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Abstract A direct adaptive interval type-2 fuzzy neural
network (IT2-FNN) controller is designed for the first time
in hypersonic flight control. The generic hypersonic flight
vehicle is a multi-input multi-output system whose longitu-
dinal model is high-order, highly nonlinear, tight coupling
and most of all includes big uncertainties. Interval type-2
fuzzy sets with Gaussian membership functions are used in
antecedent and consequent parts of fuzzy rules. The IT2-
FNN directly outputs elevator deflection and throttle setting
which make the GHFV track the altitude command signal and
meanwhile maintain its velocity. The parameter adaptive law
of IT2-FNN is derived using backpropagation method. The
deviation of the control signal from the nominal dynamic
inversion control signal is used as the reference output sig-
nal of IT2-FNN. The tracking errors of velocity and altitude
are used as inputs of IT2-FNN. Tracking differentiator is
designed to form an arranged transition process (ATP) of
the command signal as well as ATP’s high-order derivatives.
Nonlinear state observer is designed to get the approxima-
tions of velocity, altitude as well as their high-order deriva-
tives. Simulation results validate the effectiveness and robust-
ness of the proposed controller especially under big uncer-
tainties.
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Abbreviations

V Velocity, m/s
q Pitch rate, rad/s
γ Flight path angle, rad
α Angle of attack, rad
h Altitude, m
My Pitch moment, N m
Iy Moment of inertia, kg m2

r Radial distance from Earth’s center, m
μ Gravitational constant
m Mass, kg
s Reference area, m2

ρ Density of air, kg/m3

c̄ Mean aerodynamic chord, m
RE Radius of the earth, m
β Fuel equivalence ratio
δt Throttle setting instruction
δe Elevator deflection, rad
L Lift, N
D Drag, N
T Thrust, N
CL Lift coefficient
CD Drag coefficient
CT Thrust coefficient
CM Pitch moment coefficient

1 Introduction

A generic hypersonic flight vehicle (GHFV) is in single-
stage-to-orbit winged-cone configuration and is rocket-
powered (Shaughnessy et al. 1990). Hypersonic flight refers
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to the flight with at least 5 Mach (that is 5 times the local
speed of sound). GHFV has a large flight envelope and it
flies within a complicated environment. For example, it can
cruise at an altitude of about 33,000 m and Mach 15. Due
to its high speed, high altitude and large thrust to weight
ratio, GHFV can be used as a reusable orbital transport plane
and intercontinental airliner. In spite of these beautiful future
applications, its flight control law design is still highly chal-
lenging. The longitudinal model of the GHFV is multi-input
multi-output (MIMO), high-order, highly nonlinear and tight
coupling. It has strong interaction among the structural, aero-
dynamic and propulsive effects (Keshmiri et al. 2006; Parker
et al. 2007; Shakiba and Serrani 2011). Furthermore, the state
signals’ high-order derivatives and the arranged transition
process (ATP) of the command signal are difficult to get. The
unmodeled dynamics, measurement noises and external dis-
turbances all show the truth that there exist big uncertainties
in hypersonic flight control. So it is of significant importance
to design a robust controller to overcome various uncertain
problems.

Many classic and intelligent hypersonic flight control
methods have been proposed in recent years. A robust slid-
ing mode controller (Xu et al. 2004) was designed for the
feedback linearized model of the GHFV. It was robust with
respect to parameter uncertainty but it had strong control
chattering problem which should be avoided. A robust min-
imax linear quadratic regulator (LQR) (Rehman et al. 2009)
was also designed for the linearized model. It was an opti-
mal controller which minimized the maximum value of the
quadratic cost function but the solving process of Riccati
equation was not easy. The linearized model was decoupled
into two subsystems with high-order active disturbance rejec-
tion controller (ADRC) (Yang et al. 2012). The extended state
observer of ADRC could estimate the overall uncertain terms
but there were too many parameters to be optimized. Adap-
tive neural network (Liu and Lu 2009a) was used to compen-
sate the model error between the real plant and the nominal
model before the dynamic inversion control (DIC) signals
were obtained. Similarly a traditional adaptive fuzzy logic
system was designed to approximate the uncertain terms of
the linearized model (Liu and Lu 2009b), however, no simu-
lation was conducted to validate the controller’s effectiveness
under big uncertainties.

Traditional fuzzy logic controller uses traditional type-1
fuzzy set (T1-FS) which can deal with uncertain problem to a
certain extent. When the parameter uncertainty becomes big-
ger and there exist rule uncertainties, type-2 fuzzy set (T2-FS)
can be more effective (Mendel 2007). Membership functions
(MFs) of T2-FS are fuzzy whereas MF of T1-FS is crisp. The
additional degree of freedom of T2-FS gives a possibility to
deal with big parameter uncertainty and rule uncertainties
(Li et al. 2013). Type-2 fuzzy logic system (T2-FLS) con-
tains a type-reducer (TR) which converts the type-2 fuzzy

inference output set to T1-FS. For a general T2-FLS, the
computation of TR can be enormous. Interval type-2 fuzzy
set (IT2-FS) is used in order to reduce the computation cost
and therefore put type-2 fuzzy logic control into real applica-
tion (Liang and Mendel 2000). An adaptive interval T2-FLS
(IT2-FLS) was used to approximate the unknown nonlinear
system online (Ougli et al. 2008). The fuzzy parameters were
randomly initialized and it did not need any prior knowledge
about the nonlinear terms. For a multivariable nonlinear sys-
tem, a direct adaptive interval type-2 fuzzy controller (Lin et
al. 2009) was designed which could satisfy the H∞ tracking
performance. IT2-FLS was also introduced into hypersonic
flight control. IT2-FLS was used to approximate the non-
linear but unknown terms of the linearized model in DIC
(Yang et al. 2013a). IT2-FLS was also used to approximate
the partly unknown terms in backstepping control (Yang et
al. 2013b). The global stability was guaranteed by Lyapunov
theory. Other application of T2-FLS can be seen in (Wu
and Mendel 2002; Zaheer and Kim 2011; Fazel Zarandi and
Gamasaee 2012).

Fuzzy neural network (FNN) is one kind of intelligent
systems which combines the advantages of fuzzy logic and
neural network. Fuzzy logic adds prior knowledge via fuzzy
rules, but it lacks self-learning capability. Neural network
has the properties of parallel computation and strong self-
learning capability, but it needs a large diversity of training
data which result in a long time to converge to the optimal
solution in real-time application. Furthermore, neural net-
work is a black box system where weights are randomly
initialized and their learning results are obscure for design-
ers. Instead, the initialization, learning process and learn-
ing results of FNN have clear physical meaning and FNN is
therefore easily understandable by engineers. The parame-
ter learning process of FNN can be data driven or knowl-
edge driven. Another advantage is that FNN has good fault-
tolerance property. Traditional FNN which uses T1-FS is
so called T1-FNN. Although T1-FNN can deal with many
uncertain problems, it cannot handle rule uncertainties com-
ing from the following aspects (Karnik et al. 1999; Mendel
and John 2002; Pan et al. 2011): (1) noise in measurement and
training data; (2) fuzzy language uncertainty, e.g. it has differ-
ent meaning for different people; (3) consequent knowledge
is extracted from a group of experts who do not all agree; (4)
working environment and actuator characteristic uncertainty.

When IT2-FS is used in antecedent and/or consequent
parts of FNN, it is so called IT2-FNN. Some works have
been done on IT2-FNN control. IT2-FS was used in only
antecedent part and a feedforward neural network was chosen
as a consequent part (Singh et al. 2004). IT2-FNN was used in
intelligent mobile navigation which was effective even with
low cost range sensor and microprocessor (Nurmaini et al.
2009). IT2-FNN was systematically studied on the identifica-
tion and control application in micro aircraft vehicle attitude
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control (Chen 2012). But it had some disadvantages in the
derivation process of adaptive law. A monotonic type-2 fuzzy
neural network was used in application to thermal comfort
prediction (Li et al. 2012). Simulation results showed its high
accuracy in prediction.

Here, a direct adaptive interval type-2 fuzzy neural net-
work controller is designed for the first time in the track-
ing control of hypersonic flight vehicle. We use IT2-FNN
to directly obtain the control signals which approximate the
nominal DIC signals. Gaussian MFs with the same center
but different widths are used in IT2-FS. The parameter adap-
tive law for a MIMO IT2-FNN is derived using backprop-
agation (BP) method. For one pair of input-output data, BP
runs the update course online to reduce the pre-defined error.
Results show it is much more complicated than single-output
FNN and it contains other properties different from other
FNNs.

This paper is organized as follows: Sect. 2 describes
the background of this paper in three aspects: GHFV
model, T2-FS and type-2 fuzzy logic system, type-2 fuzzy
neural network. Section 3 designs the controller in detail
which includes IT2-FNN adaptive law, tracking differ-
entiator and nonlinear state observer (NSO). In Sect. 4,
simulations are conducted to validate the proposed con-
troller. Conclusions are given in the final part. The main
novelties and contributions of this study are listed as
follows:

1. A direct adaptive IT2-FNN controller is designed for the
first time in hypersonic flight control. It may develop the
application of IT2-FNN in the field of complicated system
control.

2. The parameter adaptive law for a MIMO IT2-FNN with
Gaussian MFs is derived using backpropagation method.
Results show it has new properties different from other
FNNs.

3. Tracking differentiator and NSO are combined with IT2-
FNN to get arranged trasition process, high-order deriva-
tives and other useful variables.

4. Simulations under big parameter uncertainty and rule
uncertainties are conducted. Simulation results validate
the effectiveness and robustness of the proposed con-
troller.

2 Background

In this section, we first present the mathematical model of
a GHFV and the DIC law of it. Then, we give brief intro-
duction of the T2-FS and type-2 fuzzy logic system. Finally,
we discuss the structure and computation of MIMO interval
type-2 fuzzy neural network system.

2.1 GHFV model and dynamic inversion control

The mathematical model of the longitudinal dynamics of a
GHFV which was developed at NASA Langley Research
Center (Shaughnessy et al. 1990) is as follows (Parker et al.
2007; Xu et al. 2004):

V̇ = T cos α − D

m
− μ sin γ

r2 (1)

γ̇ = L + T sin α

mV
− (μ − V 2r) cos γ

V r2 (2)

ḣ = V sin γ (3)

α̇ = q − γ̇ (4)

q̇ = My

Iy
(5)

where

L = 1

2
ρV 2sCL (6)

D = 1

2
ρV 2sCD (7)

T = 1

2
ρV 2sCT (8)

My = 1

2
ρV 2sc̄CM (9)

CM = ceδe + CM0 (10)

CT = ctβ + CT 0 (11)

r = h + RE (12)

where ce, ct are the linear coefficients and CM0, CT 0 are the
remainders which do not contain the control variables. The
engine dynamics are modeled by a second-order system as:

β̈ = −2ξnωnβ̇ − ω2
nβ + ω2

nδt (13)

where ξn is the damping ratio and ωn is the natural frequency
of the actuator. So the control variables become δe and δt .
Here we use the simplified aerodynamic coefficients around
the nominal cruising flight. Coefficient details can be seen in
(Xu et al. 2004).

For the purpose of feedback linearization, we use Lie
derivatives (Khalil 2001) to differentiate V three times and h
four times separately until there appears the control variables
δe and δt explicitly. Thus the relative degrees of V and h are
n1 = 3 and n2 = 4, respectively, and the total relative degree
is nt = n1 + n2 = 7. Meanwhile, the total system order of
the longitudinal model (1)–(5) and engine dynamics (13) is
ns = 5+2 = 7. Because nt = ns , the longitudinal dynamics
can be completely input/output linearized as:
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{ ...
V = f1 + g11δe + g12δt

h(4) = f2 + g21δe + g22δt
(14)

where

f1 = (W1 Ẍ0 + Ẋ T W2 Ẋ)/m (15)

f2 = f1 sin γ + 3V̈ γ̇ cos γ − 3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

− 3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ

+ V cos γ (P1 Ẍ0 + Ẋ T P2 Ẋ) (16)

g11 =
(

∂T

∂α
cos α − T sin α − ∂ D

∂α

)
ce/m Iy (17)

g12 = ∂T

∂β
cos α · ω2

n/m (18)

g21 =
(

∂T

∂α
sin(α + γ ) + T cos(α + γ )

− ∂ D

∂α
sin γ + ∂L

∂α
cos γ

)
ce/m Iy (19)

g22 = ∂T

∂β
sin(α + γ )ω2

n/m (20)

where X = [V γ α β h]T
and Ẍ0 is the part without control

variables in Ẍ . Details of (15)–(20) can be found in (Xu et al.
2004; Yang et al. 2012). We can see that f1, f2 are unknown
but bounded nonlinearities and g11, g12 , g21, g22 are approxi-
mately known but bounded nonlinearities. All their comput-
ing is quite complicated and time-consuming. We denote:

u �
[

u1

u2

]
=

[
δe

δt

]
, y �

[
y1

y2

]
=

[
V
h

]

yr �
[

yr1

yr2

]
=

[
Vr

hr

]
, G �

[
g11 g12

g21 g22

]
.

(21)

where u is the system input, y is the system output , yr is
the reference command, and G is the control matrix. Hence
system (14) can be rewritten as:

[
y(3)

1
y(4)

2

]
=

[
f1

f2

]
+ G

[
u1

u2

]
(22)

Assume that G is nonsingular. When the system is free of
uncertainty, by DIC theory, the nominal DIC signals can be:

uI �
[

uI 1

uI 2

]
= G−1

(
−

[
f1

f2

]
−

[
kT

1 e1
kT

2 e2

]
+

[
y(3)

r1
y(4)

r2

])
(23)

where e1 = y1 − yr1, e2 = y2 − yr2, e1 = [e1 ė1 ë1]T ,
e2 = [e2 ė2 ë2

...
e2]T . ki = [ki0, . . . , ki(ni −1)]T , (i = 1, 2) are

constant coefficients which guarantee the polynomials kT
i ei

are Hurwitz.
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Fig. 1 MF example of T1-FS
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Fig. 2 MF example of IT2-FS

2.2 Type-2 fuzzy set and type-2 fuzzy logic system

The membership function (MF) of type-1 fuzzy set (T1-FS)
is crisp as shown in Fig. 1. Each point in the universe of
discourse has only one MF value. For Gaussian MF, the MF
value is only determined by its center c and width σ . T2-
FS is characterized by membership functions (primary MFs)
that are themselves fuzzy as shown in Fig. 2. Each point in
the universe of discourse has at least one MF value and each
value also has a corresponding MF (secondary MF) value. All
the possible values form an area. The area between the upper
MF (UMF) and the lower MF (LMF) is called footprint of
uncertainty (FOU), which adds the second degree of freedom
to handle rule uncertainties (Mendel 2007). For IT2-FS, all
secondary MF values equal 1. So IT2-FS can be and only be
represented by LMF and UMF which are only determined
by center c and widths σ , σ (Castillo and Melin 2008).

The structure of interval type-2 fuzzy logic system (IT2-
FLS) is shown in Fig. 3. The only difference between IT2-
FLS and T1-FLS is that T2-FLS has a type reducer (TR). TR
converts interval type-2 fuzzy inference output set to T1-FS.
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Fuzzifier

Rule
Bases

Inference

Type
Reducer

Defuzzifier
T2-FLS

Fig. 3 The structure of IT2-FLS

μ μ μ=

=

ω ω

Fig. 4 General architecture of IT2-FNN

The TR computation of IT2-FLS just involves its LMF and
UMF and therefore has low cost than general T2-FLS.

2.3 MIMO interval type-2 fuzzy neural network system

For a MIMO IT2-FNN system, we consider the following
architecture as shown in Fig. 4.

It is a four-layer n input/p output IT2-FNN. The input
layer transmits values of input linguistic variable x j , ( j =
1, . . . , n) to the membership layer directly. The membership
layer computes MF values of each input variable belonging
to each fuzzy set. Here we use Gaussian MF with the same
center but different widths to fully describe the IT2-FS. Each
node in the rule layer represents a possible IF-part of the
fuzzy rules. The output of the i th (i = 1, . . . , M) rule is the
fire strength f i . Each node in the output layer represents an
output linguistic variable uk, (k = 1, . . . , p). The output of
one node in this layer is the weighted summation of the fire
strength. For IT2-FNN, the fire strength and the weight are

in a range [ f i , f
i ] and [ωi

k, ω
i
k].

The fuzzy rule bases of IT2-FNN consist of a collection
of IF-THEN rules in the following form:

Rule i : If x1 is Ãi
1 and · · · and xn is Ãi

n , Then u1 is [ωi
1, ω

i
1]

and · · · and u p is [ωi
p, ω

i
p]

where i = 1, . . . , M and M is the number of rules. Ãi
j , ( j =

1, . . . , n) is the antecedent interval T2-FS. ωi
k and ωi

k, (k =

1, . . . , p) are the lower and upper weights of the output uk ,
respectively. Denote x = [x1 · · · xn]T . The firing set Fi (x)

and the firing strength fi associated with the i th rule are:

f i ∈ Fi (x) =
n∏

j=1

μ Ãi
j
(x j ) = [ f i , f

i ] (24)

where

f i =
n∏

j=1

μ
Ãi

j
(x j ) (25)

f
i =

n∏
j=1

μ Ãi
j
(x j ) (26)

where μ
Ãi

j
(x j ) and μ Ãi

j
(x j ) are the lower and upper MFs

of μ Ãi
j
(x j ), respectively. By using the singleton fuzzifica-

tion, product inference, center-average defuzzification and
the center-of-sets (COS) (Karnik and Mendel 1998) type
reducer, the type-reduced set is given by (Liang and Mendel
2000):

U k
cos =

∫

u1
k

· · ·
∫

u
M
k

∫

f 1

· · ·
∫

f M

M∏
i=1

μFi ( f i )
/∑M

i=1 f i ui
k∑M

i=1 f i
(27)

For IT2-FLS, Fi is T1-FS, μFi ( f i ) = 1, so

U k
cos =

∫

u1
k

· · ·
∫

uM
k

∫

f 1

· · ·
∫

f M

1
/∑M

i=1 f i ui
k∑M

i=1 f i
= [ukl , ukr ]

(28)

where

ukl =
∑M

i=1 f i
klω

i
k∑M

i=1 f i
kl

,

ukr =
∑M

i=1 f i
krω

i
k∑M

i=1 f i
kr

(29)

where f i
kl , f i

kr denote the firing values used to compute the
bounds ukl , ukr , respectively, which can be obtained using
the Karnik–Mendel algorithm (KMA) (Liang and Mendel
2000). Because U k

cos is T1-FS with equal MF value 1, the
output can be its mean arithmetical value:

uk = ukl + ukr

2
(30)
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×

×

Fig. 5 The overall control scheme of the direct adaptive IT2-FNN

3 Control design

In this section, we first give an overall view on the control
scheme. Then, the parameter adaptive law is derived in detail
using backpropagation method. Algorithms of tracking dif-
ferentiator and NSO are also given. Finally, the algorithm
flow of IT2-FNN control is shown.

3.1 Overall control scheme

The overall control scheme is shown in Fig. 5. High-order
derivatives of yr and y are obtained by tracking differentiator
(TD) and NSO, respectively. TD also forms the ATP of the
command signal. The DIC outputs the nominal DIC signal
uI . Output errors e are normalized to the corresponding uni-
verse of discourse before they are sent to IT2-FNN. Gaussian
white noise (GWN) can be added to the plant to verify the
controller’s robustness.

3.2 IT2-FNN control law and adaptive law

The direct adaptive IT2-FNN controller is used to get the
fuzzy control signal u online. Error e is used as fuzzy
input. The deviation of the control signal u from the nom-
inal DIC signal uI is used as reference output signal. e is
normalized before applied to the fuzzy rules. As is dis-
cussed in the MIMO IT2-FNN system, the fuzzy inputs
are chosen as x1 = �V and x2 = �h, the fuzzy out-
puts are u = [u1 u2]T = [�δe �δt ]T . The defuzzi-
fied outputs are obtained by (28)–(30). Next we will
discuss the derivation process of the parameter adaptive
law.

Define the overall output error E = 1
2

∑m
k=1(uk − uI k)

2.
The parameter adaptive law is designed to be (31) using back-
propagation method (Wang 1996):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωi
k(N + 1) = ωi

k(N ) − α1k
∂ E

∂ωi
k

ωi
k(N + 1) = ωi

k(N ) − α1k
∂ E

∂ωi
k

ci j (N + 1) = ci j (N ) − α2
∂ E

∂ci j

σ i j (N + 1) = σ i j (N ) − α3
∂ E

∂σ i j

σ i j (N + 1) = σ i j (N ) − α3
∂ E

∂σ i j

(31)

where α1k, α2, α3 are learning rates of the weights, the cen-
ters and the widths, respectively, N is the number of iteration
in BP. The partial derivatives of E to ωi

k , ωi
k , and ci j are easy

to get as (32) whereas it is not obvious to σ i j and σ i j as (33).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ E

∂ωi
k

= uk − uI k

2
∑M

i=1 f i
kl

f i
kl ,

∂ E

∂ωi
k

= uk − uI k

2
∑M

i=1 f i
kr

f i
kr

∂ E

∂ci j
=

M∑
k=1

[
(uk − uI k)(x j − ci j )

2

(
(ωi

k − ukl) f i
kl

σ 2
i j

∑M
i=1 f i

kl

+ (ωi
k−ukr ) f i

kr

σ 2
i j

∑M
i=1 f i

kr

)]
(32)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ E

∂σ i j
=

M∑
k=1

∂ E

∂uk

∂uk

∂σ i j
=

M∑
k=1

uk − uI k

2

(
∂ukl

∂σ i j
+ ∂ukr

∂σ i j

)

∂ E

∂σ i j
=

M∑
k=1

∂ E

∂uk

∂uk

∂σ i j
=

M∑
k=1

uk − uI k

2

(
∂ukl

∂σ i j
+ ∂ukr

∂σ i j

)

(33)

In order to obtain the partial derivatives
∂ukl

∂σ i j
,
∂ukr

∂σ i j
and

∂ukl

∂σ i j
,

∂ukr

∂σ i j
, we come back to the KMA type-reduction

method. KMA returns two important integers L and R, where

for i ≤ L , f i
kl = f

i
, for i > L , f i

kl = f i , for i ≤ R,

f i
kr = f i , for i > R, f i

kr = f
i
. So ukl , ukr can be written as

(Liang and Mendel 2000):

ukl =ukl

(
f

1
, . . . , f

L
, f L+1, . . . , f M , ω1

k, . . . , ω
M
k

)
(34)

ukr = ukr

(
f 1, . . . , f R, f

R+1
, . . . , f

M
, ω1

k, . . . , ω
M
k

)

(35)

From expression (34) and (35), the partial derivatives of ukl

to σ i j , σ i j and ukr to σ i j , σ i j have something to do with
L and R. Further analysis shows that the size relationship
between L and R also influences the partial derivatives. After
a complicated derivation, the partial derivatives are as (36)–
(41) show:
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If L ≤ R, when i ≤ L ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= 0,

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

,
∂ukr

∂σ i j
= 0

(36)

when L < R and L < i ≤ R,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

,
∂ukl

∂σ i j
= 0

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

,
∂ukr

∂σ i j
= 0

(37)

when i > R,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

,
∂ukl

∂σ i j
= 0

∂ukr

∂σ i j
= 0,

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

(38)

If L > R, when i ≤ R,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= 0,

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

,
∂ukr

∂σ i j
= 0

(39)

when R < i ≤ L ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= 0,

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

∂ukr

∂σ i j
= 0,

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

(40)

when i > L ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ukl

∂σ i j
= f i

kl(ω
i
k − ukl)∑M

i=1 f i
kl

(x j − ci j )
2

σ 3
i j

,
∂ukl

∂σ i j
= 0

∂ukr

∂σ i j
= 0,

∂ukr

∂σ i j
= f i

kr (ω
i
k − ukr )∑M

i=1 f i
kr

(x j − ci j )
2

σ 3
i j

(41)

3.3 Tracking differentiator and nonlinear state observer

3.3.1 Tracking differentiator

Tracking differentiator (TD) is used to form the ATP of the
reference signals and also to filter out high frequency noises.
The discrete algorithms implemented in TD are as follows

(Han 2009): velocity channel:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f s1(K ) = −λ(λ(λ(ν11(K ) − Vr )

+3ν12(K )) + 3ν13(K ))

ν11(K + 1) = ν11(K ) + τ ∗ ν12(K )

ν12(K + 1) = ν12(K ) + τ ∗ ν13(K )

ν13(K + 1) = ν13(K ) + τ ∗ f s1(K )

(42)

Altitude channel:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f s2(K ) = −λ(λ(λ(λ(ν21(K ) − hr )

+4ν22(K )) + 6ν23(K )) + 4ν24)

ν21(K + 1) = ν21(K ) + τ ∗ ν22(K )

ν22(K + 1) = ν22(K ) + τ ∗ ν23(K )

ν23(K + 1) = ν23(K ) + τ ∗ ν24(K )

ν24(K + 1) = ν24(K ) + τ ∗ f s2(K )

(43)

where “velocity factor” λ and time step τ are taken as 3
and 0.01, respectively. ν11, ν12, ν13 represent Vr , V̇r , V̈r and
ν21, ν22, ν23, ν24 represent hr , ḣr , ḧr ,

...
hr . K is the number of

iteration.

3.3.2 Nonlinear state observer

Nonlinear state observer can estimate the exact flight states
and their high-order derivatives online which are difficult to
measure in hypersonic flight condition. The discrete algo-
rithms implemented in NSO are as follows:
Velocity channel:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e1 = z11(K ) − V
z11(K + 1) = z11(K ) + τ ∗ (z12(K ) − β11 ∗ e1)

z12(K + 1) = z12(K ) + τ ∗ (z13(K )

−β12 ∗ f al(e1, 0.5, τ ))

z13(K + 1) = z13(K ) + τ

∗(−β13 ∗ f al(e1, 0.25, τ ) + U1)

(44)

Altitude channel:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2 = z21(K ) − h
z21(K + 1) = z21(K ) + τ ∗ (z22(K ) − β21 ∗ e2)

z22(K + 1) = z22(K ) + τ ∗ (z23(K )

−β22 ∗ f al(e2, 0.5, τ ))

z23(K + 1) = z23(K ) + τ ∗ (z24(K )

−β23 ∗ f al(e2, 0.25, τ ))

z24(K + 1) = z24(K ) + τ∗
(−β24 ∗ f al(e1, 0.125, τ ) + U2)

(45)

where z11, z12, z13 represent V, V̇ , V̈ and z21, z22, z23, z24

represent h, ḣ, ḧ,
...
h . U1 = g11δe + g12δt and U2 = g21δe +

g22δt . Parameters of NSO are chosen as β11 = 100, β12 =
300, β13 = 2000, β21 = 100, β22 = 300, β23 = 1000,
β24 = 1800. Nonlinear functions used in (44) and (45) are
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defined as:

⎧⎨
⎩

fdb(x, δ) = (sgn(x + δ) + sgn(x − δ))/2
fsg(x, δ) = (sgn(x + δ) − sgn(x − δ))/2

f al(x, a, δ) = x fsg(x, δ)/δ1−a + | fdb(x, δ)||x |asgn(x)

(46)

where sgn(x) is the sign function.

3.4 Algorithm flow

The algorithm flow of the IT2-FNN control is as follows
Step 1 Determine the IT2-FNN structure and initialize the

corresponding parameters and fuzzy rules;
Step 2 Start the simulation iteration N ;
Step 3 Compute the IT2-FNN inputs x1, x2 and the refer-

ence outputs uI 1, uI 2;
Step 4 For x1, x2, uI 1, uI 2, start the BP iteration K ;
Step 5 Compute the partial derivatives ∂ E

∂ωi
k
, ∂ E

∂ωi
k
, ∂ E

∂ci j
, ∂ E

∂σ i j
,

∂ E
∂σ i j

like (32)–(41);

Step 6 Update parameters ωi
k , ωi

k , ci j , σ i j , σ i j like (31)
and compute the fuzzy reference outputs u1, u2;

Step 7 If the terminate condition satisfies, goto Step 8; else
K = K + 1 and go back to Step 5;

Step 8 Output u1, u2 as control variables to the plant;
Step 9 If the simulation time is over, go to Step 10; else

N = N + 1 and go back to Step 3;
Step 10 Simulation over.

4 Simulations

In this section, we conduct simulations in two cases (with
and without uncertainties) to validate the effectiveness and
robustness of the proposed IT2-FNN controller.

4.1 Simulation conditions and initialization

The trimmed condition of the cruise flight of GHFV is chosen
as Table 1. The command signal is chosen as a sine wave
�h = hr − h0 = 600 sin(0.04π t) whose period is 50 s. The
control objective is to track the sinusoidal altitude signal and
meanwhile maintain its velocity, so �V = Vr − V0 = 0.

The number of inputs is n = 2 (the normalized error of
velocity and altitude) and the number of outputs is p = 2
(the control increment of the elevator deflection and throt-
tle setting). Assume each of the inputs x1 and x2 is divided
into five IT2-FS. Therefore there are 25 fuzzy rules. Here we
form M = 25 fuzzy rules according to the prior knowl-
edge. The fuzzy input universe of discourse is chosen as
[−2, 2], the output universe of discourse of u1(�δe) is cho-
sen as [−0.2, 0.2] rad and the output universe of discourse

Table 1 Trimmed condition of GHFV

States Value

V0 4,590.3 m/s

h0 33,528 m

γ0 0 rad

α0 0.04799 rad

q0 0 rad/s

Control variables Value

δe0 −0.5507◦

δt0 0.2124

Table 2 Initialization of antecedent fuzzy sets

Fuzzy sets Center Lower width Upper width

N B −2 0.2 0.5

N S −1 0.2 0.5

Z R 0 0.2 0.5

P S 1 0.2 0.5

P B 2 0.2 0.5

of u2 (�δt ) is chosen as [−0.7, 0.7]. The initialization of the
interval type-2 antecedent fuzzy sets is shown in Table 2 (x1

and x2 have the same fuzzy division) and the initialized fuzzy
rules are shown in Table 3. The learning rates are chosen as
α11 = α12 = α2 = α3 = 0.1. The feedback coefficients
are chosen as k10 = 1, k11 = 3, k12 = 3, k20 = 1, k21 =
4, k22 = 6, k23 = 4. The learning rates and feedback coeffi-
cients do not change in the simulation process. The parameter
uncertainties are chosen as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m = m0(1 + U f + Ug ∗ GW N )

Iy = Iy0(1 + U f + Ug ∗ GW N )

ρ = ρ0(1 + U f + Ug ∗ GW N )

s = s0(1 + U f + Ug ∗ GW N )

c̄ = c̄0(1 + U f + Ug ∗ GW N )

(47)

where m0, Iy0, ρ0, s0, c̄0 are the nominal values, U f is the
fixed parameter uncertainty and Ug is the strength of the
Gaussian white noise (GWN) whose power is 0.002.

4.2 Simulation results without uncertainty

Set U f = 0, Ug = 0. So there exists no fixed parameter
uncertainty and no noise. Then all parameters are in their
nominal values. The simulation is conducted for 100 s (2
periods)in two cases: IT2-FNN and T1-FNN. The simulation
results are shown in Figs. 6, 7, 8, 9, 10 and 11.
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Table 3 Initialization of the
fuzzy rules with prior
knowledge

NB NB [0.14, 0.2] [0.5, 0.7]
NB NS [0.14, 0.2] [0.2, 0.4]
NB ZR [0.14, 0.2] [−0.1, 0.1]
NB PS [0.14, 0.2] [−0.4,−0.2]
NB PB [0.14, 0.2] [−0.7,−0.5]
NS NB [0.06, 0.12] [0.5, 0.7]
NS NS [0.06, 0.12] [0.2, 0.4]
NS ZR [0.06, 0.12] [−0.1, 0.1]
NS PS [0.06, 0.12] [−0.4,−0.2]
NS PB [0.06, 0.12] [−0.7,−0.5]
ZR NB [−0.03, 0.03] [0.5, 0.7]
ZR NS [−0.03, 0.03] [0.2, 0.4]

If x1 is Z R and x2 is Z R then u1 is [−0.03, 0.03] and u2 is [−0.1, 0.1]
ZR PS [−0.03, 0.03] [−0.4,−0.2]
ZR PB [−0.03, 0.03] [−0.7,−0.5]
PS NB [−0.12,−0.06] [0.5, 0.7]
PS NS [−0.12,−0.06] [0.2, 0.4]
PS ZR [−0.12,−0.06] [−0.1, 0.1]
PS PS [−0.12,−0.06] [−0.4,−0.2]
PS PB [−0.12,−0.06] [−0.7,−0.5]
PB NB [−0.2,−0.14] [0.5, 0.7]
PB NS [−0.2,−0.14] [0.2, 0.4]
PB ZR [−0.2,−0.14] [−0.1, 0.1]
PB PS [−0.2,−0.14] [−0.4,−0.2]
PB PB [−0.2,−0.14] [−0.7,−0.5]
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Fig. 6 Command response without uncertainty

As shown in Figs. 6 and 7, IT2-FNN and T1-FNN both
can track the sinusoidal altitude command signal when there
exists no uncertainty. Quantitatively, IT2-FNN has much less
tracking error and overshoot than T1-FNN. Figure 8 shows
that IT2-FNN has better actuator dynamics than T1-FNN.
Control variables of IT2-FNN almost have no saturation
whereas δe of T1-FNN has chattering and saturation at the
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Fig. 7 Tracking error without uncertainty

beginning 10 s and δt of T1-FNN saturates almost in the entire
course.This property of IT2-FNN is beneficial for GHFV
because the actuators of GHFV often work in a severe condi-
tion. The above three figures also demonstrate a phenomenon
that it is difficult to maintain the velocity and meanwhile track
the altitude. This can be explained by energy conservation
law. The variance of geopotential energy due to altitude vari-
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Fig. 9 IT2-FNN approximation effect

ance can only be compensated by fuel energy and resistance
loss. So it is not easy to maintain velocity and meanwhile
track the altitude.

Figure 9 shows the fuzzy approximation effect of IT2-
FNN only. We can see IT2-FNN can approximate the DIC
signals almost immediately and IT2-FNN can smooth the
control signals.

Figure 10 shows the outputs of the tracking differentia-
tor (TD). TD can form an ATP which can reduce the initial
tracking error and therefore result in smooth actuator move-
ments. Meanwhile, TD can filter out high frequency noise
when it gets high-order derivatives. ATP and its derivatives
will be used in error feedback control (Huang et al. 2001;
Han 2009).

Figure 11 shows part of the NSO outputs. V , h approxi-
mate their true values very well. V̇ , ḣ also approximate their
differential values very well considering their huge basic val-
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Fig. 10 ATP of altitude and its high-order derivatives
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ues. NSO is also very useful in hypersonic flight condition
as it is nearly impossible to measure some states, let alone
their high-order derivatives (Shao et al. 2008; Han 2009).

4.3 Simulation results with uncertainty

Set U f = −0.2, Ug = 0.8. So all parameters are corrupted
by fixed uncertainties and Gaussian white noises. It means
there exist −20 % fixed parameter uncertainties and large
Gaussian white noise. Figure 12 shows the amplitude and fre-
quency example of 0.8 ∗ GW N . This combination of uncer-
tainties is actually rather big and it can simulate most of the
severe flight conditions under big uncertainties including rule
uncertainties. Simulation are conducted similarly for 100 s
in two cases: IT2-FNN and T1-FNN. The simulation results
are shown in Figs. 13, 14 and 15.

When the uncertainty becomes bigger as chosen in this
paper, T1-FNN can no longer track the command signal any-
more (thus its simulation results are not shown in Figs. 13,
14 and 15) whereas IT2-FNN can still work although less
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effectively. Figures 13 and 14 show that IT2-FNN can still
track the altitude command signal but with bigger error both
in velocity and altitude. From Fig. 15 we can see δe con-
tains strong chattering and δt chatters between the upper and
lower bound. The chattering is mainly caused by the strong
Gaussian white noise.

5 Conclusion

In this paper, a direct interval type-2 fuzzy neural network
controller is designed for the first time in hypersonic flight
control. When Gaussian MFs with the same center but dif-
ferent widths are used to represent IT2-FS, for a MIMO IT2-
FNN, its parameter adaptive law is difficult to obtain. We
derive and analyse the adaptive law in detail. The derivation
of the adaptive law has something to do with the KMA type
reduction method. Tracking differentiator is also introduced
to form the ATP and get high-order derivatives of the com-
mand signal. Nonlinear state observer is introduced to get
the states and their high-order derivatives which are nearly
impossible to measure in hypersonic flight condition. Finally
simulations are conducted for IT2-FNN and T1-FNN in two
cases: without uncertainty and with big uncertainties. Simu-
lation results validate the effectiveness and robustness of the
proposed direct adaptive IT2-FNN controller.

In this paper, we just consider the longitudinal rigid body
dynamics of the GHFV. The flexible dynamics will be consid-
ered in our next research. Meanwhile, we will explore other
type reduction method to further reduce the computation cost
of IT2-FNN.
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