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LMI-Based Synthesis of String-Stable Controller
for Cooperative Adaptive Cruise Control

Yuanheng Zhu , Member, IEEE, Haibo He , Fellow, IEEE, and Dongbin Zhao , Senior Member, IEEE

Abstract— Controller synthesis is a challenging problem in
cooperative adaptive cruise control (CACC). Especially the
requirement of string stability makes it even harder to
choose appropriate control parameters. This paper applies a
time-domain definition to string stability and converts the prob-
lem to the H∞ control of a time-delay system. Based on the
proposed control structure, the H∞ norm and stability criteria
of CACC are satisfied by a set of constraints in terms of a
Lyapunov-Krasovskii functional candidate. These constraints are
further reduced to linear matrix inequalities so that feasible
solutions can be easily and efficiently computed. Simulations on
an identified model validate the performance of our method in
both frequency and time domains.

Index Terms— Cooperative adaptive cruise control, string sta-
bility, time-delay system, H∞ control, linear matrix inequality.

I. INTRODUCTION

TRAFFIC congestion has been a challenging task for
most countries, and tremendous efforts have been

made to investigate new automotive and transportation
technologies [1]–[3]. Cooperative adaptive cruise control
(CACC) [4], [5] as an extension of adaptive cruise control
(ACC) [6]–[9], has shown great potential in reducing traffic
congestion and saving fuel consumption. It connects multi-
ple vehicles as a platoon and passes as a string. Not only
measuring inter-vehicle distances and velocity gaps just like
ACC, CACC also uses vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications to transmit upstream
driving data to followers [10]. In this way, CACC is able
to respond traffic changes in advance and further shorten
inter-vehicle distances without compromising safety. If no
preceding vehicles or wireless signals are available to a single
vehicle, the rest ACC can still function well. Research investi-
gations have shown that the rise of CACC market penetration
can significantly increase traffic capacity and fuel-saving
effect [11], [12].
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One main objective of CACC is to keep vehicle following its
predecessor speed at a safe distance. A common spacing policy
widely used in literature is the constant headway-time policy.
The desired inter-vehicle distance is equal to the sum of two
parts: a constant standstill distance and a velocity-dependent
distance that is the product of current velocity and a con-
stant headway time. To track front driving, CACC uses two
sources of signals to determine own driving commands: local
measurement and transmitted data. The former are relative
distance and relative velocity, measured by a local detector
like radar or lidar mounted at the front bumper. The latter are
other vehicle driving signals like control input or acceleration,
transmitted by wireless devices. In [13], authors design a linear
quadratic regulator based on the whole platoon dynamics,
and obtain a centralized controller taking all vehicle states
as input. In [14], a decentralized optimal control is presented
and H2-/H∞-performance criteria are simultaneously consid-
ered. A linear model predictive control is used in [15] and
the objective is to minimize fuel consumption under safety
constraints. In [16], the problem is formulated as an l∞-norm
robust model predictive control, such that the minimum safety
distance is not violated. In [17], adaptive optimal control is
applied to heterogeneous platoon and the optimal controller is
learned based on online data. Unfortunately, the above work
pays less attention to the delay effect existing in actuator
and communication, which may severely deteriorate control
performance.

Another important issue for CACC is string stability (SS).
It concerns the attenuation of signals propagated along vehi-
cles. If the platoon is not string stable, any disturbance from
the upstream is amplified and eventually leads to abrupt halt or
collision accident in the tail. One way to check SS is to analyze
signals in frequency domain. A transfer function shows flow
of signals between preceding and following vehicles. If its
magnitude in the frequency domain is always limited by one,
the platoon is said string stable. In [18], authors consider
two spacing policies: the constant spacing policy and the
velocity-dependent spacing policy. They find that only the
latter one is able to ensure SS in the existence of time
delays, and CACC allows a shorter inter-vehicle distance than
ACC. In [19], a networked control system is presented to
investigate the effect of sampling frequency, zero-order-hold,
and constant network delays. The SS is analyzed with the
discrete-time Z-transform. Real traffic design and testing of
CACC is presented in [20].

To find satisfactory CACC, the above works tune controller
parameters by trial and error, which is quite inefficient.
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To overcome this limitation, some efforts have been made
to synthesize string-stable CACC controllers in a com-
putational way. Reference [21] first tries to use a mixed
H2/H∞ formulation to achieve reduction of spacing errors
and attenuation of disturbance. The controller assumes full
information on all vehicles, and is solved based on a set
of linear matrix inequalities. But authors fail in considering
time delays. In [22], a time-domain SS criterion is developed.
The attenuation of signal flow is represented by the Lp

norm, and a connection between time-domain signals and a
frequency-domain transfer function is established. Based on
that, [23] proposes an H∞ optimal controller approach for
L2 SS. Authors use a third-order Padè approximation to deal
with time delays. The objective becomes finding a controller
that renders the H∞ norm of transformed linear model no
greater than one. However, the final controller is high-order in
state space, which can cause considerable difficulty in practical
implementation.

When taking into account actuator and communication
delays, CACC is actually a time-delay system (TDS),
whose dynamics is described by delay differential equations.
Researchers in the field of control theory have investigated
TDS in many aspects such as stability, optimality, H∞,
robustness, and control synthesis. Surveys and recent devel-
opment of TDS can be found in [24], [25], and success-
ful applications are available in [26], [27]. In the literature,
most time-domain or state-space analysis of TDS is based
on Lyapunov-Krasovskii theorem or Lyapunov-Razumikhin
theorem. The key is to find a Lyapunov-like function that
satisfies certain conditions. If dynamics is linear or partly
linear, constraints can be expressed in the form of linear matrix
inequalities (LMIs). As a convex optimization, LMIs can be
easily solved by interior-point methods, and a number of
toolboxes have been developed to formulate LMIs. Motivated
by that, we seek to propose an LMI-based method that can
synthesize string-stable CACC controllers in a computationally
efficient way.

In this paper, the CACC problem is first formulated as
a state-space H∞ control of a TDS. By introducing the
Lyapunov-Krasovskii function, the control system is proved
to achieve H∞ norm and stability objectives under certain
conditions. Then, these conditions are further reduced to LMIs
after specifying a quadratic Lyapunov-Krasovskii function
and borrowing the idea of solving a cone complementary
problem. The feasible solution corresponds to the string-stable
CACC controller. Compared to other works, our method
can significantly reduce the difficulty of designing CACC.
Simulations on an identified vehicle model validate the SS
in both frequency and time domains, and a practical driving
dataset further tests the performance.

The remainder of this paper is organized as follows.
Section II gives the preliminary of CACC and string stability
definitions. Section III presents our control structure and trans-
forms the SS problem to the state-space H∞ control. The main
theorem is presented in Section IV where the string-stable
CACC controller is synthesized by an LMI-based algorithm.
Section V conducts simulations to validate the effectiveness.
In the end we give the discussion and conclusion.

Fig. 1. CACC typical structure.

II. PRELIMINARY

Fig. 1 shows the general configuration of a vehicle equipped
with CACC. Based on the low-level closed-loop actuation of
the throttle and brake system, the vehicle longitude dynamics
can be expressed by a transfer function G(s) between vehicle
position pi and desired acceleration input ui

G(s) = Pi (s)

Ui (s)
= 1

s2(τ s + 1)
e−l1s (1)

where s is the complex variable for Laplace transform, τ is the
dynamic parameter, and l1 is the actuator and internal delay.
Subscript i is the vehicle index in platoon and i = 1 represents
the leading vehicle. In this paper, we only investigate the
homogeneous platoon, that is to say all vehicles have the same
τ and l1.

A distance detector measures the inter-vehicle distance di

between the holder and the preceding vehicle

di (t) = pi−1(t)− pi (t)− Li−1

where t represents current time, pi and pi−1 are two vehicle
positions, and Li−1 is the predecessor vehicle length. The
desired relative distance d̄i is determined by the constant
headway time policy

d̄i (t) = r + hvi (t). (2)

r is called the standstill distance, h is the headway time, and
vi is the current speed of vehicle i . Based on the distance error

�di (t) = di(t)− d̄i(t)

= pi−1(t)− pi(t)− Li−1 − r − hvi (t)

ACC adopts a feedback controller to track the predecessor
driving.

When multiple vehicles form a CACC platoon, an additional
wireless network is established between them to transmit
front vehicle accelerations or control signals backward to
the tail. These additional signals are used in a feedforward
way, and are combined with the distance-error feedback to
determine control commands. One common CACC topology
is the follower-predecessor structure, in which each vehicle
only connects to its nearest predecessor. The delay effect in
wireless communication is approximated by an average l0 with
a delay module L(s) = e−l0 s .

Definition 1 (SS in frequency domain [18]): Given a pla-
toon of vehicles that drive in string, the transfer function of
signals between the leader and the i -th follower is denoted as

SS∗
i,1(s) = Qi (s)

Q1(s)

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 26,2023 at 09:04:50 UTC from IEEE Xplore.  Restrictions apply. 



4518 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2020

where Qi (s) is the Laplace transform of signal qi , which could
be position pi , velocity vi , acceleration ai , or control input ui .
If the following condition holds for all i

|SS∗
i,1( jω)| ≤ 1, ∀ω (3)

the system is called string stable. One notes that SS∗
i,1(s) =∏i

j=2
Q j (s)
Q j−1(s)

, so a conservative SS criterion is to check

transfer functions between adjacent vehicles

|SS i,i−1( jω)| =
∣∣∣∣ Qi ( jω)

Qi−1( jω)

∣∣∣∣ ≤ 1, ∀ω. (4)

Considering a homogeneous platoon, adjacent vehicles have
transfer functions

Pi (s)

Pi−1(s)
= Vi (s)

Vi−1(s)
= Ai (s)

Ai−1(s)
= Ui (s)

Ui−1(s)
, ∀i > 1.

The first two equalities directly follow Laplace transform, and
the last one is due to the monotony of vehicle dynamics in (1).
Distance errors for vehicles except the leading one have

�Di (s)

�Di−1(s)
= Pi (s)

Pi−1(s)

Pi−1(s)
Pi (s)

− 1 − sh
Pi−2(s)
Pi−1(s)

− 1 − sh
= Pi (s)

Pi−1(s)
, ∀i > 2.

The second equality is due to the homogeneity of platoon.
Based on the above analysis, we can simply analyze one signal
and achieve all other string stability for homogeneous CACC.
In the literature, the frequency-domain criterion is widely used
to analyze CACC SS. By tuning the feedback and feedforward
control parameters, the magnitude of transfer function can be
limited no greater than 1, indicating signals are not amplified
along vehicles and the string is stable. However, the tuning
is basically conducted by trial and error, posing a degree of
difficulty to the design process.

It is noteworthy that headway time h plays an important role
in CACC. Generally speaking, the larger headway is chosen,
the easier to maintain the platoon string stable. According
to the spacing policy given in (2), the desired inter-vehicle
distance is proportional to h. Longer distance gives vehicles
more reaction time to follow their predecessors, but also leads
to low road capacity. The best CACC is to find the lowest
headway time and the corresponding controller such that the
traffic throughput is increased and the string is still stable.

Another SS criterion is defined in time domain by [22].
Note that (3) or (4) is also called the H∞ norm. According
to the linear control theory given by [28, Theorem 5.4],
the H∞ norm of a transfer function is induced by the L2
norm on input and output. As a consequence, the condition
that �SS∗

i,1( jω)�H∞ ≤ 1 is equivalent to that the L2 norm
between input q1 and output qi is no greater than 1. The
time-domain SS criterion is given as follows.

Definition 2 (L2 string stability [22]): Suppose a platoon
of vehicles drive in a string and the system is steady at the
equilibrium. The response between q1 and qi is called L2-gain
≤ 1 if starting from the initial steady state, for arbitrary input
q1(t) ∈ L2[0,∞), the L2 norm of response qi (t) is bounded
by �qi (t)�L2 ≤ �q1(t)�L2 . If the inequality holds for all i ,
the CACC system is called L2 string stable. A conservative

condition is by checking if the response between qi and qi−1
has L2-gain ≤ 1 for all i .

With the time-domain SS definition, it is possible to synthe-
size CACC controllers in state space. One major difficulty in
designing is the existence of time delays. In the next section,
a new CACC framework is developed so that the system can
be described by linear time-delay dynamics.

III. CACC FRAMEWORK

According to the definitions of inter-vehicle distance and
spacing policy, the time derivative of distance error has

�ḋi(t) = �vi (t)− hai (t)

where �vi (t) = vi−1(t) − vi (t) is the velocity gap between
the two adjacent vehicles. Furthermore, the time derivative of
�vi has

�v̇i (t) = ai−1(t)− ai (t)

and according to the dynamics in (1), we have

ȧi (t) = 1

τ
[ui (t − l1)− ai (t)]

ȧi−1(t) = 1

τ
[ui−1(t − l1)− ai−1(t)].

After integrating the above equations together, the CACC
system can be described by⎡
⎢⎢⎣
�ḋi

�v̇i

ȧi

ȧi−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 −h 0
0 0 −1 1
0 0 − 1

τ 0
0 0 0 − 1

τ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
�di

�vi

ai

ai−1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
1
τ
0

⎤
⎥⎥⎦ ui (t − l1)+

⎡
⎢⎢⎣

0
0
0
1
τ

⎤
⎥⎥⎦ ui−1(t − l1).

Hereinafter, time variable t is omitted if one can infer accord-
ing to the context. Denote control input u = ui and external
disturbance w = ui−1. The above established dynamics can
now be rewritten in an interconnected form{

ẋ1 = A11x1 + A12x2 + Bu(t − l1)

ẋ2 = A22x2 + Cw(t − l1)
(5)

where the subsystem states x1 = [�di ,�vi , ai ]T and x2 =
ai−1, and dynamics matrices have

A11 =
⎡
⎣ 0 1 −h

0 0 −1
0 0 − 1

τ

⎤
⎦ , A12 =

⎡
⎣ 0

1
0

⎤
⎦ , B =

⎡
⎣ 0

0
1
τ

⎤
⎦ ,

A22 = − 1

τ
, C = 1

τ
.

x1 represents the local measurement of vehicle i , and x2 is
the transmitted data from the predecessor. A linear controller
is used to determine the control input u based on x1 and x2,
and due to transmission delay, it is defined by

u(t) = K1 x1(t)+ K2 x2(t − l0)
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where K1 = [κ1, κ2, κ3] is the feedback gain and K2 = κ4
is the feedforward gain. If K2 is specified to 0, the system
becomes an ACC system.

According to the analysis in previous section, we focus on
the SS of control input signals for homogeneous CACC. The
SS of position, velocity, acceleration, and distance error can
be obtained by the same CACC. Based on the conservative
condition given in Definition 2, the system is string stable
if (5) has �u(t)�L2 ≤ �w(t)�L2 for arbitrary w(t) ∈ L2[0,∞)
from initial x(0) = 0. In addition, if there is no disturbance,
i.e. w = 0, the dynamics is desired to be asymptotically
stable at zero state. Therefore, the problem now becomes
synthesizing K1 and K2 for (5) such that it has L2-gain ≤ 1
with input w and output u, and is asymptotically stable at
zero state when w(t) = 0. It is equivalent to the H∞ control
of a time-delay system. After inserting the controller model,
the dynamics becomes{

ẋ1 = A11x1 + A12x2 + B K1x1(t − l1)+ B K2x2(t − l2)

ẋ2 = A22x2 + Cω(t − l1)
(6)

where l2 = l1 + l0, and the output is

z(t) = K1 x1(t)+ K2 x2(t − l0).

Based on the Laplace transform, the flow of signals in
CACC is illustrated in Fig. 2. The controller input is composed
of distance error �di , velocity gap �vi , own acceleration ai ,
and preceding acceleration ai−1. The first three variables are
measured by local detectors including radar/lidar, speedometer,
and accelerometer, and the last variable is wireless transmitted
from predecessor accelerometer. The signal flow between ui

and ui−1 can now be described by the transfer function

T (s) = Ui (s)

Ui−1(s)

= e−l1s(e−l0sκ4s2 + κ2s + κ1)

τ s3 + (1 − e−l1sκ3)s2 + e−l1s(κ1h + κ2)s + e−l1sκ1
.

(7)

Note that our CACC uses a linear control model in the archi-
tecture, which is quite simple compared to other structures.
In [18] and [22], the actual control commands are delivered
to actuator after a filter which is composed of the inverse
transfer functions of spacing policy and vehicle model. In [23],
authors design a high-order state-space controller, which may
cause difficulty and inaccuracy in implementation. Our control
model is direct and simple, but still needs to concern SS.

Without loss of generality, denote n as the state dimension
of (5). Suppose the system starts from an initial zero state, i.e.

x1(θ1) = 0, −l1 ≤ θ1 ≤ 0,

x2(θ2) = 0, −l2 ≤ θ2 ≤ 0

and there is no disturbance before t = 0, i.e. ω(t) = 0, t < 0.
Denote xt as the translation operator acting on the trajectory:

xt = x(t + θ), −l2 ≤ θ ≤ 0

since l2 ≥ l1. Define the continuous norm � · �c to be

�xt�c = sup
−l2≤θ≤0

�x(t + θ)�.

Fig. 2. CACC control structure.

C is a set C[−l2, 0] of real valued continuous functions over
[−l2, 0]. The following theorem extends the time-delay H∞
theory to the string stability of CACC system.

Theorem 1: Consider the system given by (6). Suppose
υ1, υ2, υ3 : R

+ → R
+ are continuously positive-definite

functions. Define a continuous differentiable functional V (xt ) :
R

n × C → R that has V (0t ) = 0 and

υ1(�x(t)�) ≤ V (xt ) ≤ υ2(�xt�c). (8)

If for any nonzero disturbance, the time derivative of V
satisfies

�z(t − l1)�2 − �ω(t − l1)�2 + V̇ (xt ) ≤ 0 (9)

and when ω(t) = 0, V̇ has

V̇ (xt) ≤ −υ3(�x(t)�) (10)

then the system has L2-gain ≤ 1 and is asymptotically stable
when ω(t) = 0.

Proof: When external disturbance exists, define the system
performance as

JT =
∫ T

t=0

(
�z(t)�2 − �ω(t)�2

)
dt .

It can be rewritten as

JT =
∫ T +l1

t=0

(
�z(t − l1)�2 − �ω(t − l1)�2

)
t

=
∫ T +l1

t=0

(
�z(t − l1)�2 − �ω(t − l1)�2 + V̇ (xt )

)
dt

−V (xT+l1)

since we assume x(θ) = 0 and ω(θ) = 0 for −l2 ≤ θ ≤ 0,
and at t = 0 it has V (x0) = 0. By the condition given in (9),
the following inequality holds for all T > 0∫ T

t=0

(
�z(t)�2 − �ω(t)�2

)
dt ≤ 0.

Therefore, for any ω ∈ L2[0,∞) and starting from zero initial
state, the system has

�z(t)�L2 ≤ �ω(t)�L2 .

When there is no disturbance, (8) and (10) are actu-
ally conditions of Lyapunov-Krasovskii stability theorem for
time-delay systems [29]. The proof is complete.

According to Theorem 1, the core of CACC controller
synthesis is to find V and K1, K2 such that conditions
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in (8)–(10) are satisfied. In the next, we introduce a quadratic
Lapunov-Krasovskii functional candidate [30] for V and
use linear matrix inequality (LMI) method to search the
proper K1 and K2.

IV. LMI-BASED SYNTHESIS OF CACC CONTROLLER

LMI, as a special case of convex optimization, has been
fully developed in the past few years [31]. Many problems
in control theory can be expressed by LMIs. A number of
LMI tools are developed to easily formulate and solve LMI
problems. Inspired by the work in [30], we use LMIs to
synthesize CACC controllers to ensure string stability. The
theorem is reestablished to fit the specified dynamics (6) of
our problem.

Theorem 2: Consider the time-delay system (6) with given
time delays l0, l1, and l2 = l0 + l1. For positive constants ε1,
ε2, ε3, ε4, if there exist symmetric matrices L j > 0, R j ≥ 0,
W j > 0, Y j ≥ 0, Y j ≥ 0, and any appropriately dimensioned
matrices Vj , M j , M j with j = 1, 2, such that the following
inequalities hold⎡

⎢⎢⎣
	

√
l1ψ

T
2

√
l2ψ

T
3 ψT

5∗ − W1 0 0
∗ ∗ − W2 0
∗ ∗ ∗ − I

⎤
⎥⎥⎦ ≤ 0 (11)

⎡
⎢⎢⎢⎢⎣
�

√
l1�

T
2

√
l2�

T
3 �T

5 �T
6∗ − W1 0 0 0

∗ ∗ − W2 0 0
∗ ∗ ∗ − I 0
∗ ∗ ∗ ∗ − I

⎤
⎥⎥⎥⎥⎦ ≤ 0 (12)

[
Y j M j

∗ L j W−1
j L j

]
≥ 0, j = 1, 2 (13)[

Y j M j

∗ L j W−1
j L j

]
≥ 0, j = 1, 2 (14)

where 	 = ψ1 + ψ4 + ψT
4 + l1 Y1 + l2 Y2, � = �1 +�4 +

�T
4 + l1Y 1 + l2Y 2, and ψ1 to ψ5, �1 to �6, shown at the

bottom of this page.
Then the controller u(t) = K1 x1(t) + K2 x2(t − l0) with

gains K1 = V1 L−1
1 and K2 = V2 L−1

2 is an H∞ controller
that renders the system L2-gain ≤ 1 for any ω(t) ∈ L2[0,∞)
and asymptotically stable when ω(t) = 0.

Proof: To prove the theorem, the following quadratic
Lyapunov-Krasovskii functional candidate is adopted

V (xt ) =
2∑

j=1

(
x T

j (t)Pj x j (t)+
∫ t

t−l j

x T
j (s)Q j x j (s)ds

+
∫ 0

−l j

∫ t

t+θ
ẋ T

j (s)Z j ẋ j (s)dsdθ
)

where Pj > 0, Q j ≥ 0, and Z j > 0. First consider the
case when disturbance exists. From Newton-Leibniz formula,
formulate the following equalities for any matrices N j , j =
1, 2 with appropriate dimensions

0 = 2ζ T (t)N j

[
x j (t)− x j (t − l j )−

∫ t

t−l j

ẋ j (s)ds

]
(15)

where ζ(t) = [xT
1 (t), x T

2 (t), x T
1 (t−l1), x T

2 (t−l2), ω
T (t−l1)]T .

In addition, formulate equalities for any matrices X j ≥ 0,
j = 1, 2

0 = l jζ
T (t)X jζ(t)−

∫ t

t−l j

ζ T (t)X j ζ
T (t)ds. (16)

Calculate the time derivative of V (xt ) along the dynamics (6).
After adding �z(t − l1)�2 − �ω(t − l1)�2 and the right-hand

ψ1 =

⎡
⎢⎢⎢⎢⎣

A11L1 + L1 AT
11 + R1 A12 L2 BV1 BV2 0

∗ A22L2 + L2 AT
22 + R2 0 0 C

∗ ∗ −R1 0 0
∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

ψ2 = [A11L1, A12L2, BV1, BV2, 0]
ψ3 = [0, A22L2, 0, 0,C]
ψ4 = [M1,M2,−M1,−M2, 0]
ψ5 = [0, 0, V1, V2, 0]

�1 =

⎡
⎢⎢⎣

A11L1 + L1 AT
11 + R1 A12 L2 BV1 BV2

∗ A22L2 + L2 AT
22 + R2 0 0

∗ ∗ −R1 0
∗ ∗ ∗ −R2

⎤
⎥⎥⎦

�2 = [A11L1, A12L2, BV1, BV2]
�3 = [0, A22L2, 0, 0]
�4 = [M1,M2,−M1,−M2]
�5 = [diag(

√
ε1,

√
ε2,

√
ε3)L1, 0, 0, 0]

�6 = [0,√ε4L2, 0, 0].
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sides of (15)–(16), we have

V̇ (xt )+ �z(t − l1)�2 − �ω(t − l1)�2

= ζ T (t)

[
φ1 + l1φ

T
2 Z1φ2 + l2φ

T
3 Z2φ3+

φ4 + φT
4 + φT

5 φ5 + l1 X1 + l2 X2

]
ζ(t)

−
2∑

j=1

∫ t

t−l j

ηT
j (t, s)

[
X j N j

∗ Z j

]
η j (t, s)ds

where η1(t, s) = [ζ T (t), ẋ T
1 (s)]T , η2(t, s) = [ζ T (t), ẋ T

2 (s)]T ,
and φ1–φ5, shown at the bottom of this page.

According to the analysis in Theorem 1, to obtain the H∞
control, one needs to have V̇ (xt )+�z(t−l1)�2−�ω(t−l1)�2 ≤
0, which is fulfilled if

⎡
⎢⎢⎣
φ1+φ4+φT

4 +l1 X1+l2 X2
√

l1φ
T
2 Z1

√
l2φ

T
3 Z2 φ

T
5∗ −Z1 0 0

∗ ∗ −Z2 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ ≤ 0

(17)[
X j N j

∗ Z j

]
≥ 0. (18)

The first inequality is obtained by the Schur complement.
Define

� = diag
(

P−1
1 , P−1

2 , P−1
1 , P−1

2 , I
)

� = diag
(
�, Z−1

1 , Z−1
2 , I

)
.

Pre- and post-multiply the left-hand side of (17) by �. Pre-
and post-multiply the left-hand side of (18) by diag(�, P−1

j ).
Make the following changes in variables

L j = P−1
j , R j = L j Q j L j , Vj = K j L j , Y j = �X j�,

M j = �N j L j , W j = Z−1
j .

Then conditions in (17) and (18) are replaced by (11) and (13).

Similar for the case when ω(t) = 0, introduce the following
equalities with matrices N j and X j ≥ 0, j = 1, 2

0 = 2μT (t)N j

[
x j (t)− x j (t − l j )−

∫ t

t−l j

ẋ j (s)ds

]
(19)

0 = l jμ
T (t)X jμ(t)−

∫ t

t−l j

μT (t)X jμ
T (t)ds (20)

where μ(t) = [xT
1 (t), x T

2 (t), x T
1 (t − l1), x T

2 (t − l2)]T . Now
along the non-disturbance dynamics of (6), calculate the time
derivative of V and add the right-hand sides of (19)–(20) as
well as xT

1 diag(ε1, ε2, ε3)x1 + ε4 x T
2 x2

V̇ (xt)+ x T
1 diag(ε1, ε2, ε3)x1 + ε4 x T

2 x2

= μT (t)

[
λ1 + l1λ

T
2 Z1λ2 + l2λ

T
3 Z2λ3 + λ4+

λT
4 + λT

5 λ5 + λT
6 λ6 + l1 X 1 + l2 X 2

]
μ(t)

−
2∑

j=1

∫ t

t−l j

ρT
j (t, s)

[
X j N j

∗ Z j

]
ρ j (t, s)ds

where ρ1(t, s) = [μT (t), ẋ T
1 (s)]T , ρ2(t, s) = [μT (t), ẋ T

2 (s)]T ,
and λ1–λ6, shown at the bottom of this page.

If V̇ (xt )+x T
1 diag(ε1, ε2, ε3)x1+ε4 x T

2 x2 ≤ 0, by Theorem 1
we know the dynamics is stabilizable. This can be fulfilled by
the constraints⎡

⎢⎢⎢⎢⎣
λ1+λ4+λT

4 +l1 X1+l2 X2
√

l1λ
T
2 Z1

√
l2λ

T
3 Z2 λ

T
5 λT

6∗ −Z1 0 0 0
∗ ∗ −Z2 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

≤ 0

(21)[
X j N j

∗ Z j

]
≥ 0. (22)

Define multiplier matrices

� = diag
(

P−1
1 , P−1

2 , P−1
1 , P−1

2

)
� = diag

(
�, Z−1

1 , Z−1
2 , I, I

)
.

φ1 =

⎡
⎢⎢⎢⎢⎣

P1 A11 + AT
11 P1 + Q1 P1 A12 P1 B K1 P1 B K2 0

∗ P2 A22 + AT
22 P2 + Q2 0 0 P2C

∗ ∗ −Q1 0 0
∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

φ2 = [A11, A12, B K1, B K2, 0], φ3 = [0, A22, 0, 0,C]
φ4 = [N1, N2,−N1,−N2, 0], φ5 = [0, 0, K1, K2, 0].

λ1 =

⎡
⎢⎢⎣

P1 A11 + AT
11 P1 + Q1 P1 A12 P1 B K1 P1 B K2

∗ P2 A22 + AT
22 P2 + Q2 0 0

∗ ∗ −Q1 0
∗ ∗ ∗ −Q2

⎤
⎥⎥⎦

λ2 = [A11, A12, B K1, B K2], λ3 = [0, A22, 0, 0]
λ4 = [N1, N 2,−N 1,−N 2]
λ5 = [diag(

√
ε1,

√
ε2,

√
ε3), 0, 0, 0], λ6 = [0,√ε4, 0, 0].
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Pre- and post-multiply (21) by �; pre- and post-multiply the
constraint in (22) by diag(�, L j ); define the change variables

M j = �N j L j , Y 1 = �X j�.

Thus the conditions (21) and (22) are replaced by (12)
and (14). The proof is complete.

The feasible solutions K1 and K2 define the CACC con-
troller u(t) = K1x1(t) + K2 x2(t − l0) for vehicles such that
the platoon is string stable. Note that conditions in (13)–(14)
are not LMIs due to terms L1 W−1

1 L1 and L2 W−1
2 L2. Now

we borrow the idea of solving a cone complementary problem
in [32] to deal with that. Define new variables S1 and S2 such
that L1 W−1

1 L1 ≥ S1 and L2 W−1
2 L2 ≥ S2. The conditions

in (13)–(14) are fulfilled if[
Y j M j

∗ Sj

]
≥ 0,

[
Y j M j

∗ Sj

]
≥ 0.

By the Schur complement, L j W−1
j L j ≥ Sj can be rewritten as[

S−1
j L−1

j

∗ W−1
j

]
≥ 0.

Defining new variables Tj , elements in the above inequalities
can be replaced by Tj = S−1

j , Pj = L−1
j , Z j = W−1

j . The
original non-convex problem (11)–(14) is now converted to
a cone complementary problem with nonlinear minimization
objective and LMI conditions as follows

min Trace

⎛
⎝ 2∑

j=1

Sj Tj + L j Pj + W j Z j

⎞
⎠ (23)

s.t .

(11), (12), and[
Y j M j

∗ Sj

]
≥ 0,

[
Y j M j

∗ Sj

]
≥ 0,[

Tj Pj

∗ Z j

]
≥ 0,

[
Sj I
∗ Tj

]
≥ 0,[

L j I
∗ Pj

]
≥ 0,

[
W j I
∗ Z j

]
≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

If the solution of the above problem is 3n, that is
Trace

(∑2
j=1 Sj Tj + L j Pj + W j Z j

)
= 3n, then the con-

troller with gains K1 = V1 L−1
1 and K2 = V2 L−1

2 are
the desired CACC controller according to Theorem 2. Unfor-
tunately, it is still difficult to find the global optimal solu-
tion to the nonlinear problem. In the literature, linearization
method [25], [30] is widely used to address this issue. Based
on that, an iterative algorithm is designed here to find a feasible
solution that satisfies Theorem 2.

Algorithm 1: For given time delays l0, l1, l2 = l0 + l1, and
headway time h.

Step 1. Find a feasible set (Sj0, Tj0, L j0, Pj0,W j0, Z j0), j =
1, 2 to constraints of (24), and let k = 0. If no feasible
solution exists, then exit.

Step 2. Solve the following LMI problem for the
variables L j , R j , Vj ,W j , Sj , Tj , Pj , Z j ,Y j ,M j ,Y j ,

M j , j = 1, 2

min Trace

( ∑2
j=1 SjkTj + Sj Tjk + L jk Pj + L j Pjk

+W jk Z j + W j Z jk

)
s.t . (24) is satisfied

Denote the feasible solution as Sj,k+1 = Sj , Tj,k+1 =
Tj , L j,k+1 = L j , Pj,k+1 = Pj ,W j,k+1 =
W j , Z j,k+1 = Z j , j = 1, 2.

Step 3. For the solution in Step 2, if constraints (13)–(14) are
satisfied, the H∞ controller is found and output K1
and K2. If such solution is not found within a specified
number of iterations, say kmax, then exit. Otherwise,
let k = k + 1 and return to Step 2.

Since LMIs problem is a special case of convex opti-
mization, its infeasible conditions are equivalent to infeasible
conditions of convex optimization. More details on this subject
are available in [33]. Back to our algorithm, if no solution is
found within kmax, it is probably because l0 and l1 are too
large. One solution is to increase the value of h, i.e. to enlarge
inter-vehicle distance, so that the following vehicle has more
reaction time in response to its predecessor movement.

In the LMI problem of Algorithm 1, if we specify K2 = 0
and only let K1 be variable, it becomes an ACC controller syn-
thesis process. The controller takes only local measurements
as input and has u(t) = K1 x1(t).

From the proof of Theorem 2, the time derivative of Lya-
punov function along dynamics trajectory without disturbance
is bounded by V̇ (xt ) ≤ −x T

1 diag(ε1, ε2, ε3)x1 − ε4 x T
2 x2 with

parameters ε∗. Any positive ε∗ can ensure the string stability,
but the larger parameters the inequality holds for, the better
stability the system potentially has. One can tune the values
to achieve their desired performance. In practice, vehicle is
preferred to accurately follow its predecessor at the desired
distance, so ε1 is usually set larger than the rest ε∗.

V. SIMULATION STUDY

This section tests the performance of our method on
the model that is present in [34]. The authors have used
least-squares method to identify the dynamics of The Toyota
Prius III Executive, and the model is expressed by (5) with
parameters τ = 0.1, l1 = 0.2. The wireless communication
delay is estimated equal to 150 ms, i.e. l0 = 0.15. In literature
such as [18], [20], [22], [23], it is quite common to design
CACC controllers on identified models, and then test on
real vehicle platoons. This process is beneficial to reduce
design difficulties. With the model, we now apply our CACC
structure and controller synthesis algorithm, and try to find
the minimum headway h that makes the platoon string stable.
It first starts from h = 0 and checks if Algorithm 1 can find
a feasible solution within kmax = 50 iterations. If not, add an
increase �h = 0.1 to h and repeat the algorithm for the new
headway. The process continues until the minimum feasible
hmin is found. The stability parameters choose ε1 = 1 and
ε2 = ε3 = ε4 = 10−4 to emphasize the distance tracking
performance.
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Fig. 3. Magnitude of transfer function T (s) = Ui (s)Ui−1(s)
with different

headway time h.

By the proposed method, the minimum hmin is searched
equal to 0.6 and the output CACC controller has K1 =
[0.5690, 2.0172,−0.2584]T and K2 = 0.0311. Fig. 3 gives
the Bode magnitude plot of the control input transfer function
according to (7). The H∞ norm is less than 1, indicating the
whole platoon is string stable. For comparison, |T ( jω)| of
other h under the same K1 and K2 are plotted together in the
same figure. The system is no longer string stable when h is
smaller than hmin. Due to the impact of state delay and input
delay, the following vehicle is not able to respond promptly to
predecessor behaviors if inter-vehicle distance is very small.
In [34], a manually selected CACC controller is designed for
the same model and authors found that the minimum headway
time to ensure string stability is hmin = 0.67. Compared to
their result, our method is able to autonomously synthesize a
CACC controller with smaller headway time.

To give a time-domain illustration of string stability, we sim-
ulate a platoon of six vehicles with the synthesized CACC
controller and the minimum feasible hmin. The platoon is
initially set at rest and the leader is guided by a constant
acceleration until reaching speed 20 m/s. Velocity, accelera-
tion, and distance error responses of the whole platoon are
depicted in Fig. 4. For comparison, we repeat the simulation
with the same setting but change the headway time to h = 0.4,
and plot results in Fig. 5. Signals in Fig. 4 are gradually
attenuated in propagation, while those in Fig. 5 are amplified.
It clearly illustrates the string stability of the case hmin and
the lack thereof for h = 0.4. If the platoon size is further
increased, amplified signals can cause serious problems for the
whole system. Vehicles at the tail are commanded by much
larger acceleration or deceleration, which may eventually lead
to abrupt halt or traffic accident. In practice, the CACC platoon
is required to use a headway time that is larger or at least equal
to hmin.

Urban Dynamometer Driving Schedule, short for UDDS,
is a driving test designed by the United States Environmental
Protection Agency to represent urban driving conditions [35].
The above platoon under the CACC controller and with the

Fig. 4. Velocity, acceleration, and distance error responses of string-stable
CACC platoon with hmin = 0.6.

Fig. 5. Velocity, acceleration, and distance error responses of string-unstable
CACC platoon with h = 0.4.

minimum feasible hmin is tested following UUDS driving
cycle. Fig. 6 presents part of speed trajectories of vehicles.
Under the effect of string stability, the tailer has a smoother
curve of movement than the leader. It increases comfort for
passengers and reduces unnecessary acceleration that benefits
fuel savings. Trajectories of distance errors and velocity gaps
are depicted in Fig. 7. These signals are limited to small values
and are obviously attenuated along the platoon. When more
vehicles are incorporated in CACC, traffic condition can be
significantly improved, and road capacity is increased with
the much shorter inter-vehicle distance.

To show the synthesis capability, we now consider different
pairs of delays l0, l1 and use the algorithm to find the
corresponding minimum feasible headway times. The results
are depicted in Fig. 8. The tendency is that longer delays
generally require larger headway times to maintain SS. But
there are also exceptions. The main reason is that the criteria
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Fig. 6. Speed trajectories of vehicles following UDDS driving cycle.

Fig. 7. Trajectories of distance errors and velocity gaps following UDDS
driving cycle.

Fig. 8. Minimum feasible headway hmin for different delays l0 , l1.

in Theorem 2 are only sufficient conditions. There is still space
to further optimize obtained headway times and controllers.
The advantage of our algorithm is to provide a convenient

and computationally efficient way to design string-stable
controllers.

VI. CONCLUSION

Most CACC controller parameters in previous literature are
manually selected. In this paper we propose an LMI-based
synthesis method that can autonomously search parameters for
the time-delay CACC system to ensure SS. This state-space
approach is theoretically conservative in comparison to fre-
quency observation method, because of the relaxation of LMIs
and the quadratic Lyapunov-Krasovskii functional candidate.
But in simulations it is observed that our method achieves
smaller feasible headway time than other manually designed
CACC. Its computational efficiency supported by powerful
LMI solvers makes it suitable for the synthesis of string-stable
CACC controllers.

Note that in this paper we only test the method on an
identified model, not on a real vehicle platoon. When applied
to real systems, a variety of issues need to be carefully
addressed, such as measurement errors, packet loss in com-
munication, mechanical wear, and so forth. These issues may
seriously deteriorate CACC performance. Besides, in many
cases a group of heterogeneous vehicles with different dynam-
ics may form a platoon and the homogeneous CACC controller
is no longer applicable. Our future work is to consider
these complicated issues and test CACC on a real vehicle
platoon.
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