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Abstract—For systems that can only be locally stabilized, con-
trol laws and their effective regions are both important. In this
paper, invariant policy iteration is proposed to solve the optimal
control of discrete-time systems. At each iteration, a given policy
is evaluated in its invariantly admissible region, and a new policy
and a new region are updated for the next iteration. Theoretical
analysis shows the method is regionally convergent to the optimal
value and the optimal policy. Combined with sum-of-squares
polynomials, the method is able to achieve the near-optimal
control of a class of discrete-time systems. An invariant adap-
tive dynamic programming algorithm is developed to extend the
method to scenarios where system dynamics is not available.
Online data are utilized to learn the near-optimal policy and the
invariantly admissible region. Simulated experiments verify the
effectiveness of our method.

Index Terms—Adaptive dynamic programming, discrete-time
systems, invariant admissibility, optimal control, policy iteration,
sum of squares.

I. INTRODUCTION

AFTER decades of development, adaptive dynamic
programming (ADP) [1], [2] has been proved to be a

powerful tool in the field of optimal control. In comparison
with dynamic programming (DP) [3], ADP avoids the curse of
dimensionality by combining with approximation techniques,
such as Galerkin approximation [4], neural network [5], fuzzy
system [6], polynomials [7], and so forth. The original com-
plicated value/policy functions are approximated with much
fewer parameters in a compact set. In the computational intel-
ligence community, researchers prefer reinforcement learning
(RL) to refer to algorithms that solve the optimal control prob-
lems based on rewards, and in most cases, ADP and RL are
interchangeable. Successful applications of ADP/RL include
optimal control [8], H∞ control [7], multiagent system [9],
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interconnected system [10], robust control [11], tracking con-
trol [12], event-triggered control [13], saturation control [14],
time-delayed control [15], global stabilization [16], to name
a few.

In ADP, two most commonly used techniques are value
iteration (VI) [8], [17] and policy iteration (PI) [18], [19].
The former starts from an initial value function and iter-
ates on value functions to reach the optimal one. Different
to VI, PI starts from an initial admissible policy and iter-
ates on the policy until it converges to the optimal one.
Two steps are included at each iteration: 1) policy evalua-
tion and 2) policy improvement. A big advantage of PI is
that the policy at every iteration is always a stabilizing con-
trol law for the system, making it more suitable for online
implementation. In the past, PI has been fully studied for
continuous-time systems [20]–[23], but in the recent years con-
siderable efforts have been made to discrete-time PI. In [24],
PI was applied to discrete-time nonlinear systems, and the
optimal stabilizing control was obtained under the convergence
theorem. Convergence of approximate PI was investigated
in [25]. Discrete-time infinite horizon problems of optimal
control to a terminal set of states were studied in [26]. The
uniqueness of the solution of Bellman equation is established,
and the convergence of VI and PI is both provided. Q func-
tions were introduced in [27] and [28] to solve the optimal
policies without knowing system models.

One important fact cannot be ignored is that many systems
can only be locally stabilized, not globally. ADP confronts the
same issue when value/policy functions are approximated in
a finite region. In that case, PI may synthesize a new pol-
icy that is no long admissible in the originally prescribed
region. Continuing the iterative process in the old region
may cause unpredictable results. As a consequence, regional
PI should update both policy and effective region at each
iteration. In [29], an invariantly admissible PI is proposed
for continuous-time nonlinear systems. For each new policy,
a new region is defined such that the policy is still invari-
antly admissible inside of it. The next iteration continues on
the basis of new results. For discrete-time systems, to the
best of our knowledge, there has been no literature on this
topic except [30]. At each iteration of [30], policies are locally
updated over a sequence of state sets, but the sets are manually
specified beforehand, limiting its application.

To deal with the regionality appearing in discrete-time
optimal control, an invariant PI is proposed in this paper.
At each policy improvement step, an invariantly admissi-
ble region is defined for the improved policy. The region is
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a lower-level set of value function, and the policy always
steers the system inside it and eventually to the zero point.
The next policy evaluation for the new policy is performed
on the new region. It is proved that invariant PI regionally
converges to the optimal solution of discrete-time optimal con-
trol problems. Based on that a specific type of discrete-time
systems is studied. The system has polynomial nonlinearity in
input-gain dynamics. With quadratic value definition and sum-
of-squares (SOSs) relaxation [31], [32], the policy is expressed
as a ratio of polynomials, and value/policy coefficients are
searched in the SOS polynomial space. Theoretical analysis
proves the algorithm is convergent and the optimality gap
is bounded. Furthermore, a model-free version of the algo-
rithm is designed. Its implementation requires no knowledge
of system dynamics, so it is applicable to dynamics unavail-
able cases. Numerical simulations verify the effectiveness of
the new algorithm.

The contributions of this paper are threefold.
1) Regional PI of discrete-time systems is studied for the

first time. An invariantly admissible region is defined at
each policy improvement step for the new policy, and the
next policy evaluation step is performed on it. It ensures
the correctness of the learning process in comparison to
the existing discrete-time PI [18], [24]–[26], [28], [33],
[34] that uses a constant region.

2) SOS is introduced in discrete-time ADP to approximate
value functions and define constraints. In contrast to
tradition ADP [5], [6], [8], [18], [19], [24], [33], the
value/policy coefficients are searched in SOS polyno-
mial space such that the positivity of value functions
and the Lyapunov condition are satisfied.

3) For the discrete-time systems that have polynomial
input dynamics, a model-free algorithm is developed
such that the near-optimal policy and the invari-
antly admissible region are learned based on data.
This feature distinguishes itself from other works
like [35]–[38] that require complete or partial dynamics
knowledge.

The remainder of this paper is organized as follows. In
Section II, the preliminary of discrete-time optimal control
is introduced. In Section III, the invariant PI is proposed to
learn the optimal policy and the invariantly admissible region.
Discrete-time systems with polynomial input dynamics are
specified in Section IV and SOS polynomials are adopted
for the implementation of invariant PI. To deal with dynam-
ics unavailable cases, a model-free algorithm is developed in
Section V to learn the polynomial coefficients based on data.
Numerical experiments are simulated in Section VI, and the
conclusion is reached in the end.

Notation: R
n is the real vector space of dimension n and

R
n×n is the real matrix space of size n × n. ‖ · ‖ is the vector

norm or induced matrix norm. I is the unit matrix. Throughout
this paper, all matrices and vectors are compatibly dimen-
sioned. For two sets �1 and �2, �1 ⊆ �2 means �1 is a
subset of �2, and ∂�1 is the boundary of �1. C(�) is the set
of all continuous functions in �, and P(�) is the set of all
functions that are positive definite and proper in C(�). R[x]
defines the set of all polynomials in x with real coefficients.

deg(·) is the degree of a given polynomial. SOS is the set of
all SOSs polynomials.

II. DISCRETE-TIME OPTIMAL CONTROL

The generalized discrete-time nonlinear systems can be
described by

xk+1 = f (xk, uk) (1)

where step k ≥ 0, states xk, xk+1 ∈ R
n, control input uk ∈ R

m,
dynamics f : Rn ×R

m → R
n. n, and m denote dimensions of

state and control space. We assume f is a continuous function
and has f (0, 0) = 0. In the sequel, when necessary the sub-
script k is attached to highlight the time-order relationship of
variables. Otherwise, it is omitted for simplicity.

A policy μ specifies the control actions at each step, μ =
{u0, u1, . . . , }, and its control performance is evaluated by the
cost

J(x0;μ) =
∞∑

k=0

xT
k Qxk + uT

k Ruk (2)

where Q and R are symmetric positive-definite matrices. In
this paper, we are interested in state-feedback policies, i.e.,
μ : R

n → R
m. For ease of notation, we use μk and xμ

k
to denote the control and state at the kth step of a system
trajectory that is generated under μ.

Definition 1 (Invariantly Admissible): Given a state-
feedback policy μ and a region � ⊆ R

n that contains the
origin, if:

1) μ is continuous in �;
2) starting from any x0 ∈ �, μ stabilizes the system, i.e.,

limk→∞ xμ
k = 0, and

∀x0 ∈ � ⇒ xμ
k ∈ � ∀k ≥ 0 (3)

3) ∀x0 ∈ �, J(x0;μ) < +∞, then μ is called an invariantly
admissible policy and � is its invariantly admissible
region, denoted by μ ∈ AI(�).

Definition 1 can be seen as a discrete-time version of invari-
ant admissibility given in [29]. From (2), given a policy
μ ∈ AI(�), its cost satisfies the Lyapunov equation

V(xk) − V
(
xμ

k+1

) − xT
k Qxk − μT

k Rμk = 0, V(0) = 0 (4)

for any xk ∈ �. The solution V is also called value function,
and its uniqueness can be illustrated by the following lemma.

Lemma 1: Given a region � and a policy μ ∈ AI(�),
the Lyapunov (4) has a unique solution in the continuously
differentiable function set C(�).

The proof is given in the Appendix. Based on the lemma,
the cost of an invariantly admissible policy can be obtained by
solving the Lyapunov (4) in its invariantly admissible region.
From the cost definition, V is continuous and positive definite
in �.
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The optimal control objective is to find the optimal policy
μ∗ that achieves the minimum cost among all policies

V∗ = min J(·;μ).

It is not hard to see that μ∗ has the largest invariantly admissi-
ble region, denoted by �∗. V∗ is also called the optimal value
function and satisfies the Bellman [3] in �∗

V∗(xk) − min
uk

[
xT

k Qxk + uT
k Ruk + V∗(xk+1)

] = 0

V∗(0) = 0. (5)

If �∗ covers the whole state space R
n, the system is

globally stabilizable, that is to say it can be stabilized
to equilibrium from any initial state. The corresponding
Bellman equation has a unique continuously differentiable
solution. Otherwise, the system is only regionally stabilizable.
Literature like [39] and [40] have studied the uniqueness con-
dition of Bellman equation, and here the following assumption
is made.

Assumption 1: In the region �∗, the Bellman (5) has a
unique solution in C(�∗).

The optimal policy is formulated based on V∗ by

μ∗(xk) = arg min
uk

[
xT

k Qxk + uT
k Ruk + V∗(xk+1)

]
.

Remark 1: In the previous discrete-time PI
research [18], [24], [25], [28], [33], the concept of admis-
sibility is mostly used, but here we introduce the invariant
admissibility. The difference exists in the restriction of trajec-
tories as illustrated in the second condition of Definition 1.
Invariant admissibility requires trajectories stay in the invari-
antly admissible region, while traditional admissibility does
not concern that. This restriction is necessary because the
Lyapunov (4) and the Bellman (5) require value functions
to be well defined for both xk and xk+1. If xk+1 is outside
the region, unexpected errors are brought to the solutions.
Therefore, in order to evaluate the correct value function
of a policy, one needs to know its invariantly admissible
region.

III. INVARIANT POLICY ITERATION

To obtain the optimal value and the optimal policy, an invari-
ant PI is proposed to solve the Bellman (5). The method
iteratively evaluates the value function of a given policy in
its invariantly admissible region, and then updates the policy
and the region for the next iteration. The detailed steps are
listed in Algorithm 1.

In the algorithm, d(i+1) defines the sublevel set of V(i) for
the new policy region �(i+1), and the region is required to be
the subset of �(i). If the invariantly admissible region keeps
constant, i.e., �(i) = �(i+1),∀i ≥ 1 (for example the globally
stabilizable systems), invariant PI is equivalent to traditional
PI in [18], [24], [25], [28], and [33]. The following theorem
illustrates the convergence of invariant PI.

Theorem 1: Given the initial μ(1) ∈ AI(�
(1)), a sequence

of values {V(i)}, policies {μ(i)}, and regions {�(i)} are

Algorithm 1 Invariant PI

Given a region �(1) ⊆ �∗ and a policy μ(1) that have μ(1) ∈
AI(�

(1)). Repeat the following two steps for i ≥ 1
1) (Policy evaluation) Formulate the following Lyapunov

equation in �(i) and solve for V(i) ∈ C(�(i)) with policy
μ(i)

V(i)(xk) − V(i)
(

x(i)
k+1

)
− xT

k Qxk −
(
μ

(i)
k

)T
Rμ

(i)
k = 0,

V(i)(0) = 0

(6)

where the superscript (i) indicates the variables are
related to the ith iteration.

2) (Policy improvement) Since V(i) is continuously pos-
itive definite in �(i), there exists d(i+1) > 0 such
that

�(i+1) =
{

x ∈ R
n|V(i)(x) ≤ d(i+1)

}

is a compact set and has �(i+1) ⊆ �(i). Define the new
policy in �(i+1) as

μ(i+1)(xk)

= arg min
uk

[
xT

k Qxk + uT
k Ruk + V(i)(xk+1)

]
. (7)

produced by invariant PI. Under Assumption 1, the following
statements are true ∀i ≥ 1:

1) μ(i) ∈ AI(�
(i));

2) 0 ≤ V∗(x) ≤ V(i)(x) ≤ V(i−1)(x) ≤ · · · ≤ V(1)(x),
∀x ∈ �(i);

3) let �∞ = ⋂∞
i=1 �(i). In �∞, the sequence {V(i)}

converges to V∗.
Proof:
1) The statement is proved by induction. First, it is true

for i = 1. Then assume that it holds for i > 1 and
prove it is true for (i + 1). According to the definition,
�(i+1) ⊆ �(i). From (6) and (7) the following inequality
holds ∀xk ∈ �(i+1):

V(i)(xk) ≥ xT
k Qxk +

(
μ

(i+1)
k

)T
Rμ

(i+1)
k + V(i)

(
x(i+1)

k+1

)

(8)

and implies V(i)(x(i+1)
k+1 ) ≤ V(i)(xk) ≤ d(i+1) and x(i+1)

k+1 ∈
�(i+1). It is concluded that μ(i+1) governs the system
within �(i+1), and (8) holds for all points in the tra-
jectory. By [41, Th. 2.1], V(i) is a Lyapunov function
and μ(i+1) is a stabilizing policy in �(i+1). Recursively
extending (8) yield

V(i)(x0) ≥
N∑

k=0

((
x(i+1)

k

)T
Qx(i+1)

k +
(
μ

(i+1)
k

)T
Rμ

(i+1)
k

)

+ V(i)
(

x(i+1)
N+1

)
.

When N → ∞, the right-hand side becomes the cost of
μ(i+1) and it has J(x0;μ(i+1)) = V(i+1)(x0) ≤ V(i)(x0).
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The conditions of invariant admissibility are satisfied for
μ(i+1) in �(i+1). By induction, the statement is true for
any i ≥ 1.

2) From the above analysis, �(i) ⊆ �(i−1) ⊆ · · · ⊆ �(1)

and {V(i)} is a nonincreasing sequence in �(i). The lower
bound of V(i) follows the definition of V∗.

3) In �∞, {V(i)} is convergent and its limit V∞ =
limi→∞ V(i) satisfies the Bellman (5). Under the unique-
ness assumption, V∞ = V∗ in �∞.

In invariant PI algorithm, the invariantly admissible region
is updated at each iteration, and it has �(i+1) ⊆ �(i). A spe-
cial case is discrete-time linear quadratic optimal control. The
value function is quadratic in state and the policy is linearly
state-feedback. For discrete-time linear systems, any stabiliz-
ing policy is invariantly admissible in the whole state space. In
this case, the invariant PI algorithm has �(i) = �(i+1) = R

n.
Reviewing Algorithm 1, the value function is obtained by

solving the Lyapunov (6). An alternative way is to convert the
Lyapunov equation into an inequality and relax the evaluation
process to an optimization problem. Define a Lyapunov oper-
ator L such that for continuous functions V : R

n → R and
μ : Rn → R

m, let

L(V, μ, xk) = V(xk) − V
(
xμ

k+1

) − xT
k Qxk − μT

k Rμk. (9)

The Bellman equation can be rewritten by

max
μ

L(
V∗, μ, xk

) = 0.

About L, we have the following lemma.
Lemma 2: Given a region � containing the origin and a

policy μ. If there exists a function V ∈ P(Rn) that is radially
unbounded and satisfies the inequality

L(V, μ, x) ≥ 0, ∀x ∈ �

then there exists a positive constant d such that �′ = {x ∈
R

n|V(x) ≤ d} is a subset of �, and μ is an invariantly
admissible policy in �′.

Proof: Since V is continuously positive definite and radially
unbounded, there exists d that makes �′ ⊆ �. According to
the Lyapunov operator definition ∀xk ∈ �′

L(V, μ, xk) = V(xk) − V
(
xμ

k+1

) − xT
k Qxk − μT

k Rμk ≥ 0.

The conclusion is drawn following the proof of
Theorem 1-1).

From the above analysis, the invariant admissibility of a
policy μ in a region � can be proved by finding a function V
that satisfies the conditions in Lemma 2. Along the trajectory
generated by μ in �, adding up (9) yield

V(x0) − J(x0;μ) =
∞∑

k=0

L(V, μ, xk) ≥ 0. (10)

In other words, V is an overestimate of the cost of μ. Based
on that the ith policy evaluation in invariant PI can be replaced

Algorithm 2 Relaxed Invariant PI

Give an initial invariantly admissible policy μ(1) and its region
�(1). For i ≥ 1,

1) Formulate the optimization problem (11)–(14) based on
μ(i) and �(i), and denote the optimal solution as V(i).
Note that when i = 1, the constraint (14) is removed.

2) Define a new region

�(i+1) =
{

x ∈ R
n|V(i)(x) ≤ d(i+1)

}
(15)

such that �(i+1) ⊆ �(i), and update a new policy in
�(i+1)

μ(i+1)(xk)

= arg min
uk

[
xT

k Qxk + uT
k Ruk + V(i)(xk+1)

]
. (16)

by the optimization problem

min
∫

�

V(x)dx (11)

s.t. V ∈ P(
R

n) (12)

L
(

V, μ(i), x
)

≥ 0 ∀x ∈ �(i) (13)

V(i−1)(x) − V(x) ≥ 0 ∀x ∈ �(i) (14)

where μ(i) is the given policy, �(i) is its invariantly admis-
sible region, V(i−1) is the result of last iteration, and � is a
subset of �(i) representing the area that desires to be opti-
mized. The real cost J(·;μ) is the minimum feasible solution
to the optimization problem. As a consequence, (11)–(14) are
equivalent to the Lyapunov (6). Now the relaxed invariant PI
algorithm for the discrete-time optimal control is presented
in Algorithm 2. Due to the equivalence, the convergence
conclusion of Theorem 1 also holds for the new algorithm.

Remark 2: In the relaxed invariant PI, the policy evalua-
tion is relaxed to search in the constrained function space
such that (11) is minimized. Generally speaking, checking
inequalities is an NP-hard problem, so some specific con-
straints are needed to make the problem feasible. In the next
section, a class of discrete-time polynomial systems is spec-
ified. Quadratic value functions and SOSs polynomials are
introduced into the relaxed invariant PI, and the near-optimal
policy and the invariantly admissible region are synthesized.

IV. NEAR-OPTIMAL CONTROL OF CLASS OF

DISCRETE-TIME SYSTEMS

The discrete-time system is assumed to be input-affine and
have a linear drift dynamics

xk+1 = Fxk + g(xk)uk (17)

where F ∈ R
n×n and g : Rn → R

n×m. g is further assumed to
be polynomial. Now, we use SOSs theory to address inequality
constraints appearing in the relaxed invariant PI algorithm.
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A polynomial p(x) is called SOS if it can be written as the
sum of squares of polynomials, that is

p(x) =
N∑

j=1

(
pj(x)

)2
.

SOS polynomials are naturally globally positive, but the con-
verse is not true. According to the polynomial theory [31],
determining if a polynomial is SOS is equivalent to find a
symmetric positive matrix W such that

p(x) = (
zp(x)

)T
Wzp(x)

where zp is a vector of monomials in x. In this way, SOS
decomposition is transformed to a semidefinite programming
(SDP) and numerous SDP toolboxes are developed to solve it.

For system (17), quadratic value functions are specified,
V(x) = xTWVx. If WV > 0, V is globally positive.
Differentiating the right-hand side of (16) toward uk and
assigning to zero yield the explicit formula of updated policy
in policy improvement step

μ′(x) = −(
R + (g(x))TWVg(x)

)−1
(g(x))TWVFx.

Note that R and WV are both positive definite, so the above for-
mula is valid. The invariantly admissible region is expressed
by {x|xTWVx ≤ d}. The policy function is a ratio of polyno-
mials. For simplicity, policies of system (17) in the sequel are
all expressed in the form

μ(x) = β(x)

α(x)

with α ∈ R[x] and β = [β1, . . . , βm]T , where β1, . . . , βm ∈
R[x]. After inserting V and μ into the Lyapunov operator, we
have

L(V, μ, x)

= 1

(α(x))2

[
(α(x))2xTWV x

−(Fxα(x) + g(x)β(x))T WV(Fxα(x) + g(x)β(x))

− (α(x))2xTQx − (β(x))T Rβ(x)
]
.

SOS theory provides a computationally feasible way to
address globally positive constraints. However, for certain
cases, global positivity may be too restrictive if just local
inequalities are required. Such as the constraints in (13) and
(14). To cope with that S-procedure is introduced [42]. Let
a compact set be described by a polynomial inequality, i.e.,
� = {x|b(x) ≥ 0, b ∈ R[x]}. If one desires to find a polyno-
mial p(x) that is positive over �, a sufficient condition is the
existence of an SOS polynomial multiplier λ(x) ≥ 0 such that
p(x) − λ(x)b(x) ∈ SOS.

According to the above analysis, a quadratic SOSs PI
(QSPI) algorithm is proposed in Algorithm 3 for the optimal
control of discrete-time system (17). It is based on relaxed
invariant PI, and uses SOS polynomials for the inequality con-
straints. The algorithm stops when the norm of the difference
between W(i)

V and W(i−1)
V is less than a threshold, or the pol-

icy evaluation has no feasible solution. The former indicates
the algorithm has converged and the latter means the policy

Algorithm 3 QSPI

Given an initial policy μ(1)(x) = [(β(1)(x))/(α(1)(x))] that
is invariantly admissible in a region described by �(1) =
{x|b(1)(x) ≥ 0, b(1) ∈ R[x]}. For each i ≥ 1,

1) (Policy evaluation) Define V(x) = xTWVx and a poly-
nomial λ(x), whose coefficients are solved by the SOS
optimization

max
∫

�

V(x)dx (18)

s.t. V(x) ∈ SOS (19)

λ(x) ∈ SOS (20)
(
α(i)(x)

)2L
(

V, μ(i), x
)

− λ(x)b(i)(x) ∈ SOS (21)

V(i−1)(x) − V(x) ∈ SOS. (22)

Note that for i = 1, the constraint (22) is removed.
Denote the optimal solution as W(i)

V , and let V(i)(x) =
xTW(i)

V x.
2) (Policy improvement) Update the policy μ(i+1)(x) =

[(β(i+1)(x))/(α(i+1)(x))] with

α(i+1)(x) = det
(

R + (g(x))TW(i)
V g(x)

)

β(i+1)(x) = −adj
(

R + (g(x))TW(i)
V g(x)

)
· (g(x))TW(i)

V Fx

det(·) and adj(·) denote the determinant and adjugate
of a given matrix. The invariantly admissible region is
defined as �(i+1) = {x|b(i+1)(x) ≥ 0} with

b(i+1)(x) = min
y∈∂�(i)

V(i)(y) − V(i)(x).

cannot be further improved by QSPI algorithm. Take the final
synthesized policy μ(i) as the near-optimal policy and output
the invariantly admissible region �(i).

To make SOS constraints valid, polynomials in con-
straints (19)–(33) should satisfy

deg(α) + 1 ≥ max

{
deg(g) + deg(β),

1

2
deg(λ) + 1

2
deg(b)

}
.

Theorem 2: Apply the QSPI algorithm to discrete-time
system (17), and suppose at the ith iteration have obtained the
values {V(1), . . . , V(i)}, policies {μ(1), . . . , μ(i+1)}, and regions
{�(1), . . . , �(i+1)}. Then:

1) μ(i+1) ∈ AI(�
(i+1));

2) 0 ≤ V∗(x) ≤ V(i)(x) ≤ V(i−1) ≤ · · · ≤ V(1)(x),
∀x ∈ �(i);

3) for any x0 ∈ �(i+1), the cost of μ(i+1) satisfies

J
(

x0;μ(i+1)
)

= V∗(xk) −
∞∑

k=0

L
(

V∗, μ(i+1), x(i+1)
k

)

≤ V(i)(x0).

Proof:
1) First, we prove �(i+1) is a subset of �(i). Denote y0

as the point on the boundary ∂�(i) that has V(i)(y0) =
miny∈∂�(i) V(i)(y). If �(i+1) is not a subset of �(i),
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there exists a point y1 ∈ ∂�(i) that is in the inte-
rior of �(i+1). According to the definition of �(i+1),
V(i)(y1) < V(i)(y0) which is contradict to the definition
of y0. Hence, �(i+1) ⊆ �(i), and according to Lemma 2,
μ(i+1) is invariantly admissible in �(i+1).

2) The statement is true following constraint (22).
3) Since μ(i+1) ∈ AI(�

(i+1)), starting from any x0 ∈
�(i+1), μ(i+1) governs the system inside �(i+1). Along
the trajectory, apply the Lyapunov operator definition

L
(

V∗, μ(i+1), x0

)

= V∗(x0) − V∗(x(i+1)
1

)
− xT

0 Qx0

−
(
μ

(i+1)
0

)T
Rμ

(i+1)
0

L
(

V∗, μ(i+1), x(i+1)
1

)

= V∗(x(i+1)
1

)
− V∗(x(i+1)

2

)

−
(

x(i+1)
1

)T
Qx(i+1)

1 −
(
μ

(i+1)
1

)T
Rμ

(i+1)
1

...

Summing up both sides yield

∞∑

k=0

L
(

V∗, μ(i+1), x(i+1)
k

)
= V∗(x0) − J

(
x0;μ(i+1)

)
.

Similarly, replacing V∗ by V(i), the above equation
becomes

∞∑

k=0

L
(

V(i), μ(i+1), x(i+1)
k

)
= V(i)(x0) − J

(
x0;μ(i+1)

)
.

According to the definition of μ(i+1),
L(V(i), μ(i+1), xk) ≥ L(V(i), μ(i), xk). From con-
straint (21), L(V(i), μ(i), xk) ≥ 0. The conclusion
J(x0;μ(i+1)) ≤ V(i)(x0),∀x0 ∈ �(i+1) is reached.

Remark 3: From Theorem 2-3), V(i) is proved to be an
overestimate of J(·;μ(i+1)), and the suboptimality of μ(i+1)

is established. The minimization in (18) plays a role of lower-
ing the overestimate as much as possible. In addition, through
the iteration of QSPI algorithm, values V(1), . . . , V(i) are
decreasing, so the optimality gap is further reduced.

Remark 4: In QSPI algorithm, V and μ act as the critic
and the actor in the framework of RL and ADP. In the
previous literature, neural networks are mostly used to approx-
imate these two functions [5], [8], [18], [19], [24], [33]. The
critic weights are trained to minimize the Lyapunov function
error or Bellman equation error, while the actor weights are
searched along the gradient descent of the right-hand side
of (16). Technically, it is difficult to verify the positivity of
NN-based value functions. In our algorithm, the value and
policy coefficients are searched in the SOS polynomial space,
so the invariant admissibility is ensured.

Remark 5: A special case for QSPI algorithm is the glob-
ally stabilizable systems. In that case, S-procedure is no longer
needed and λ(x) in the algorithm is set to zero. The synthe-
sized policy at each iteration globally stabilizes the system and
the invariantly admissible region covers the whole state space.

V. INVARIANT ADAPTIVE DYNAMIC PROGRAMMING

A drawback of QSPI algorithm is the dependence on the
knowledge of system dynamics F and g. Many cases, in prac-
tical applications, assume dynamics is unknown or uncertain.
To cope with that an invariant ADP algorithm is proposed to
learn the near-optimal policy for (17) based on data.

Reviewing the policy evaluation of QSPI algorithm, con-
straint (21) implies that there exists a polynomial L(x) such
that

L(x) =
(
α(i)(x)

)2L
(

V, μ(i), x
)

− λ(x)b(i)(x) (23)

and L(x) ∈ SOS. Rewrite L in the form L(x) =
(zL(x))TWLzL(x), where zL is a vector of monomials in x, and
WL is a symmetric positive-definite matrix whose coefficients
are to be determined. Similarly, define λ in the form λ(x) =
(zλ(x))TWλzλ(x), where zλ is a monomial vector and Wλ ≥ 0
is the matrix to be determined.

Suppose a tuple (xk, uk, xk+1) is observed from the system,
and it has xk+1 = Fxk + g(xk)uk. Given the policy μ(i), the
observation can be expressed by

xk+1 = Fxk + gkμ
(i)
k + gk

(
uk − μ

(i)
k

)
.

For ease of notation, we use gk and μ
(i)
k to denote the value

of g and μ(i) with input xk. After inserting (Fxk + gkμ
(i)
k )

into (23), the following equality holds:

Lk =
(
α

(i)
k

)2
[

xT
k WV xk − xT

k+1WV xk+1 + uT
k gT

k WV gkuk

−
(
μ

(i)
k

)T
gT

k WV gkμ
(i)
k + 2

(
uk − μ

(i)
k

)T
gT

k WV Fxk

− xT
k Qxk −

(
μ(i)

)T
Rμ

(i)
k

]
− λkb(i)

k . (24)

Given a vector h and a matrix W, rearrange the elements of
h and W in the form

h̄ =
[
h2

1, h1h2, h1h3, . . . , h2
2, h2h3, . . .

]T
(25)

w = Ŵ = [W11, 2W12, 2W13, . . . , W22, 2W23, . . . ]T . (26)

The transformation is invertible, i.e., given h̄ and w, one can
uniquely determine h and W. Then the quadratic hTWh can
be rewritten as hTWh = h̄Tw. On the same principle, rewrite
polynomials V , L, and λ

V(x) = x̄TwV

L(x) = (z̄L(x))TwL

λ(x) = (z̄λ(x))
Twλ

where x̄, z̄L, and z̄λ are rearranged from x, zL, and zλ follow-
ing (25), and wV , wL, and wλ are rearranged from WV , WL,
and Wλ following (26).
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If the system degree is available, the unknown g can be
approximated by

g(x) = [
G1zg(x), G2zg(x), . . . , Gmzg(x)

]

where zg is the monomial vector with degrees up to deg(g), and
G1, . . . , Gm are uncertain coefficients. Let G = [G1, . . . , Gm].
Introduce the Kronecker product operator ⊗ and transform the
following terms in (24) into the linear form:

uT
k gT

k WVgkuk = ξT
k Wαξk = ξ̄T

k wα(
μ

(i)
k

)T
gT

k WVgkμ
(i)
k = ηT

k Wαηk = η̄T
k wα

where ξk = (I⊗zgk)uk, ηk = (I⊗zgk)μ
(i)
k , Wα = GTWVG, and

wα = Ŵα . Using the Kronecker product property vec(XYZ) =
(ZT ⊗ X)vec(Y) where vec(·) denotes the vectorization of a
matrix

gT
k WVFxk = (

I ⊗ zgk
)T

Wβxk
(

uk − μ
(i)
k

)T
gT

k WVFxk = ζ T
k wβ

where Wβ = GTWVF, ζk = xk ⊗ ((I ⊗ zgk)(uk − μ
(i)
k )), and

wβ = vec(Wβ). Based on the above transformation, (24) now
becomes

z̄T
LkwL =

(
α

(i)
k

)2
[
(x̄k − x̄k+1)

TwV + (
ξ̄k − η̄k

)T
wα

+ 2ζ T
k wβ − xT

k Qxk −
(
μ

(i)
k

)T
Rμ

(i)
k

]

− b(i)
k z̄T

λkwλ. (27)

The equality in (27) holds for arbitrary online observations.
Define a data set {(xl, ul, xl+1)} and let

A1 =

⎡

⎢⎢⎢⎣

...(
α

(i)
l

)2
(x̄l − x̄l+1)

T

...

⎤

⎥⎥⎥⎦, A2 =

⎡

⎢⎢⎣

...

−b(i)
l z̄T

λl
...

⎤

⎥⎥⎦

B =

⎡

⎢⎢⎢⎢⎣

...
(
α

(i)
l

)2
[
−xT

l Qxl −
(
μ

(i)
l

)T
Rμ

(i)
l

]

...

⎤

⎥⎥⎥⎥⎦

C1 =

⎡

⎢⎢⎣

...

z̄T
Ll
...

⎤

⎥⎥⎦, C2 =

⎡

⎢⎢⎢⎣

...

−
(
α

(i)
l

)2(
ξ̄l − η̄l

)T

...

⎤

⎥⎥⎥⎦

C3 =

⎡

⎢⎢⎢⎣

...

−2
(
α

(i)
l

)2
ζ T

l
...

⎤

⎥⎥⎥⎦.

Then, we can rewrite (27) in the matrix form

A

[
wV

wλ

]
+ B = C

⎡

⎣
wL

wα

wβ

⎤

⎦

with A = [A1 A2] and C = [C1 C2 C3]. If C is a full column
rank, coefficients wL, wα , and wβ are uniquely determined by
wV and wλ

⎡

⎣
wL

wα

wβ

⎤

⎦ = (
CTC

)−1
CT

(
A

[
wV

wλ

]
+ B

)
.

The SOS optimization in the policy evaluation of QSPI algo-
rithm can now be reformulated in a model-free way. Given
μ(i) ∈ AI(�

(i)), collect sufficient data {(xl, ul, xl+1)}(i) that
make C full column rank. Optimize the determinant variables
WV and Wλ by the SDP program

max
∫

�

xTWVxdx (28)

s.t.

⎡

⎣
wL

wα

wβ

⎤

⎦ = (
CTC

)−1
CT

(
A

[
wV

wλ

]
+ B

)
(29)

WV ≥ 0 (30)

WL ≥ 0 (31)

Wλ ≥ 0 (32)

WV ≤ W(i−1)
V . (33)

When i = 1, constraint (33) is removed. It is clear to see that
wα and wβ play an intermediate role in the SDP program.
But they are used to synthesize the new policy in the policy
improvement step. Denote the optimal solution as W(i)

V and
W(i)

λ , and calculate W(i+1)
α and W(i+1)

β by (29). The dominant
and numerator of the fractional policy is updated by

α(i+1)(x) = det
(

R + (
I ⊗ zg(x)

)T
W(i+1)

α

(
I ⊗ zg(x)

))

β(i+1)(x) = −adj
(

R + (
I ⊗ zg(x)

)T
W(i+1)

α

(
I ⊗ zg(x)

))

× (
I ⊗ zg(x)

)T
W(i+1)

β x.

The invariantly admissible region is updated by �(i+1) =
{x|b(i+1)(x) ≥ 0} with

b(i+1)(x) = min
y∈∂�(i)

yTW(i)
V y − xTW(i)

V x.

Remark 6: The whole process of IADP algorithm is sum-
marized in Fig. 1. Note that the data set that formulates
the SDP program (28)–(33) is repeatedly utilized at different
iterations to increase data efficiency. Moreover, a necessary
condition to ensure the solvability of the SDP program is
that the matrix C is full-rank in columns. To this end, the
system needs to be excited by noised control signals to gen-
erate a variety of observations. The control input comprises
two parts, uk = μk + ek, one of which is a stabilizing policy
μk while the other is noise ek. In the literature, random noise
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Fig. 1. Flowchart of IADP algorithm.

and sinusoidal signals are mostly used. In our experiments,
we use the current policy μ(i) plus random noise to excite
the system. During the online learning process, if the system
is disturbed outside the current invariantly admissible region,
reset it to the origin and continue collecting data. In our exper-
iments, the SDP program is solved by SOSTOOLS MATLAB
toolbox [43].

Remark 7: Before starting QSPI or IADP algorithm, an ini-
tial policy μ(1) and its region �(1) are required. Synthesizing
stabilizing control laws and their regions for discrete-time
systems has been investigated by many works, including
dynamics-known cases [35], [36] and dynamics-uncertain
cases [37], [38]. QSPI and IADP algorithms can further
optimize these results and find near-optimal policies and
invariantly admissible regions. The difference is that QSPI
requires the knowledge of system dynamics while IADP is
model-free.

Remark 8: The process of learning from data that are not
generated by interested policies is called off-policy learn-
ing. For CT systems, off-policy learning plays an important
role in designing model-free ADP algorithms [16], [22], [44].
For discrete-time systems, the more traditional approach is to
define Q functions [27], [28], which take both state and control
as input. Q function usually has more parameters than value
function, and the additional parameters are used in the policy
improvement step to produce new policy. This is similar to the
role of wα and wβ in the SDP program of IADP algorithm.

Fig. 2. Linear experiment: online trajectories.

VI. NUMERICAL SIMULATIONS

A. Linear Dynamics

The first experiment considers the model of load frequency
control [20], whose discrete-time dynamics is

xk+1 =

⎡

⎢⎢⎣

0.970 0.663 0.085 −0.044
−0.076 0.672 0.158 −0.146
−0.395 −0.166 0.237 −0.740
0.059 0.021 0.002 0.999

⎤

⎥⎥⎦xk

+

⎡

⎢⎢⎣

0.044
0.146
0.740

0.0007

⎤

⎥⎥⎦uk.

Note that when the system uses quadratic cost, the optimal
control becomes the discrete-time linear quadratic regulator
problem. Let the cost selects Q = I4 and R = 1. The optimal
value function is equal to

V∗(x) = xT

⎡

⎢⎢⎣

5.385 4.919 0.748 4.897
4.919 8.763 1.420 4.061
0.748 1.420 1.316 0.452
4.897 4.061 0.452 24.102

⎤

⎥⎥⎦x

and the optimal state-feedback policy has μ∗(x) = −K∗x

K∗ = [0.369 1.087 0.352 − 0.076].

The system is self-stabilizable, so when running the
IADP algorithm, the initial globally admissible policy selects
μ(1) = 0. Random noise with uniform distribution in
[−50, 50] is added into current policies to excite the system.
The monomial vector zL is defined up to degree 2. zg is defined
to be constant 1. SOS polynomial λ(x) is set to zero because
the system is globally stabilizable. The state trajectories of the
online process is given in Fig. 2. Once the data set satisfies the
full-rank condition, IADP algorithm formulates the SDP pro-
gram and solves for the new policy. The time of each iteration
is marked on the time axis, and the algorithm converges at the
fifth iteration. It is observed that after the first iteration, the
full-rank condition is persistently satisfied by the existing data
for the rest four iterations. After that the converged policy
takes over the control input and random noise is stopped.
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Fig. 3. Linear experiment: value functions at different iterations.

Value functions at each iteration are depicted in Fig. 3. The
third and forth dimensions of state are set to zero for illus-
tration. By SOS polynomials, the value functions are globally
positive. The nonincreasing property of the value functions
is consistent with our theorem. The final converged value
function has

V(5)(x) = xT

⎡

⎢⎢⎣

5.385 4.919 0.748 4.897
4.919 8.763 1.420 4.061
0.748 1.420 1.316 0.452
4.897 4.061 0.452 24.102

⎤

⎥⎥⎦x

and the converged policy has

μ(5)(x) = −0.369x(1) − 1.087x(2) − 0.352x(3) + 0.076x(4).

B. Bilinear Dynamics

The second experiment considers a discrete-time bilinear
system [35] with dynamics

xk+1 = Fxk + g(xk)uk

=
[

1 0.01
0.01 1

]
xk +

[
0.001xk(1) + 0.09

−0.004xk(2) + 0.09

]
uk.

Based on the method provided by [35], an initial stabilizing
policy μ(1)(x) = [(β(1)(x))/(α(1)(x))] is synthesized

α(1)(x) = 0.450(x(1))2 − 0.395x(1)x(2) + 0.0007x(1)

+ 0.425(x(2))2 − 0.012x(2) + 1.0

β(1)(x) = −0.024(x(1))2 − 0.024x(1)x(2) − 4.083x(1)

− 0.047(x(2))2 − 4.094x(2)

and the stabilizing region is �(1) = {x ∈ R
2|120 − (x(1))2 −

(x(2))2 ≥ 0}. Starting from that IAPI algorithm learns a near-
optimal policy and its invariantly admissible region based on
data. The cost function is defined with Q = I2 and R = 1.
Random noise with uniform distribution in [−50, 50] is added
to excite the system. The monomial vectors zL, zλ, and zg are
defined up to degrees 3, 2, and 1, respectively.

The state trajectories of the online learning process are given
in Fig. 4. The first iteration happens at the 62th step when the
full-rank condition is fulfilled. After that the old data set fails

Fig. 4. Bilinear experiment: online trajectories.

Fig. 5. Bilinear experiment: value functions at different iterations.

in providing enough data for the next iteration. More data
are collected under the new policy plus random noise. At the
104th step, from the 2nd to the 5th iterations are performed. At
the 109th step, the rest iterations are performed until the algo-
rithm reaches the convergence. After that the converged policy
takes over the control input and random noise is removed.
Value functions and the invariantly admissible regions at each
iteration are plotted in Figs. 5 and 6. It is observed that the new
region is always an interior of the previous one. The final con-
verged policy μ(12)(x) = [(β(12)(x))/(α(12)(x))] and its region
have

α(12)(x) = 0.00004(x(1))2 + 0.0001x(1)x(2) + 0.004x(1)

+ 0.0007(x(2))2 − 0.019x(2) + 1.392

β(12)(x) = −0.036(x(1))2 − 0.044x(1)x(2) − 1.950x(1)

+ 0.167(x(2))2 − 2.448x(2)

�(12) =
{

x

∣∣∣∣∣
2533 − 36.364(x(1))2 + 29.939x(1)x(2)

− 41.955(x(2))2 ≥ 0

}
.

We select 20 equivalently distributed points along the
boundary of �(12) as starting states, and depict the phase por-
traits of the system under the converged policy by IADP in
Fig. 7(a). It is obvious that the policy makes �(12) an invariant
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Fig. 6. Bilinear experiment: invariantly admissible regions at different
iterations.

region. Vatani et al. [35] also gave an algorithm to improve the
control performance of the synthesized controller. For com-
parison, the phase portraits under the initial policy and the
improved policy by [35] are both depicted. The accumulated
costs along the 20 trajectories by three policies are 37941.065,
44406.807, and 37728.085, respectively. The performance of
IADP policy is quite close to the improved policy by [35],
but our implementation does not need the knowledge of exact
dynamics.

C. Nonlinear Dynamics

Now we add more nonlinearity to the dynamics in the
previous experiment. The input gain matrix is set to

g(xk) =
[−0.001(xk(1))2 + 0.001xk(1) + 0.09

0.004(xk(2))2 − 0.004xk(2) + 0.09

]

and the drift dynamics is unchanged. The initial stabilizing
policy is μ(1)(x) = [(β(1)(x))/(α(1)(x))] with

α(1)(x) = 0.0004(x(1))4 − 0.0009(x(1))3x(2) − 0.0009(x(1))3

+ 0.002(x(1))2(x(2))2 + 0.002(x(1))2x(2)

− 0.077(x(1))2 − 0.008x(1)(x(2))3

− 0.004x(1)(x(2))2

+ 0.061x(1)x(2) + 0.078x(1) + 0.013(x(2))4

+ 0.009(x(2))3 + 0.028(x(2))2

− 0.147x(2) + 3.515

β(1)(x) = 0.001(x(1))3 + 0.004(x(1))2x(2) − 0.001(x(1))2

+ 0.008x(1)(x(2))2 + 0.006x(1)x(2) − 0.090x(1)

− 0.046(x(2))3 − 0.046(x(2))2 − 0.575x(2)

and the stabilizing region is unchanged. The monomial vectors
zL, zλ, and zg are defined up to degrees 5, 3, and 2. The rest
parameters follow the previous experiment.

Apply IADP algorithm to the system. The online trajectories
are presented in Fig. 8. Since nonlinearity is increased, the
number of determinant variables is also increased and more
data are needed to formulate the model-free SDP program. The
learning time is longer than the previous experiment. After

Fig. 7. Bilinear experiment: comparison of different controllers. From the top
to the bottom are phase portraits under IADP policy, initial policy, improved
policy by [35].

nine iterations, the algorithm reaches the convergence. Value
functions and invariantly admissible regions at each iteration
are depicted in Figs. 9 and 10. The final converged policy has
μ(9)(x) = [(β(9)(x))/(α(9)(x))] with

α(9)(x) = 0.00004(x(1))4 − 0.00008(x(1))3

+ 0.0002(x(1))2(x(2))2 − 0.0002(x(1))2x(2)

− 0.003(x(1))2 − 0.0002x(1)(x(2))2
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Fig. 8. Nonlinear experiment: online trajectories.

Fig. 9. Nonlinear experiment: value functions at different iterations.

Fig. 10. Nonlinear experiment: invariantly admissible regions at different
iterations.

+ 0.0002x(1)x(2)

+ 0.003x(1) + 0.0007(x(2))4 − 0.001(x(2))3

+ 0.016(x(2))2 − 0.015x(2) + 1.326

β(9)(x) = 0.040(x(1))3 − 0.020(x(1))2x(2) − 0.040(x(1))2

+ 0.082x(1)(x(2))2 − 0.061x(1)x(2) − 1.728x(1)

− 0.168(x(2))3 + 0.168(x(2))2 − 1.931x(2)

and the invariantly admissible region is �(9) = {x|643.208 −
39.895(x(1))2 + 41.822x(1)x(2) − 42.179(x(2))2 ≥ 0}.

VII. CONCLUSION

Invariant PI is studied to deal with the regionality appear-
ing in the optimal control of discrete-time systems. Both
policies and their invariantly admissible regions are updated
at each iteration. Then, the QSPI algorithm is proposed
to learn near-optimal policies for a class of discrete-time
systems. SOS polynomials are used to ensure the feasibil-
ity of optimization. To achieve model-free learning, the IADP
algorithm is further developed. Numerical experiments demon-
strate that the algorithm can learn near-optimal policies and
invariantly admissible regions based on data.

Only input-gain nonlinearity is considered in the algorithm,
and internal dynamics is required to be linear. In many cases
the whole dynamics is nonlinear and the optimal control
becomes more complicated. One possible solution is to use a
fuzzy model to describe the nonlinear dynamics by a group of
linear dynamics with nonlinear fuzzy rules [45]. The controller
design on these linear dynamics may formulate a feasible con-
troller for the original nonlinear systems. Our future research
will focus on the optimal control of systems with arbitrary
nonlinear dynamics.

APPENDIX

PROOF OF LEMMA 1

Since μ is invariantly admissible in �, the continuity of
dynamics implies that J(·;μ) is finite and continuous in �,
and satisfies the Lyapunov equation. Now we use contradic-
tion to prove the uniqueness. Suppose there exist two different
solutions to (4), i.e., V1, V2 ∈ C(�). There exists at least one
point x0 ∈ � such that the difference between V1 and V2 is
nonzero, i.e., ε = |V1(x0) − V2(x0)| > 0.

From (4)

V1(x0) − V2(x0) = V1
(
xμ

1

) − V2
(
xμ

1

)

...

= V1
(
xμ

k

) − V2
(
xμ

k

)
.

When k → ∞, xμ
k → 0 and V1(x

μ
k ) → 0, V2(x

μ
k ) → 0. That

means the difference V1(x0) − V2(x0) can be arbitrarily close
to zero, which contradicts our hypothesis. By contradiction,
J(·;μ) is the unique solution to (4).
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