
Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
VRCAI 2011, Hong Kong, China, December 11 – 12, 2011.
© 2011 ACM 978-1-4503-1060-4/11/0012 $10.00

Multicage Image Deformation On GPU

Weiliang Meng1∗ Xiaopeng Zhang1† Weiming Dong1‡ Jean-Claude Paul2§

1LIAMA - NLPR, Institute of Automation, CAS, China
2INRIA, France

Figure 1: Image deformation based on the multicage using GPU in realtime. The multicage has 4 polygons with 68 vertices(ignoring the
image bounding box), two of which are embedded in one. (a) is the original image, we set the ROI by the multicage in (b) and deform the
image in (c). (d) is as the same as (c) with the multicage removed for better observation. Region 1 and 2 marked in blue in (b) are enclosed
by polygons which will preserve the features when the peripheral polygons deformed. Region 3 and 4 marked in blue in (c) are the deformed
results of region 1 and 2, with tiny automatical adjustments of the feature by our algorithm. The “ two lotus” image size is 1024 ∗ 768.

Abstract

As a linear blending method, cage-based deformation is widely
used in various applications of image and geometry processing. In
most cases especially in the interactive mode, deformation based
on embedded cages does not work well as some of the coefficients
are not continual and make the deformation discontinuous, which
means existing “spring up” phenomenon. However, it’s common
for us to deform the ROI(Region of Interest) while keeping local
part untouched or with only small adjustments. In this paper, we
design a scheme to solve the above problem. A multicage can be
generated manually or automatically, and the image deformation
can be adjusted intelligently according to the local cage shape to
preserve important details. On the other hand, we don’t need to
care about the pixels’ position relative to the multicage. All the
pixels go through the same process, and this will save a lot of time.
We also design a packing method for cage coordinates to pack all
the necessary coefficents into one texture. A vertex shader can be
used to accelerate the deformation process, leading to realtime de-
formation even for large images.

CR Categories: Numerical Analysis [G.1.1]: Interpolation—
Interpolation formulas; Information Interfaces and Presentation
[H.5.1]: Multimedia Information Systems—Animations; Computer
Graphics [I.3.3]: Picture/Image Generation—Display algorithms;
Computer Applications [J.6]: computer-aided engineering—
Computer-aided design.

∗e-mail:weiliang.meng@ia.ac.cn
†e-mail:xiaopeng.zhang@ia.ac.cn
‡e-mail:weiming.dong@ia.ac.cn
§email:paul@inria.fr

Keywords: image deformation, GPU, cage, coordinates

1 Introduction

Image deformation has a lot of methods to be used, in which linear
blending and corresponding variants are the most practical as the
high speed deformation. For a typical linear blending method, the
point on the object is transformed by a linear combination of affine
transformations. The user only needs to construct a few handles
and then manipulate them to control the shape. Free-form deforma-
tion belongs to linear blending methods, but the regular structure
restriction makes the control of concave objects complicated. Al-
though skeleton-based deformations can provide natural control for
object with rigid limbs, they are less convenient for flexible regions.
Cage-based interactive space deformation is booming as it can de-
form a significant portion of the object, leading to easy bulging and
thinning of ROI(Region Of Interest). The cage can be constructed
interactively or manually in advance, and the object vertices are
represented as linearly combinations of cage vertices (may be also
with edge or face normals). The weights of the combination can
be computed before the deformation and associate with the object
vertices, which can be called ‘binding’ process. During the pose
time, i.e. the period that a user manipulates the cage vertices to de-
form the object, the weights are fixed and using the cage vertices’
position to generate the deformed object.

Unfortunately, most cage-based method doesn’t deal with the em-
bedding cases very well, especially for the interactive deformation.
Focusing on the situation in 2D case as shown in Fig.1, where the
region is split by some embedded polygons(i.e. 2D cage) which we
called ‘multicage’, when we move the cage vertices interactively,

155

we hope all the region will deform smoothly as long as the moving
is reasonable(no overmuch changes that leading to overlap or cage
intersection). Every isolated part should not go beyond its bound-
ary to make sure the deformations are cage-aware, or else the cage
can’t have a leading meaning for the deformation. For ideal state,
the cage should also be generated interactively to satisfy the special
needs of the users.

In this paper, we study the case and propose a method to keep
each isolated region details smoothly during the pose time. We
also provide a packing method for the weights in order to warping
the large image in realtime on GPU. Previous acceleration methods
don’t pack the weights, leading to many textures to be set during the
preprocess. As the number of textures has limits for most display
card, this confines the cage vertices’ numbers. Using our method,
the weights are packed into a regular single texture and can be ad-
dressed quickly during the rendering time. The multicage can have
hundreds of vertices for medium sized images, and dozens of ver-
tices for large images, which mainly depend on the memory.

Our contribution can be listed as follows:

• A novel scheme for warping images based on embedded
cages. The deformation is cage-aware conforming to the em-
bedded cages. All the pixels will go through the same process,
having no bearing on their positions to the multicage.

• A new packing method for cage coordinates to deform images
on GPU in real time.

Our technique can be applied to intelligent image warping and an-
imation. The content of the image will be adjusted intuitively and
automatically. GPU is used for generating realtime intuitive cage-
based deformation. Based on our method, any possible image warp-
ing result can be easily achieved by using different multicages on
the deformed image repeatedly.

2 Related work

Plenty of methods can compute high-quality shape-preserving de-
formations based on the selected handles, having the form of points
[Bookstein 1989], lines [Beier and Neely 1992] or bones[Weber
et al. 2007], and polygon grids [MacCracken and Joy 1996]. Users
modify the positions and orientations of handles interactively to
achieve an intuitive deformation. The handles can be on the surface
of the targets [Igarashi et al. 2005; Botsch et al. 2006; Sorkine and
Alexa 2007; Botsch and Sorkine 2008], or can be extended to other
off-surface handles[Botsch et al. 2007]. The deformation is heav-
ily rely on optimization at pose time, and most mentioned methods
above are non-linear which recede the efficiency and make them
too slow for deforming high-resolution images or objects.

Using a weighted blend of handle transformation, the computation
can be fast at pose time. Schaefer et al. [2006] use linear com-
bination of Moving Least Squares (MLS) for image warping, and
the deformation time is linear proportional to the number of sam-
ple grid vertices. Weng et al. [2008] deform images on GPU for
real-time performance based on the sketch, whose selection may be
troublesome for users.

Cage-based methods can also be seen as a handle-deformation tech-
nique, in which the handles are the cage vertices. This is essen-
tially a kind of linear blend skinning methods[Magnenat-Thalmann
et al. 1988], where the handle(cage vertex) transformations are re-
stricted to be translations. The core for cage-based method is how
to choose the weights in order to make the deformation smooth.
Many feasible ways have been proposed including Mean Value Co-
ordinates(MVC)[Floater 2003; Hormann and Floater 2006; Ju et al.

Figure 2: 2D Multicage demonstration. (a) a single polygon, (b)
4 polygons with embedding and neighboring, (c) 2 polygons with
intersect edges. (a) and (b) are multicages while (c) is not.

2005; Floater et al. 2005; Lipman et al. 2007], Harmonic Coor-
dinates(HC) [Derose and Meyer 2006; Joshi et al. 2007], Green
Coordinates(GC) [Lipman et al. 2008], and complex barycentric
coordinates(CBC) and its variants [Weber et al. 2009; Ben-Chen
et al. 2009]. Jacobson et al. [2011] develop linear blending weights
that produce smooth and intuitive deformations using many kinds of
handles including points, bones and cages. However, all the above
methods don’t display interactive image deformation for the em-
bedded cages case in their work, as this is a troublesome problem,
which will be solved by this paper.

Once the weights for cages are obtained, they will keep fixed
during the whole deformation. Real time deformation can be
achieved based on GPU, which is used for general purpose com-
putation[Luebke et al. 2004; Göddeke 2005]. Meng et al.[2009]
design a framework for the implementation of cage-based image
deformation method on GPU. Their method are limited by the num-
ber of cage vertices because of needing many unpacked textures.

Our work solves the embedded cages image deformation, and re-
move the limited number for cage vertices on GPU. Section 3 gives
the concrete process for embedded cage image deformation, and
section 4 shows the packing algorithm.

3 Multicage Deformation

In this section, we first give the definition of ‘multicage’ for the
image, and then show the pipeline to compute the coefficients of
the pixels relative to the multicage.

3.1 Definition of Multicage in 2D

A cage is a low polygon-count polyhedron that has a similar shape
to the enclosed object. The genus of the cage can be nonzero, mean-
ing that the cage can have a “hole”. Multi-cage is a series of inde-
pendent closed polygons in 2D with disjoint edges, i.e. the edges of
any two cages have no intersection. The polygons may be embed-
ded each other, or be neighbors, and can be concave(Fig.2). The
main difference between the cage and the multicage is that many
cages can construct a multicage, and we treat each closed poly-
gons(not the cage) independently rather than as a whole entity.

Most cage-based image deformation use only one cage to deform.
This is practical for the images with simple background. During the
deformation, contents in the cage are only affected by the enclosed
cage. However, the following facts during the image deformation
process can’t be ignored: all the pixels may have special meaning
with each other in the image especially for those with complicated
contents, therefore deforming any region of the image will affect
all the other pixels, some of which may have merely suffered unde-
tectable changes as the distances from the ROI to the pixels are far.
On the other hand, there are some special regions which we may
want to keep untouched or with only a little modification despite

156

Figure 3: The direction of polygons in the multicage.

the fact that the deformed region is close, as these special regions
have some features that we want to keep.

The situation mentioned above can be dealt with based on the mul-
ticage which is generated interactively, and no explicit deformed
information needs to be prescribed by the user. The generation
process for a multicage is as follows: for embedded polygons, the
outermost layer should be anti-clockwise. The second outermost
layer should be clockwise, the third should be anti-clockwise, and
so on(Fig.3). This pattern guarantees the signs of the cage coeffi-
cients for the simply connected regions, which in turn makes the
deformation smooth, or else the ”spring up” will appear during the
deformation.

3.2 Computing the coefficients of multicage vertices

In order to deforming the image, we transformed the image into a
mesh, with each pixel represents one mesh vertices, and four square
pixels adjacent with each other are connected as two triangles. Dur-
ing the warping, the vertices’ colors are fixed as the originals, with
only positions changed. The color of each face is interpolated us-
ing the vertices’ colors and the process is achieved automatically
by hardware.

For smooth deformation, each pixel will be represented as a lin-
ear combination of the multicage vertices. For a multicage with m
vertices, the weights ωj for one pixel p must satisfy the following
equation:

argminωj ,j=1,··· ,m

m∑
j=1

∫
Ω

‖Δωj‖2dV (1)

subject to:

ωj |Hk = δjk (2)

ωj |F is linear ∀F ∈ FC (3)
m∑

j=1

ωj(p) = 1∀p ∈ Ω (4)

where FC is the set of all multicage faces (i.e. edges of the poly-
gons in 2D case). Hk is the k−th handle(multicage vertex), δjk is

Figure 4: “Butterfly” deformation comparison. (1) and (2) are the
original image and result image repectively using only one polygon
for deformation, while (3) and (4) using the multicage. The exterior
polygon in (3) is the same as in (1) and deformed to the same state
as shown in (2) and (4). We can see that the region in the interior
polygon are kept well in (4). The image size is 800 ∗ 600.

Kronecker’s delta, and Ω denotes the domain enclosed by the given
shape(i.e. the image plane in the 2D case).

The mesh vertices’ position can be linear combination of the mul-
ticage vertices’ position, and the coefficients can be computed in
various ways [Floater 2003; Ju et al. 2005; Joshi et al. 2007; Lip-
man et al. 2007; Lipman et al. 2008; Weber et al. 2009]. We use the
concept ”cage coordinates”[Meng et al. 2009] or ”CC” for short to
represent all the available coefficients for the cage-based deforma-
tion.

Once the multicage is given, traditional methods will try to clas-
sify the pixels into three types for CC computation: IN CAGE,
ON CAGE, and OUT CAGE. Polygon scan conversion algorithm
can be used for the classification, and the process is more compli-
cated in the embedded cases.

However, for those cage coordinates that are infinitely differentiable
in and out of cages, the position of the pixel relative to the multicage
don’t need to be recognized. Considering the case that a point is in
the plane with a multicage, different multicage vertices will have
different impacts depending on the shape and position of the poly-
gons. As long as their impacts are all smooth, the combination of
them will still be smooth. What we need to do is to make sure that
the sum of coefficients should satisfy Equ.4. Furthermore, in order
to keep the image to be rectangle, we use image bounding box as
constraints as in [Meng et al. 2009], which is a clockwise polygon
belonging to the multicage(the black line in Fig.3).

The description of the computation flow is given by Algorithm 1.
The computation of coefficients of x relative to p depends on the
different choices for weights. The weights should satisfy the condi-
tion that C1 at the multicage vertices and C∞ everywhere else. Not
all the cage-based methods satisfy the conditions: MVC and HC are
good while GC and CBC are not, as when using GC or CBC for de-
formation, the ROI may be out of the polygons which indicates that
they are not continuous when across cage edges. Readers can refer
[Hormann and Floater 2006; Derose and Meyer 2006; Lipman et al.
2008; Weber et al. 2009] for the above coordinates respectively to
get the concrete computation process. When all the weights are

157

Algorithm 1 Computing CC base on the multicage
Associate each pixel x in the image with an array CCx of length
c.
/* c is the number of multicage vertices*/.
base = 0;
for all polygon p with i vertices in the multicage do

for all pixel x in the image do
Compute the coefficients of x relative to p to fill
CCx[base, base + i − 1].

end for
base = base + i;

end for
for all pixel x in the image do

Normalize CCx to make
∑c

j=0 CCx[j] = 1.
end for

obtained, we can use them for deformation.

Using the scheme we given above, the region in the closed
cage(may be with non-zero genus) will not change out of the cage
when only the peripheral polygons deformed, which in turn keeps
local details well(Fig.4), as long as the peripheral deformed poly-
gons don’t suffer overlap warping which is unreasonable. More-
over, most cage-based methods require the coefficients should be
non-negative:

0 ≤ ωj(p) ≤ 1, j = 1, · · · , m,∀p ∈ Ω (5)

as negative weights lead to unintuitive handle influences. In our
case, we found negative weights may lead to meaningful results.
In Fig.5, the outer “big” polygon in Fig.5.(d) is the same as in
Fig.5.(a). In Fig.5.(b) and Fig.5.(e), the “big” polygon is deformed
to the same position, mainly in the left part. The coefficients of the
pixels in the “small” polygon is negative relative to the “big” poly-
gon of the multicage in Fig.5.(d), and the deformation will move
the pixel to the opposite position of the “large” polygon, as shown
in the blue circle. Fig.5.(c) and Fig.5.(f) are the deformed results
which have removed the deformed polygons for better observation.
We can see that the petal in the “small” polygon are preserved better
in multicage in Fig.5.(f) as our expection than the ones in Fig.5.(c)
which using only one cage for deformation.

4 Cage Coordinates Packing

The coefficients of the cage for each pixels keep fixed during the
whole deformation process once they are computed based on the
initial multicage. In order to accelerate the deformation, we can
send them to GPU as textures. Currently, float type are extendedly
supported and no special treat need to be made even though the
coefficients are less than 0. [Meng et al. 2009] gives a workflow
for acceleration on GPU, but need too many textures. If the number
of cage vertices is more than 64, then we need 16 or more textures
which may not be supported by most display cards as this exceeds
the limit of the hardware.

Our deformation acceleration is based on the framework of [Meng
et al. 2009], with packing the CC into one texture to remove the
confine. In order to make the texture as square as possible to save
the graphic memory, the texture size is defined as follows:

For an image I with m × n(m > n) pixels, if the number of mul-
ticage vertices is c, then the width w of the texture is:

w = �(
√

�c/4� ∗ 	m/n
)� ∗ m (6)

Figure 6: The texture size is 5120 ∗ 3072. The last 2 blocks are
grey as they are empty. Note that the 0 value corresponding to the
“grey” color after the linear transformation.

and the height h of the texture is:

h = �(�c/4�/
√

�c/4� ∗ 	m/n
)� ∗ n (7)

Here,�.� and 	.
 are the ceil function and the floor function re-
spectively. The upper two equations are quite suitable for those
images with m > n. If m < n, we just exchange m and n, also
w and h correspondingly. In a nutshell, the texture is composed of
matrix blocks, and each block has the same size with the original
image size.

After we transmit this texture into GPU, the addressing in the tex-
ture for a pixel of the original image have the following rules: for a
pixel with (x, y) in the image with m ∗ n size, the coefficients on
the texture are the all the RGBA values with coordinates(x + k ∗
m,y + l ∗n), in which k, l are integers,k = 0, 1, · · · , l = 0, 1, · · · ,
and x+k ∗m <= w, y+ l ∗n <= h, w and h are give in Equ. (6)
and Equ. (7). Each channel represents one coefficient value which
is corresponding to a multicage vertex. For the reason that some
values of the coefficients may be less than 0, we can’t display the
packing texture directly by image. But as all the coefficients are
between −1 and 1, we can make a simply linear transformation to
generate the image for intuitive observation.

Fig.6 shows the packed cage coordinates texture. Using the above
packing method, the last few blocks may be empty(i.e. all the
RGBA channel of the blocks are zero), but this will have no in-
fluence for the computation on GPU, as GPU will not address this
part during the deformation computation.

As the multicage is generated interactively, the vertex shader pro-
gram will be generated automatically based on the multicage in the
subsequent process before the deformation. Different multicages
define different vertex shader programs, and the vertex shader pro-
gram will not be changed unless a new multicage is used.

5 Implementation

All the tests are on the PC which has an Intel Core i5 2.67GHz
CPU, together with an nV idiaGTX470 GPU and 4G of RAM.

The generation of multicage is mainly based on the user’s selection,
which allows more flexible control for the deformation. Using the
multicage and our algorithm, we can finish some meaningful im-
age warping process(Fig.7). We can keep the local details while
deforming the peripheral region(Fig.8), or we can make the local
deformation affects less area of the peripheral region(Fig.9).

158

Figure 5: (a), (b) and (c) use one cage for deformation, while (d), (e) and (f) use a multicage for deformation. (a) and (d) are the initial state.
The region in the blue circle is the mainly deformed part which can be detected. The petal in the blue circle are preserved better in (f) than in
(c). The image size is 500 ∗ 333.

Figure 7: Rectified “Pisa” tower. The left is the original and the right one is the result. The middle two images show the selected multicage
and its deformation respectively. Note that the lamp post before the tower is kept well, which is still as straight as the original. The image
size is 701 ∗ 525.

Table 1: Statistics of our tests.

Image Image size Multicage vertex number Use GPU
Preprocessing time Updating time

two lotus 1024 ∗ 768 68 9.034s less than 0.001s
butterfly 800 ∗ 600 44 3.478s less than 0.001s

lotus 500 ∗ 333 40 1.147s less than 0.001s
tower 375 ∗ 500 35 1.135s less than 0.001s
head 701 ∗ 525 29 1.465s less than 0.001s

heart-reflector 1000 ∗ 701 41 3.864s less than 0.001s

159

Figure 8: Deform the “head” on a car. (a) is the original, (b) and (c) show a single cage position and its deformed result based on the cage.
Here we don’t show the final cage for better observation. A new polygon is added in (d) to construct a multicage, compared to (b). Now we
deform the head by moving the ’big polygon’ to the same position as in (c), we get the result as (e). We can see that the face is kept better
after we use the multicage. The image size is 701 ∗ 525.

Table 1 shows the statistics of our tests. As different cage coordi-
nates will lead to the different computation time of CC, we don’t
give statistics time for CC computation. From the table, we can see
that the time for preprocessing on GPU is proportional to the ver-
tices numbers of the multicage and the image size, but this will not
exceed 10 seconds in our examples. The interactive deformation is
real time after the preprocessing.

For the packing method, we found that [Meng et al. 2009] method
can’t work for the cases when the number of multicage vertices is
over 60, which means the image ‘two lotus’ deformation can’t be
executed as it has 68 multicage vertices. The limit number is de-
pendent on the display card, and may be smaller for some low per-
formance ones, while our GPU acceleration method doesn’t have
such limit based on our packing pattern. We test the case with hun-
dreds of multicage vertices for deforming the image ‘lotus’, and our
method can still work normally.

6 Conclusion and Future Work

Aiming to solve the embedded cage image deformation that can’t
be properly dealt with by the previous methods, we successfully
introduce a new scheme that using multicage cage which is gener-
ated interactively to deform images on GPU in real time. A new
packing method for cage coordinates is designed to allow more
multicage vertices to be used for image deformation on GPU. The
experiments verify the effects of our algorithm, which means im-
age deformation based on cages can generate more available results
than previous methods.

On the other hand, the cage generation is still a little bothering for
dozens of clicking. We should generate the multicage based on im-
age segmentation or edge detection, and automatically simplify the
rough boundaries as the multicage. We can simply adjust the mul-
ticage according to our needs, and this will improve user experience
for the image deformation.

We can set multicage vertices’ moving function to create anima-
tion as in [Meng et al. 2009](see the accompany video), and in the
future, we should seek for the technique that sets the multicage’s
moving automatically according to the feature extracted from the
image or the positions of the embedded polygons, leading to more
naturally image deforming results and less setting work. We should
also look for how to use the multicage deformation as constraints
in image resizing or other image processing applications.

Acknowledgements

We thank the following Flickr (http://www.flickr.com/) members
and other websites for making their images available through cre-
ative common rights:seri* (lotus), Hayley Grimes (head), Stuck

in Customs (heart-reflector), http://fdsysl.5d6d.com(two lotus),
http://www.hncts.cn(tower) and http://www.sucai.com(butterfly).

This work is supported by National Natural Science Foundation of
China(No.60872120, 60902078, 61172104), Beijing Natural Sci-
ence Foundation(Content-Aware Image Synthesis and Its Appli-
cations, No.4112061), French System@tic Paris-Region(CSDL
Project) and ANR-NSFC(No.60911130368).

References

BEIER, T., AND NEELY, S. 1992. Feature-based image metamor-
phosis. In SIGGRAPH ’92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 35–42.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Vari-
ational harmonic maps for space deformation. ACM Trans.
Graph. 28, 3, 1–11.

BOOKSTEIN, F. L. 1989. Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Trans. Pattern Anal.
Mach. Intell. 11, 6, 567–585.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics, 213–230.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
Primo: coupled prisms for intuitive surface modeling. In Pro-
ceedings of the fourth Eurographics symposium on Geometry
processing, Eurographics Association, 11–20.

BOTSCH, M., PAULY, M., WICKE, M., AND GROSS, M. 2007.
Adaptive space deformations based on rigid cells. In Computer
Graphics Forum, vol. 26, Wiley Online Library, 339–347.

DEROSE, T., AND MEYER, M. 2006. Harmonic coordinates. Tech.
rep., Pixar Animation Studios.

FLOATER, M. S., KÓS, G., AND REIMERS, M. 2005. Mean value
coordinates in 3d. Comput. Aided Geom. Des. 22, 7, 623–631.

FLOATER, M. S. 2003. Mean value coordinates. Computer Aided
Geometric Design 20, 1 (March), 19–27.

GÖDDEKE, D. 2005. Gpgpu–basic math tutorial. Tech. rep., Nov.

HORMANN, K., AND FLOATER, M. S. 2006. Mean value coordi-
nates for arbitrary planar polygons. ACM Trans. Graph. 25, 4,
1424–1441.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. In SIGGRAPH ’05: ACM

160

Figure 9: Deform the view in the “heart-reflector”. (1) is the original image, (2) and (3) are the single cage selection and its corresponding
deformation, (4) and (5) are the multicage selection and its corresponding deformation. Only a bigger polygon is added in (4) compared to
(2). (6) is the difference image which is generated by subtract (5) from (3), and black color means no difference. We can see that the boundary
of the “heart” is kept better after we use the multicage. The image size is 1000 ∗ 701.

SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 1134–
1141.

JACOBSON, A., BARAN, I., POPOVIC, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
In SIGGRAPH ’11: ACM SIGGRAPH 2011 Papers.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character ar-
ticulation. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,
ACM, New York, NY, USA, 71.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coor-
dinates for closed triangular meshes. ACM Trans. Graph. 24, 3,
561–566.

LIPMAN, Y., KOPF, J., COHEN-OR, D., AND LEVIN, D. 2007.
Gpu-assisted positive mean value coordinates for mesh deforma-
tions. In SGP ’07: Proceedings of the fifth Eurographics sympo-
sium on Geometry processing, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 117–123.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green co-
ordinates. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,
ACM, New York, NY, USA, 1–10.

LUEBKE, D., HARRIS, M., KRÜGER, J., PURCELL, T., GOVIN-
DARAJU, N., BUCK, I., WOOLLEY, C., AND LEFOHN, A.
2004. Gpgpu: general purpose computation on graphics hard-
ware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes,
ACM, New York, NY, USA, 33.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-form deformations
with lattices of arbitrary topology. In SIGGRAPH ’96: Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 181–188.

MAGNENAT-THALMANN, N., LAPERRIRE, R., THALMANN, D.,
ET AL. 1988. Joint-dependent local deformations for hand ani-
mation and object grasping. In In Proceedings on Graphics in-
terface88, Citeseer.

MENG, W., SHENG, B., WANG, S., SUN, H., AND WU, E. 2009.
Interactive image deformation using cage coordinates on gpu. In
Virtual Reality Continuum and its Applications in Industry, 119–
126.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image de-
formation using moving least squares. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 533–540.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proceedings of the fifth Eurographics sympo-
sium on Geometry processing, Eurographics Association, 109–
116.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. Computer
Graphics Forum (Proceedings of Eurographics) 26, 3.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Com-
plex barycentric coordinates with applications to planar shape
deformation. Computer Graphics Forum (Proceedings of Euro-
graphics) 28, 2.

WENG, Y., SHI, X., BAO, H., AND ZHANG, J. 2008. Sketch-
ing MLS image deformations on the GPU. Computer Graphics
Forum 27, 7, 1789–1796.

161

162

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

