
Improving Image Classification Performance with
Automatically Hierarchical Label Clustering

Zhiqiang Chen1,2, Changde Du1,2, Lijie Huang1, Dan Li1,2, Huiguang He1,2,3∗
1Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
{chenzhiqiang2014, duchangde2016, lijie.huang, lidan2017, huiguang.he}@ia.ac.cn

∗Corresponding author

Abstract—Image classification is a common and foundational
problem in computer vision. In traditional image classification,
a category is assigned with single label, which is difficult for
networks to learn better features. On the contrary, hierarchical
labels can depict the structure of categories better, which helps
network to learn more hierarchical features and improve the
classification performance. Though many datasets contain images
with multi-labels, the labels in these datasets usually lack of
hierarchy. To overcome this problem, we propose a new method
to improve image classification performance with Automatically
Hierarchical Label Clustering (AHLC). Firstly, AHLC calculates
the similarity between each pair of original categories by how
easily they are misclassified with a pre-trained classifier. Secondly,
AHLC obtains hierarchical labels by merging similar categories
using hierarchical clustering. Finally, AHLC trains a new classi-
fier with hierarchial labels to improve the original classification
performance. We evaluate our method on MNIST and CIFAR-
100 datasets and the results demonstrate the superiority of our
method. The main contribution of this work is that we can simply
improve an existing classification network by AHLC without
extra information or heavy architecture redesign.

I. INTRODUCTION

In the last decade, the capabilities of object classification
have been dramatically improved due to advances in deep
learning and convolutional nerual networks (CNN) [1]. In
the early stage of CNN development, LeNet [2] only had 3
convolution layers and 2 fully connected layers, and showed
powerful performance in handwriting digits recognization. To
obtain larger classification capabilities, on the one hand, deep-
er architecture such as VGG [3], GoogleNet [4], ResNet [5]
have been developed, each of which made great breakthrough.
On the other hand, some effective functional layers have been
exploited such as ReLU [6], dropout [7], batch normalization
[8] and became common operations.

Many researchers concentrated on classifier design, and
usually neglected the way we label images, which is a brief
description of image. In the early studies of classification, one
image had exactly one label. When the scale of dataset grows,
unique label is difficult to depict the differences between
categories. For example, the widely used ImageNet dataset
with 1000 labels, which has brought great breakthrough to
the development of computer vision, can’t depict images well
because of being too similar of some labels. In ImageNet

dateset, Maltese dog and Pekinese are two categories, which
are two kinds of dog, and they are very similar. While school
bus is also a category and it’s much different from dog. So
an unique label can’t depict the differences of categories well.
To characterize the differences, hierarchical labels are more
natural and reasonable, which are consistent with human cog-
nition. Though there are many studies on multi-label learning,
its labels usually lack of hierarchy and need to be labeled
manually [9–11]. In practice, it’s difficult to label massive
images with hierarchical labels because different people has
different criteria. Zhu et al. [12] tried to merge the similar
labels, and it provided a new idea to generate new labels with-
out heavily manually labeling. However, Zhu et al. [12] did’t
give attention to hierarchical labels, which couldn’t benefit
from hierarchical features learned from hierarchical labels. In
traditional machine learning, hierarchical label learning has
been explored by some classical methods such as decision
tree [13, 14]. However, in the field of deep learning, there are
few studies focusing on hierarchical label learning to boost
the classification performance.

In this paper, we propose a method to improves the perfor-
mance of classification with automatically hierarchical label
clustering (AHLC). AHLC consists of three stages: (1) Calcu-
late the similarity between each pair of original categories by
how easily they are misclassified by a pre-trained classifier; (2)
Obtain hierarchical labels by merging similar categories using
hierarchical clustering; (3) Train a new classification network
with hierarchical labels obtained by stage 2. The proposed
method AHLC requires no extra labeling information or heavy
architecture redesign of network. It can be easily applied to
existing excellent classification networks.

II. RELATED WORKS

LeNet-5 [2], which starts the study of CNN, showed an
impressive performance compared with traditional machine
learning methods in handwriting digits classification. To im-
prove the performance of CNN, AlexNet [15] trained a deep
CNN, which used activation function ReLU instead of tra-
ditional sigmoid to speed up convergence. To investigate the
effect of the convolutional network depth on its accuracy in
the large-scale image recognition setting, VGG [3] conducted



Fig. 1. Illustration of our proposed AHLC. There are three stages in AHLC:
1) A normal classification network is trained with original labels to calculate
similarity between labels; 2) Obtain hierarchical labels by clustering with
the similarity calculated in stage 1; 3) Train new classification network with
hierarchical labels.

a thorough evaluation of networks of increasing depth, and
it showed that a significant improvement on the prior-art
configurations can be achieved by pushing the depth to 16−19
layers. In GoogleNet [4], inception module was proposed to
combine the features of different receptive field filters and it
achieved the state of the art for classification and detection
in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVR) 2014. With residual block, He et al. [5] came up
with ResNet with an extreme depth of 152 and won 1st place
on almost all major tasks in ILSVRC 2015 and Microsoft
Common Objects in Context 2015 competitions.

Zhang et al. [9] also noticed that single label was difficult to
describe an image, as real-world objects might be complicated
and have multiple semantic meanings simultaneously. Multi-
label learning [9–11] labels an image by multi labels. In
[16, 17], they introduced a joint patch and multi-label learning
framework that models the structured joint dependence behind
features. Labeling an image with multi-label manually con-
sumes heavy workload, Zhu et al. [12] merged similar labels
to generate new labels. Labels in Multi-label learning always
lacked of hierarchy, while in traditional machine learning,
[13, 14] can naturally obtain a hierarchical architecture and
perform classification.

III. PROPOSED METHOD

In this section, we present the proposed method AHLC to
improve the performance of classification with Automatically
Hierarchical Label Clustering. As shown in Fig. 1, AHLC
contains three stages: Firstly, train a classification network
with the original labels and calculate the similarity between
different labels; Secondly, cluster the original labels into
hierarchical labels by merging similar labels via the similarity;
Finally, train a new classification network with hierarchical
labels to gain a further improvement of performance for
original classification task.

A. Calculate similarity between labels

Ideally, we can label categories with hierarchical labels
manually, which is time consuming and require expert knowl-
edge. What is worse, most of the public datasets don’t have
hierarchical labels, so it’s meaningful to cluster hierarchical
labels automatically. To cluster the original labels into hier-
archical labels automatically, we need to get the similarity
between different labels. In an indirect way, we can evaluate
it according to how easily two labels are misclassified. So
in this stage, we train a classification network with original
labels.

For image set X = {x1, x2, ..., xm} and label set L =
{l1, l2, ..., ln}, m and n are the number of images in image
set, labels in label set respectively. A discriminative network
f is trained to classify the original categories. For any x ∈ X,
the prediction y = (y1, y2, ..., yn) can be obtained by

y = f(x), yi = fi(x), i ∈ {1, 2, ..., n}, (1)

where yi is the prediction of label li.
After the classifier f is trained, we use the prediction of f

to statistic the probabilities of each pair labels misclassified
one for another.

Specifically, for any xp ∈ X corresponded with label Y =
li ∈ L, predict label by networks P = lj ∈ L is converted to
a probability distribution format by a softmax function as

Pr(P = lj |Y = li, X = xp) =
efj(xp)∑n
k=1 e

fk(xp)
. (2)

The probability of Pr(P = lj |Y = li) indicates that
predicting label is lj in the condition that the real label is
li, conveniently marked as Pr(lj |li). We can obtain Pr(lj |li)
by

Pr(lj |li)
=Pr(P = lj |Y = li)

=
Pr(P = lj , Y = li)

Pr(Y = li)

=

∑m
p=1 Pr(P = lj , Y = li, X = xp)

Pr(Y = li)

=

∑m
p=1 Pr(P = lj |Y = li, X = xp) ∗ Pr(Y = li, X = xp)

Pr(Y = li)
.

(3)

So we can naturally define the similarity between label li
and lj by simply summing Pr(lj |li) and Pr(li|lj). Category
can’t be merged with itself, so we define the similarity between
a category with itself as zero. So the similarity S is defined as

S(li, lj) =

{
Pr(lj |li) + Pr(li|lj), for li 6= lj

0, for li = lj .
(4)

Labels would be merged if we applied cluster algorithm,
so we need define the similarity between original label and
merged label. An original label is similar with a merged label
if it’s similar with either label in merged label, so we take the
maximum similarity of the two labels. Specifically, suppose



Fig. 2. Architecture of classification with hierarchical labels.

we merge label li and lj as M(li, lj), the similarity between
lk and the merged label M(li, lj) is defined as

S(lk,M(li, lj)) = max(S(lk, li), S(lk, lj)). (5)

B. Label Cluster

In this stage, AHLC aims to obtain hierarchical labels by
the similarity calculated by stage 1. Via the similarity measure
S, we apply hierarchical cluster method [18] which is one of
the most widely used cluster method, to cluster labels to a
certain number.

Algorithm 1 shows details how we get hierarchical labels.
For original labels with n1 labels and cluster labels with
expected number n2, do n1−n2 times merge operations, which
merges the most similar two labels in each time. Then we can
obtain n2 cluster labels.

Algorithm 1 Hierarchical Cluster
Inputs:

L: original labels

S: the similarity between any two labels in L
n1: the number of original labels

n2: the number of cluster labels

Outputs:
L

′
: cluster labels

Ensure:
1: L

′
← L

2: for t = 1 to n1 − n2 do
3: find li and lj in L

′
with maximum similarity S(li, lj),

according to Eq. (4) and Eq. (5)

4: merge li and lj and update L
′

5: end for
6: return L′

C. Classification with Hierarchical Labels

As we obtain hierarchical labels which consist of original
labels and cluster labels, we add a new branch for cluster labels
at the prediction layer base on baseline network. It’s a general
method to improve classification performance without adding

extra information and heavy network structure redesign. Fig.
2 illustrates the architecture of AHLC, which increases an
extra branch with cluster labels based on original classification
networks.

Specifically, original label set has n1 labels and cluster label
set has n2 labels. For an instance image x with original label
lo and cluster label lc whose length are n1 and n2 respectively,
which are both one-hot. For predict values of original labels
yo = (yo1, yo2, ..., yon1

) and predict values of cluster labels
yc = (yc1, yc2, ..., ycn2), we apply a softmax function for them
and get y

′

o and y
′

c:

y
′

oi =
eyoi∑n1

j=1 e
yoj
, y

′

ci =
eyci∑n2

j=1 e
ycj
. (6)

To get losses of the AHLC, a cross entropy loss H is used:

H(x, y) = −
n∑

i=1

yi ∗ log(xi), (7)

where x and y are predict values and one-hot labels respec-
tively and n is the length of x and y.

To improve the performance of classification by multi-task,
we add losses of original labels and cluster labels in total as
L. To better take advantages of promotion of multi-task and
reduce the influence of original task from newly adding task,
a weight decay λc is applied for cluster labels task, which is
expected less than 1 because the main task is to improve the
performance of original task. Under l2 regularization, whole
loss L is

L = H(y
′

o, lo) + λc ∗H(y
′

c, lc) + λw ∗ ‖W‖22 , (8)

where W are weights in total networks, and λw is coefficient
of l2 regularization.

IV. EXPERIMENTS AND RESULTS

This section focuses on the evaluation of the proposed
method by measuring the improvements brought by classifi-
cation with hierarchical labels compared with original labels.
To quantify the effect of the proposed method, we perform
an ablation study on MNIST and CIFAR100, which are both
excellent datasets widely used by researchers of computer vi-
sion and artificial intelligence. In our experiments, all training
strategies and parameters of baseline networks and proposed
AHLC are the same, and the structures are also the same
expect an additional predict branch for cluster labels at the end
of AHLC. To compare the performance of baseline networks
and proposed AHLC, the accuracy of original labels instead
of hierarchical labels are calculated.

A. MNIST

The MNIST database1 of handwritten digits has a training
set of 60,000 examples, and a test set of 10,000 examples,
where the digits have been size-normalized and centered in
a fixed-size image. Training is performed on 28× 28 images
that have been shifted by up to 2 pixels in each direction with

1http://yann.lecun.com/exdb/mnist/



Fig. 3. Cluster result of MNIST. The original 10 labels is clustered into
3 layers. The first cluster label contains the original labels 1, 7, the second
contains 4, 9 and the third contains 0, 2, 3, 5, 6, 8. The images are randomly
chosen in each original labels.

TABLE I
AHLC CLASSIFICATION TEST ACCURACY ON MNIST DATASET.

TRAINING IS PERFORMED ON 28× 28 IMAGES THAT HAVE BEEN SHIFTED
BY UP TO 2 PIXELS IN EACH DIRECTION WITH ZERO PADDING. NO OTHER

AUGMENTATION/DEFORMATION IS USED. WE TRAIN A BASELINE NET
WITH ORIGINAL LABELS TO COMPARE WITH PROPOSED AHLC. OUR
BASELINE NET IS A STANDARD CNN WITH THREE CONVOLUTIONAL

LAYERS OF 256, 256, 128 CHANNELS [19]. EACH HAS 5× 5 KERNELS
AND STRIDE OF 1. THE LAST CONVOLUTIONAL LAYERS IS FOLLOWED BY

TWO FULLY CONNECTED LAYERS OF SIZE 328, 192. THE LAST FULLY
CONNECTED LAYER IS CONNECTED WITH DROPOUT TO A 10 CLASS

SOFTMAX LAYER WITH CROSS ENTROPY LOSS.

method BaseLine AHLC-e AHLC(proposed)
error(%) 0.39 0.40 0.36

zero padding. No other augmentation/deformation is used.
We train a baseline net with original labels to compare with
proposed AHLC. Our baseline net is a standard CNN with
three convolutional layers of 256, 256, 128 channels [19]. Each
has 5×5 kernels and stride of 1. The last convolutional layers
is followed by two fully connected layers of size 328, 192.
The last fully connected layer is connected with dropout to a
10 class softmax layer with cross entropy loss.

We set the cluster number as 3. Then the cluster labels is
shown in Fig. 3. The original labels 1 and 7 are merged into
same cluster. Similarly, 4 and 9 are merged and others are
merged.

With the hierarchical labels, we add a new branch for cluster
labels and train AHLC by loss L defined as Eq. 8. And AHLC
sets λc as 0.5 to make the original task dominant one. AHLC-
e sets λc as 1 to treat tasks of original labels and cluster labels
equally. We adopt weight decay 0.0002 of l2 regularization for
both baseline network and AHLC.

Table I illustrates accuracy on test set and Fig. 4 illustrates
classification accuracy of original task vs. training batches.
AHLC has a lowest test error and 7.7% lower than baseline
network. AHLC-e has a slightly higher test error than baseline
network.
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Fig. 4. AHLC classification test accuracy on MNIST vs. training batches
under a moving average smooth of 0.2.

B. CIFAR-100

CIFAR dataset2 is an established computer vision dataset
used for object recognition, representing a great starting point
towards future applications. CIFAR contains CIFAR-10 and
CIFAR-100 and we choose CIFAR-100 as our experimental
dataset for its rich labels. The CIFAR-100 dataset consists of
60000 32x32 colour images in 100 classes, with 600 images
per class, 500 for training images and 100 for test images.
Besides the 100 fine labels, CIFAR-100 also has 20 coarse
labels, which divides the 100 fine labels into 20 labels and
each contains 5 fine labels.

With mean substraction, training is performed on 32 × 32
images that have been shifted by up to 4 pixels in each
direction with zero padding and random horizontal flipped.
No other augmentation/deformation is used. We use ResNet-
110 [20] as baseline network and generate the similarity for
clustering by the prediction of baseline network. We set the
number of cluster labels as 20 which is the same as the coarse
labels of CIFAR-100.

Fig. 5 illustrates the cluster results, in which each black box
represents a cluster label and each image represents a original
fine label.

Based on the baseline network, AHLC add a new branch
for 20 cluster labels with softmax and cross entropy loss, and
by contrast, AHLM add a new branch for 20 coarse labels
in the dataset by manually labeling. We test set λc as 1 for
equal importance of two tasks, and set as 0.5 for promising
the fine labels task dominant one. We also test the method in
original data and augment data that have been shifted by up to
4 pixels in each direction with zero padding, mean subtraction
and random horizontal flipped. Specifically, BaseLine is the
original ResNet-110 with only 100 fine labels. AHLM is
trained by the original 100 fine labels and 20 coarse labels
with λc as 0.5 as well as AHLM-e with λc as 1. AHLC is

2http://www.cs.toronto.edu/ kriz/cifar.html



Fig. 5. Labels cluster result. Each black box represents a cluster label and each image represents an original fine label randomly chosen in dataset. The
cluster(left to right, up to down) are: (1) aquarium fish, trout; (2) bicycle, motorcycle; (3) bridge, castle, house, rocket, skyscraper; (4) crab, lobster; (5) snake,
worm; (6) bus, pickup truck, streetcar, tank, tractor, train; (7) lawn mower; (8) road; (9) beaver, bee, beetle, butterfly, caterpillar, cockroach, crocodile, fox,
hamster, kangaroo, leopard, lion, lizard, mouse, otter, porcupine, possum, rabbit, raccoon, seal, shrew, skunk, spider, squirrel, tiger, wolf; (10) bed, bottle,
can, chair, couch, table, telephone, television, wardrobe; (11) mushroom, snail; (12) bowl, clock, cup, lamp, plate; (13) sunflower; (14) keyboard; (15) apple,
orange, orchid, pear, poppy, rose, sweet pepper, tulip; (16) bear, camel, cattle, chimpanzee, dinosaur, elephant; (17) cloud, mountain, plain, sea; (18) dolphin,
flatfish, ray, shark, turtle, whale; (19) forest, maple tree, oak tree, palm tree, pine tree, willow tree; (20) baby, boy, girl, man, woman.

TABLE II
TEST ACCURACY ON CIFAR-100 DATASET. WITH MEAN SUBSTRACTION, TRAINING IS PERFORMED ON 32× 32 IMAGES THAT HAVE BEEN SHIFTED BY

UP TO 4 PIXELS IN EACH DIRECTION WITH ZERO PADDING AND RANDOM HORIZONTAL FLIPPED. NO OTHER AUGMENTATION/DEFORMATION IS USED. WE
USE RESNET-110 [20] AS BASELINE NETWORK AND GENERATE THE SIMILARITY FOR CLUSTERING BY THE PREDICTION OF BASELINE NETWORK. WE
SET THE NUMBER OF CLUSTER LABELS AS 20 WHICH IS THE SAME AS THE COARSE LABELS OF CIFAR-100. AHLM USES MANUAL COARSE LABELS.

Method BaseLine AHLM-e AHLC-e AHLM AHLC(proposed)
Error without augment(%) 35.97 36.80 34.96 34.78 34.23

Error with augment(%) 26.90 27.39 26.99 26.64 26.59

trained by original 100 fine labels and 20 cluster labels with
λc as 0.5 as well as AHLC-e with λc as 1.

Table II illustrates the test error of the original fine labels,
which is tested on both raw data and augment data. AHLC
gets the lowest test error in both raw data and augment data.

C. Result Analysis
For MNIST dataset, AHLC cluster the original 10 hand-

writing digits into 3 clusters. 1 and 7 in handwriting digits is
easy to misclassify. 4 and 9 also share much features. AHLC
cluster the similar labels into same cluster as expected. By
adding prediction branch of cluster labels, it does improve
the performance of the original classification task. The results
indicates that we need make the target task a dominant one,
otherwise, as Table I AHLC-e shows, the target task is slightly
interfered by the adding task.

For CIFAR-100 dataset, AHLC cluster the original 100 fine
labels into 20 labels. Compared with manual coarse labels,
the cluster labels of AHLC are more likely to combine the
similar label in visual together. As Fig. 5 shows, AHLC
cluster bicycle, motorcycle into same cluster and bus, pickup

truck, streetcar, tank, tractor, train into another cluster rather
than manual coarse labels cluster bicycle, bus, motorcycle,
pickup truck, train as vehicles 1 and cluster lawn-mower,
rocket, streetcar, tank, tractor as vehicles 2, which bicycle
and motorcycle are really different from the other vehicles
in visual. AHLC also cluster forest, maple, oak, palm, pine,
willow into same cluster and cloud, mountain, plain, sea into
other cluster rather than manual coarse labels cluster forest
into cluster large natural outdoor scenes consisted of cloud,
mountain, plain, sea.

For classification performance, AHLC with cluster labels
even reaches a better performance than AHLM with the
manual coarse labels as Table II shows. For data without
augment, which each label contains only 500 examples, AHLC
and AHLM with hierarchical labels both perform a significant
increase about 1.5% compared with baseline network, while
for data with augment, they perform a slightly increase. It
shows that the proposed AHLC do increase the classification
performance especially for data with plenty of labels and few
examples for each label.



Fig. 6. Hierarchical labels help to learn hierarchical features. + and − mean
the effect of enhancing and weakening.

Hierarchical labels help to learn hierarchical features. As
Fig. 6 illustrates, an image with label maple or oak, it can
only enhance unique features of maple or oak. But for the
shared feature of maple and oak, at least one of the their labels
is 0, so they can’t enhance them simultaneously. By adding
cluster label of tree, it will enhance shared features of maple
and oak if either of them is 1. So hierarchical labels help to
learn hierarchical features, which improve the performance of
network.

V. CONCLUSION

In this paper, we proposed a method AHLC to improve the
performance of classification with automatically hierarchical
label clustering. The experimental results on the datasets of
MNIST and CIFAR-100 show that: (a) AHLC clusters the
similar labels efficiently; (b) Adding hierarchical labels im-
proves classification performance of original task; (c) AHLC
is a general method without extra information or architecture
redesign.
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