, and clinical validation (A) and training process and testing process
of ACLR in technical validation (B). Abbreviations: GPR= gamma passing rate; ACLR= autoencoder based
classification-regression deep learning model. The blocks in the Training Process box show the training process of ACLR.

In TV, 84.7% of the measured GPRs were distributed between 95% and 100% at 3%/3 mm, 69.3% at
3%/2 mm and 24.7% at 2%/2 mm gamma criteria; In CV, about 89.0% of the measured GPRs were
distributed between 95% and 100% at 3%/3 mm, 84.0% at 3%/2 mm and 66.0% at 2%/2 mm gamma
criteria (as shown in table 1 and figure 1). The minority of the GPRs were distributed in the range below 90%
at 3%/3 mm, below 90% at 3%/2 mm, below 80% at 2%/2 mm gamma criteria.

2.2. Deep learning model design and validation
The Schematic of the model design, TV, and CV were given in figure 2(A). In TV, 426 VMAT plans with cross
validation were used for model training and exploring the model performance under different gamma
criteria. In CV, a new independent prospectively collected cohort of 150 VMAT plans without cross
validation was used for further validating the generalization performance of the proposed deep learning
model and the reliability and feasibility as a clinical tool.
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The PL model was used as a baseline model to compare the prediction performance of GPRs (Li et al
2019a). For QA results classification (Li et al 2019a), action limits for 3%/3 mm, 3%/2 mm, and 2%/2 mm
gamma criterion in the models were 90%, 90%, and 80%, respectively.

2.3. Model framework
In this section, we explained the details of the proposed model framework. We first introduced several
techniques used to improve the prediction results. Then the ACLR model was described in detail.

‘Parameter norm penalties’ is one of the most common regularizations for machine learning models.
L1 and L2 regularization as one of parameter norm penalties was used to improve machine learning models’
generalization performance, which is used widely in many fields by adding penalties on parameters:

L12 (ω) = L1 + L2 (1)

L1 =
λ1

2

∑
i

|ωi| (2)

L2 =
λ2

2

(
ω−ω*

)T (
ω− ω*

)
(3)

where L12 (ω) is a combination of L1-norm and L2-norm of parameters ω of the deep learning models.
During the training process, ACLR has four losses: Lc(Softmax Loss) for classification branch,

Lr (MSE Loss) for regression branch, and L1, L2 for regularization penalty. The total loss is the sum of all
these losses:

L(ω) = Lc + Lr + L12. (4)

The balanced sampling technique is an intuitive method that can help balance training data to classify
QA results during the classification training process. The balanced sampling technique is used here to
improve the sensitivity of the model. In the VMAT plans, the distribution of the data is unbalanced, most of
the plans have higher GPR and only a few plans have lower GPR. Hence, we used a random under-sampling
strategy to have the number of different GPR plans balanced. Through the under-sampling strategy, the size
of the majority class was down-sampled to the same size as the minority class in the training subprocess. In
every batch of the training process, balanced sampling techniques were used to balance the size of minority
and majority class, and the deep learning model can achieve better performance by combining the process
with the architecture we designed.

As we often observe, validation and training errors of the model are not always reduced synchronously,
because the deep learning model tends to over-fit as the maximum number of iterations increases to a certain
degree. ‘Early stopping’ technique was used in the process of model training to stop the model training when
the error on the validation set did not improve for some amount of time. The optimal stop epoch for the
deep model was determined by cross validation in the training process. In the training process, the models
were run until the loss in the validation set has not improved in 20 consecutive epochs. We chose the model
with the minimum loss as the optimal model and recorded the optimal stop epoch.

Autoencoder is an unsupervised ANN architecture to learn a low-dimensional representation of the
dataset (Hinton and Salakhutdinov 2006). A deep autoencoder, an improvement over an autoencoder that
has been trained on dimensionality reduction, was used to pre-train our deep network to improve
performance and speed up the training process (figure 2(B) Autoencoder). The entire training process of a
deep autoencoder was divided into two steps. A shallow autoencoder was first trained, and its encoder was
then used as a pre-trained network to train a deeper autoencoder. This process was repeated several times to
build a deep autoencoder with sufficient depth. And, the final encoder of the deep autoencoder was used as
the backbone of our deep learning models.

Data augmentation and dense fully connected layers were also implemented to improve the performance
of the model. We enhanced the dataset four times by adding Gaussian white noise to the data to alleviate the
problem of limited data volume. Inspired by DenseNet (Huang et al 2017), dense fully connected layers were
used between feature layers by concatenation operator (figure 2(B) Dense FC).

We proposed a multi-task classification and regression combined model, called ACLR (figure 2(B)
Training Process). Ten-fold cross validation was used to divide the data into ten folds. The training and
testing processes were repeated ten times. Each time nine-fold data were used for the training process and
one-fold for the testing process. In the training process, the classification part and regression part could be
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Table 2. Prediction accuracy of ACLR and Poisson Lasso model under different gamma criteria.

MAE(%) RMSE(%)

ACLR PL Improved ACLR PL Improved

3%/3 mm 1.76∗∗ 2.10 16 2.50 2.99 16
3%/2 mm 2.60∗∗ 3.04 17 3.50 4.23 17TV
2%/2 mm 4.66∗∗ 5.29 12 6.08 6.95 13
3%/3 mm 1.73 2.07 16 2.61 3.04 14
3%/2 mm 2.75 2.99 8 3.87 4.12 6CV
2%/2 mm 5.93∗ 7.12 17 7.39 8.91 17

Abbreviations: MAE=mean absolute error, RMSE= root mean squared error; TV= technical validation; CV= clinical validation.

ACLR= autoencoder based classification-regression deep learning model; PL= Poisson Lasso. Student t test was performed on MAE

values between ACLR and PL in TV and CV. Improved= the percentage improvement between ACLR and PL. Bold number in table

2= absolute prediction errors have significant differences between ACLR and PL, ∗∗ in table 2= (p < 0.01), ∗ = (p < 0.05)

trained alternately or simultaneously. If the main goal is to get better classification results, we recommend
that the classification part and the regression part should be trained simultaneously. If the main goal is to get
better regression results, we recommend alternate training for the classification part and the regression part,
and in the last epoch, only the regression part is trained. Inspired by PL regression, in order to limit the range
of the regression branch between 0 and 100, a softmax activation function (the range of the softmax function
between 0 and 1) multiplied by 100 was added to the last layer before the output results of prediction
branch.

The network architecture of the blocks we used in our models was shown in figure 2(B). All deep learning
models were trained by the Adam learning rate optimizer through different initialization parameters and
initial learning rates. The weights of ACLR were randomly initialized from a zero-mean Gaussian
distribution with a standard deviation of 0.01. We selected multiple sets of optimal initialization parameters
to train different models to predict QA results and performed ensemble learning by averaging the results of
the three models to obtain more stable results. This was implemented using the open-source machine
learning framework, PyTorch.

We used student t test to compare the prediction error between ACLR and PL models on MAE values in
both TV and CV data. In TV, the MAE was calculated by collecting all the prediction errors of the ten-fold
cross validation. In CV, the MAE was calculated by averaging the absolute value of the prediction error.

3. Results

3.1. Prediction accuracy
The prediction accuracies of the ACLR and PL model under different gamma criteria were given in table 2.
ACLR model significantly outperformed the PL model in both TV and CV, in terms of MAE (mean absolute
error) and RMSE (root-mean-square error) at 3%/3 mm, 3%/2 mm, and 2%/2 mm.

The summary of absolute prediction errors (APEs) distribution under different gamma criteria for ACLR
and PL model in TV was shown in table 3. In TV, for ACLR model, 405 (95.1%) plans had APE below 5% at
3%/3 mm; 375 (88.0%) plans had APE below 5% at 3%/2 mm while only 265 (62.2%) plans had APE below
5% at 2%/2 mm. For PL model, 397 (93.2%) plans had APE below 5% at 3%/3 mm; 367 (86.2%) plans had
APE below 5% at 3%/2 mm while only 247 (58.0%) plans had APE below 5% at 2%/2 mm. In CV, for ACLR
model, 138 (92.0%) plans had APE below 5% at 3%/3 mm; 134 (89.3%) plans had APE below 5% at
3%/2 mm while only 69 (46.0%) plans had APE below 5% at 2%/2 mm. For PL model, 133 (88.6%) plans
had APE below 5% at 3%/3 mm; 132 (88.0%) plans had APE below 5% at 3%/2 mm while only 53 (35.3%)
plans had APE below 5% at 2%/2 mm.

As shown in table 4, the prediction accuracy of ACLR and PL models were compared under different
ranges of measured GPRs, which affects the prediction accuracy. According to the results of the ACLR and PL
models in TV, under the gamma standards of 3%/3 mm and 3%/2 mm, APE that measure GPR above 90%
are significantly lower than APE that measure GPR below 90% (3%/3 mm ACLR: 1.28± 0.81% vs.
5.3± 4.64%, p < 0.0001; 3%/3 mm PL: 1.43± 0.79% vs. 6.8± 5.0%, p < 0.0001; 3%/2 mm ACLR:
1.94± 1.35% vs. 4.58± 4.64%, p < 0.0001; 3%/2 mm PL: 2.13± 1.43% vs. 5.65± 5.44%, p < 0.0001); At
2%/2 mm GPR prediction, the APE of the plans with a measured GPR of 80% to 100% was significantly
lower than the plan with a measured GPR of less than 80%. (ACLR: 2.46± 1.86% vs. 7.53± 5.58%,
p < 0.0001; PL: 3.04± 2.65% vs. 8.21± 6.22%, p < 0.0001). The bold number in table 4 showed the
significant differences of APEs between ACLR and PL models.
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Table 3. Summary of APE distribution under different gamma criteria for ACLR and Poisson Lasso models in TV and CV.

3%/3 mm 3%/2 mm 2%/2 mm

Metrics ACLR, N (%) PL, N (%) ACLR, N (%) PL, N (%) ACLR, N (%) PL, N (%)

APE⩽ 3.5% 386 (90.6) 369 (86.6) 334 (78.4) 304 (71.4) 202 (47.4) 186 (43.7)
APE⩽ 5% 405 (95.1) 397 (93.2) 375 (88.0) 367 (86.2) 265 (62.2) 247 (58.0)
APE⩽ 10% 419 (98.4) 415 (97.4) 416 (97.7) 411 (96.5) 385 (90.4) 370 (86.9)

TV

MAE (SD) 1.76% (1.8) 2.10% (2.1) 2.60 (2.4) 3.04 (2.9) 4.66% (3.9) 5.28% (4.6)
APE⩽ 3.5% 135 (90.0) 131 (87.3) 113 (75.3) 102 (68.0) 39 (26.0) 35 (23.3)
APE⩽ 5% 138 (92.0) 133 (88.6) 134 (89.3) 132 (88.0) 69 (46.0) 53 (35.3)
APE⩽ 10% 146 (95.3) 143 (95.3) 144 (96.0) 142 (94.7) 147 (98.0) 141 (94)

CV

MAE (SD) 1.73% (1.5) 2.07% (1.7) 2.99% (1.9) 2.36% (2.1) 5.93% (2.3) 7.12% (3.2)

Abbreviations: APE= absolute prediction error; MAE=mean absolute error; SD= standard deviation; ACLR= autoencoder based

classification-regression deep learning model; PL= Poisson Lasso; TV= technical validation

Table 4. Summary of absolute prediction error under different measured gamma passing rate (GPR) for ACLR and Poisson Lasso model
in TV and CV.

3%/3 mm 3%/2 mm 2%/2 mm

Measured ACLR, Mean PL, Mean ACLR, Mean PL, Mean ACLR, Mean PL, Mean
GPR (SD) (SD) (SD) (SD) (SD) (SD)

100− 95 1.28 (0.81) 1.43 (0.79) 1.94 (1.35) 2.13 (1.43) 5.84 (1.76) 6.35 (2.44)
95− 90 3.66 (1.81) 4.56 (1.27) 2.76 (1.56) 3.02 (1.42) 2.01 (1.35) 2.97 (2.47)TV
<90 7.72 (3.83) 10.95 (2.47) 7.10 (4.14) 9.84 (4.56) 5.94 (5.03) 6.39 (5.86)
100− 95 1.25 (0.45) 1.51 (0.74) 2.15 (1.21) 2.35 (1.25) 5.77 (1.76) 7.03 (2.28)
95− 90 1.53 (1.32) 2.66 (1.21) 1.90 (1.46) 1.79 (1.34) 2.37 (1.24) 2.81 (2.14)CV
<90 10.16 (3.42) 10.96 (2.36) 9.97 (4.28) 10.89 (7.42) 10.62 (4.37) 12.40 (3.32)

Abbreviations: SD= standard deviation; ACLR= autoencoder based classification-regression deep learning model; PL= Poisson

Lasso; TV= technical validation. Bold number in table 4= absolute prediction errors have significant differences between ACLR and

PL (p < 0.01). Student t test was performed here.

3.2. Classification accuracy
The classification accuracy of VMAT QA at 3%/3 mm gamma criteria in TV with the ACLR model was also
evaluated. The results were obtained through the ensemble models and have greater weight for classification
loss.

In TV, for the ACLR’s ensemble model, the sensitivity was 100% and specificity was 83% at 3%/3 mm
gamma criteria, the sensitivity was 90% and specificity was 72% at 3%/2 mm gamma criteria and the
sensitivity was 90% and specificity was 70% at 2%/2 mm gamma criteria. For PL model, the sensitivity was
0% and specificity was 100% at 3%/3 mm gamma criteria, the sensitivity was 0% and specificity was 99% at
3%/2 mm gamma criteria and the sensitivity was 68% and specificity was 63% at 2%/2 mm gamma criteria.

In CV, for the ACLR’s ensemble model, the sensitivity was 100% and specificity was 72% at 3%3 mm
gamma criteria, the sensitivity was 92% and specificity was 69% at 3%/2 mm gamma criteria and the
sensitivity was 100% and specificity was 67% at 2%/2 mm gamma criteria. For PL model, the sensitivity was
0% and specificity was 100% at 3%/3 mm gamma criteria, the sensitivity was 0% and specificity was 100% at
3%/2 mm gamma criteria and the sensitivity was 0% and specificity was 100% at 2%/2 mm gamma criteria.

4. Discussion

Aiming to improve the accuracy of the GPR prediction, a new deep learning model called ACLR was
developed and validated, which has significantly higher accuracy than the current state-of-art model in TV
and CV. Compared with the regression PL model, the accuracy improved 12%–17% and 6%–17% in TV and
CV. The ACLR model achieved sensitivity of 100% and specificity of 83% at 3%/3 mm gamma criteria.

In this study, we studied VMAT QA plans of multi-disease-sites (GYN, H&N, prostate, and rectum) and
proposed a novel machine learning model, ACLR, which can significantly improve the predictive
performance of VMAT QA. The consistent results were obtained for CV and cross validation. Our method
has better performance than the PL method by comparing APE and RMSE as shown in table 2. At three
different criteria (3%/3 mm, 3%/2 mm, and 2%/2 mm) of the predicted errors, our method also
outperformed PL as demonstrated in table 3.

The prediction results of ACLR are more accurate compared to those of PL. The prediction of low GPRs
plan (Measured GPRs <90) was significantly improved (table 4) at 3%/3 mm, 3%/2 mm, and 2%2 mm.
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ACLR will be useful for improving the efficiency of VMAT QA. It can help physicists to determine the failed
plans more accurately and spend more time on the failed plans and investigate the causes.

The classification results show that the sensitivity of PL model is too low for classification and ACLR
model has advantages in classification. For classification results, the sensitivity of ACLR was higher than PL.
Classification is a more important problem that needs to be solved considering the decision making of PSQA.
Previous work has done little in classification research and has not used a better classification model. The
previous PL model is mainly used for regression that did not deal with unbalanced data.

In this study, a novel deep learning model was proposed to predict the GPR by combining four different
treatment sites, which GPR of these four VMAT plans can be predicted with the same model. Compared with
the previous method PL (Li et al 2019a), our proposed model used more useful information by training a
two-branch deep learning model called ACLR and performs better in QA predictions. In Interian et al study
(Interian et al 2018), PL was also used as a baseline model and a CNN-based depth model was established
with comparable results compared to PL.

Several techniques were used in the ACLR model to improve the prediction accuracy. Data augmentation
was used to improve the accuracy and robustness of the model. Since Gaussian white noise was added to the
training data during the training process, the model may be more stable in noisy data. The autoencoder was
trained to simplify the training of the model and reduce parameters. Ensemble techniques were also used in
the process of results handling to help the system be more stable. To our knowledge, this is the first time that
a hybrid deep learning model of prediction and classification has been introduced to predict GPR. The
prediction results were significantly improved compared with the baseline model. The regression model and
the classification model share the same main network architecture, which makes the model more simplified
and the training speed faster. The idea of sharing network architecture from regression models and
classification models also improved the performance of ACLR.

It is hard to compare this study with previous studies directly due to the differences in the treatment
equipment, planning systems, verification systems, GPRs criteria, as well as different inputs of prediction
models. The distribution of measured GPR also differed across the studies, especially the number of low GPR
data varied much across studies. Specifically, Valdes et al had 8% IMRT plans with GPR lower than 95% at
3%/3 mm (Valdes et al 2016), Tomori et al had very few plans with GPR lower than 95%, and the lowest GPR
was 94% at 3%/3 mm (Tomori et al 2018). as reported in (Lam et al 2019), the lowest GPR is about 91%, and
most of the IMRT plans had GPR more than 96% at 2%/2 mm. Despite the different GPR measurements
among studies, the data distribution of all previous studies and this study were unbalanced. In order to
improve the prediction accuracy of low GPR plans, multi-institutional cooperation research should be
conducted, which is also what we did here.

The comprehensive comparison of previous relevant studies was listed in table 5. Compared with
previous work, we used 54 expert designed features, a new ACLR method to predict and classify VMAT
plans. Our algorithm has several advantages. An autoencoder could reduce the dimension of features. The
data balance method was useful to alleviate overfitting and classification bias due to unbalanced training data
before training the classification branch of the ACLR model. In classification, balanced sampling techniques
are necessary to improve the sensitivity of machine learning models. Machine learning algorithms optimize
the loss function by reducing the total loss of all samples, which will result in a classifier with higher
classification accuracy in majority classes (‘high’ GPRs classes) and lower classification accuracy in minority
classes (‘low’ GPRs classes), which means that the sensitivity of the model is low. In this study, we pay more
attention to the classification effect of minority classes. The balanced sampling technique may slightly affect
the classification accuracy, resulting in a slightly lower classification accuracy but a higher sensitivity, which
was demonstrated in the cross validation and test results. Here the model’s sensitivity means the ability to
detect the failed PSQA plans.

Compared with models with regression branches alone, ACLR with regression branches and
classification branches can achieve better regression performance. Before the output layer of the regression
branch, a softmax activation function is used to limit the range of the regression output and improve the
regression performance. By this manually designed neural network structure process, we achieved a way of
combining more informative features, which benefit from both dimension reduction and classification
information at the same time to help us to achieve more stable and accurate results with a limited amount of
data that can be collected. Our model has better prediction accuracy than PL under three different gamma
criteria and unbalanced data conditions as demonstrated in table 4.

ACLR provided a new way and better performance for virtual VMAT QA. By combining deep learning
models with clinical QA data, there is greater potential to make VMAT QAmore efficient and effective. There
are many practical values in solving VMAT QA prediction problems. For one thing, through using a deep
learning model predicting PSQA results, physicists could know whether a QA plan would pass or fail before
delivery. With deep learning models, physicists could narrow PSQA efforts on the plans that may fail instead
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of all plans. Also, deep learning models could save a lot of time and resources by improving the efficiency of
VMAT QA, so that physicists could spend more time on failed plans and investigate; and thus, prevent
failures.

For deep learning models or more complex models, more data are needed than those were used in this
study, which will lead to overfitting of the model. Our method has almost fully used the information that we
can obtain now, which may still be not enough to give us a total prediction of all VMAT QA plans. To a
certain extent, the generalization performance of the deep learning model is not so good as the fitting data
performance with limited training data and prior information.

In this study, 54 metrics were used as input data. The source and calculation process of these 54 metrics
had corresponding QC to ensure their high integrity. Firstly, the daily, monthly, and annual QA items of the
accelerator were implemented strictly. Secondly, the reference field (20 cm∗20 cm) was used to evaluate the
setup errors of the phantom. Finally, the fully verified Matlab script was used to extract information from the
RT plans and calculate the complexity metrics. These 54 metrics were all related to the plan complexity and
accelerator delivery accuracy. In the following study, other information, such as anatomy information of
targets and OARs, could be added as metrics.

426 VMAT plans previously used for patient treatment in our department, were retrospectively selected
for model training and validation in this study. All of the PSQA measurements were performed with
MatriXX, a commonly used dosimetric verification device. For gamma pass rate calculation, the measured
dose distribution was set as a reference considering the pixel size of MatriXX according to the
recommendation of AAPM TG 218. The model performance may be different for different dosimetric
verification device. We will perform further investigation in future study, including the use of EPID. Next, we
will continue to investigate the ACLR model for virtual VMAT QA, to improve and validate the performance
of the model in more clinical scenarios. Multi-institutions validation study involving different delivery
modalities and dosimetric verification techniques is underway.

5. Conclusions

A new deep learning framework based on autoencoder and ensemble learning was developed and validated
for virtual VMAT QA under different gamma criteria and unbalanced data conditions. By integrating a
hybrid deep learning model of prediction and classification, significantly better predictive performance was
achieved compared with PL models alone for virtual VMAT QA plans from multiple treatment sites. This
model of virtual VMAT QA can be readily implemented in clinical practices.
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Appendix

The complexity metrics contains aperture complexity metrics, plan-normalized monitor units (PMU),
aperture area metrics, leaf speed metrics and gantry speed metrics. Aperture complexity metrics was (Younge
and Matuszak, 2012) the ratio of the aperture perimeter defined by the MLC (multi-leaf collimater) leaf sides
to the aperture area. PMU (Park et al 2015) were computed by dividing the total MU of VMAT plans by the
fractional target dose and then multiplying by 2 Gy. Aperture area metrics contains field area (MFA) and
small aperture score (SAS). The MFA (Crowe et al 2015) was calculated by averaging the area of all individual
apertures in a VMAT plan, each aperture area weighted by the number of MU delivered. SAS (Crowe et al
2015) was used to calculate the proportions of apertures defined as small where the MLC leaf separation was
less than a certain value (5, 10 and 20 mm).Leaf speed for individual MLC leaves in each control point was
calculated by dividing leaf travel distance by delivery time (Park et al 2014, 2015). Gantry speed metrics was
calculated by dividing control point spacing by delivery time.
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Table A1. Summary of complexity metrics used in this study.

Number Metrics Reference

1 Modulation index for leaf speed f = 2 (MIs 2) Park et al (2014)
2 Modulation index for leaf speed f = 1 (MIs 1) Park et al (2014)
3 Modulation index for leaf speed f = 0.5 (MIs 0.5) Park et al (2014)
4 Modulation index for leaf speed f = 0.2 (MIs 0.2) Park et al (2014)
5 Modulation index for leaf acceleration f = 2 (MIa 2) Park et al (2014)
6 Modulation index for leaf acceleration f = 1 (MIa 1) Park et al (2014)
7 Modulation index for leaf acceleration f = 0.5 (MIa 0.5) Park et al (2014)
8 Modulation index for leaf acceleration f = 0.2 (MIa 0.2) Park et al (2014)
9 Modulation index for total modulation f = 2 (MIt 2) Park et al (2014)
10 Modulation index for total modulation f = 1 (MIt 1) Park et al (2014)
11 Modulation index for total modulation f = 0.5 (MIt 0.5) Park et al (2014)
12 Modulation index for total modulation f = 0.2 (MIt 0.2) Park et al (2014)
13 Proportion of leaf speed ranging from 0 to 0.4 cm s−1 (S0-0.4) Park et al (2015)
14 Proportion of leaf speed ranging from 0.4 to 0.8 cm s−1 (S0.4–0.8) Park et al (2015)
15 Proportion of leaf speed ranging from 0.8 to 1.2 cm s−1 (S0.8–1.2) Park et al (2015)
16 Proportion of leaf speed ranging from 1.2 to 1.6 cm s−1 (S1.2–1.6) Park et al (2015)
17 Proportion of leaf speed ranging from 1.6 to 2.0 cm s−1 (S1.6–2) Park et al (2015)
18 Proportion of leaf acceleration ranging from 0 to 1 cm s−2 (A0-1) Park et al (2015)
19 Proportion of leaf acceleration ranging from 1 to 2 cm s−2 (A1-2) Park et al (2015)
20 Proportion of leaf acceleration ranging from 2 to 4 cm s−2 (A2-4) Park et al (2015)
21 Proportion of leaf acceleration ranging from 4 to 6 cm s−2 (A4-6) Park et al (2015)
22 Average leaf speed (ALS) Park et al (2015)
23 Standard deviation of leaf speed (SLS) Park et al (2015)
24 Average leaf acceleration (ALA) Park et al (2015)
25 Standard deviation of leaf acceleration (SLA) Park et al (2015)
26 Small aperture score 5 mm (SAS 5 mm) Crowe et al (2015)
27 Small aperture score 10 mm (SAS 10 mm) Crowe et al (2015)
28 Small aperture score 20 mm (SAS 20 mm) Crowe et al (2015)
29 Mean asymmetry distance (MAD) Crowe et al (2015)
30 Modulation complex score (MCS) Mcniven et al (2010)
31 Leaf sequence variability (LSV) Mcniven et al (2010)
32 Aperture area variability (AAV) Mcniven et al (2010)
33 Plan area (PA) Du et al (2014)
34 Plan irregularity (PI) Du et al (2014)
35 Plan modulation (PM) Du et al (2014)
36 Plan normalized MU (PMU) Du et al (2014)
37 Union aperture area (UAA) Du et al (2014)
38 Edge metric (EM) Younge et al (2012)
39 Converted aperture metric (CAM) Götstedt et al (2015)
40 Edge area metric (EAM) Götstedt et al (2015)
41 Circumference/area (C/A) Götstedt et al (2015)
42 Average leaf travel distance (LT) Masi et al (2013)
43 Combination of LT and MCS (LTMCS) Masi et al (2013)
44 Average leaf gap (ALG) Nauta et al (2011)
45 Standard deviation of leaf gap (SLG) Nauta et al (2011)
46 Average dose rate (ADR) −
47 Standard deviation of dose rate (SDR) −
48 MU value in first arc (MU 1) −
49 MU value in second arc (MU 2) −
50 Prescribed dose to primary target per fraction (Dose) −
51 Field length at X direction in first arc (Field X1) −
52 Field length at Y direction in first arc (Field Y1) −
53 Field length at X direction in second arc (Field X2) −
54 Field length at Y direction in second arc (Field Y2) −
Complexity metrics that have ‘−’ in the reference column can be easily extracted or calculated based on plan information in the TPS.
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