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Abstract—Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) addressed the overestimation bias problem by
adopting a clipped Double Q-Learning method. As the two Q
networks are different, the updation of a policy to maximize one
Q function might minimize another, which is called inconsistency
in this paper. Therefore, we propose an algorithm based on TD3,
conservative policy gradient (CPG), that optimizes the policy
with respect to the lower bound of the two Q functions to deal
with the inconsistancy. In Q function learning, one-step estimate
is usually used in target value estimation. However, due to the
constantly changing target networks, there will be fluctuations
in the estimation. As the target Q function is changing slowly,
we combine the one-step estimate with zero-step estimate to
avoid sharp changes. The experimental results illustrate that
CPG outperforms TD3 and some other reinforcement learning
methods on multiple MuJoCo benchmarks.

Index Terms—inconsistancy, stablility, Q learning, policy gra-
dient

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved great successes in a wide range of challenging
problems, such as video games [1], [2] and robotics [3]. There
are two main categories of DRL methods: off-policy [4] and
off-policy methods [5]. In the training process, the off-policy
methods reuse previously collected transitions while the on-
policy methods can only use the data collected by the current
policy. Thus the sample efficiency of the off-policy methods
are higher.

Deep Q learning (DQN) [6] is one of the off-policy methods,
which shows success in the majority of Atari games. DQN is
also a value function based method, and the max operator in
value target estimate results in overestimation bias. To tackle
with the continuous action space problems, deep deterministic
policy gradient (DDPG) [7], [8] is proposed, and it is a Q
learning based method. The policy is updated to maximize
the current Q function. The Q funtion and policy are al-
so called critic and actor respectively in DDPG. Since the
policy ouputs the action directly, DDPG becomes a popular
method in domains with continous action space. In DDPG,
the overestimation bias of the critic can pass to the policy
through policy gradient. Many algorithms have been proposed
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to address the overestimation bias in Q learning. Double
DQN [9] addresses the overesitmation problem by using two
independent Q functions. However, as the actor is updated
slowly, the target critics are too similar with the current critics
to avoid overestimation bias. Zheng Z et al. [10] adopts a
multi-head network to describe the critic and estimates the
target action value by the weighted sum of the critic heads.
However, it is hard to find appropriate weights for different
tasks or environments. Fujimoto et al. extended DDPG to Twin
Delayed Deep Deterministic policy gradient algorithm (TD3)
[11], which estimates the target Q value using the minimum
of two target Q value, called clipped double Q learning.

Although the value target estimate in TD3 cannot introduce
additional overestimation, the two critics are not accurate
everywhere in the state-action space. In addition, due to
different initialization, the network landscapes of the two
critics are slightly different. Therefore, the updation of the
actor with respect to one critic may be inconsistant with
another. Specifically, the updation may maximize a critic but
minimize another. Inspired by the EM algorithm [12] that
maximize the lower bound of the likelyhood, we update the
actor respect to the lower bound of the critics to deal with the
inconsistancy problem.

The value target estimate is depend on the target actor and
target critic. As the target actor is constantly updating, the
next action used in the one-step value target estimate is also
changing. Therefore, the updation of target actor may cause
a big change in target value estimate, which would cause
instablility in critic training. In this work, we utilize a weighted
sum of the zero-step and one-step estimate of the target value
to avoid sharp fluctuations. Since our method optimizes the
lower bound of the critics and uses the 0-step estimate to
stablize the training, it is a conservative method. Therefore,
we call it Conservative Policy Gradient (CPG).

In this paper we evaluate our method on variety of OpenAI
Gym’s MuJoCo benchmark tasks [13]. The results of the ex-
periment show that our method can obtain better performance
than TD3 and DDPG.

II. BACKGROUND

In this section, we introduce the notations in reinforce-
ment learning problems and give a brief review about deep
deterministic policy gradient (DDPG) and twin delayed deep
deterministic policy gradient (TD3).



A. Notations

The reinforcement learning problems are usually formalized
as a Markov decision process (MDP), characterized by a tuple
M = {S,A, P, r, γ}, where S and A are the state and action
space of the MDP, P : S×A×S 7→ [0, 1] and r : S×A 7→ R
are the environment dynamics and reward function, and γ ∈
(0, 1] is a discount factor.

An RL agent interact with the environment according to
a policy π : S × A 7→ (0, 1]. During interaction, the agent
receives rewards from the environment as feedbacks. The
discounted sum of the rewards of an episode is defined as:

R0 =

T∑
t=0

γtr(st, at) (1)

where T is the length of the episode. The goal of RL is to
find a policy which maximize the expectation of return:

Jπ = Est∼ρπ,at∼π

[
T∑
t=0

γtr(st, at)

]
(2)

where ρπ denotes the state visitation distribution of policy π.
An action-value function is often used in many reinforce-

ment learning algorithms, which is used to represent the long-
term return from a given state after taking an action:

Qπ(st, at) = Esi∼ρπ,ai∼π

[
r(st, at) +

T∑
i=t+1

γi−tr(si, ai)

]
(3)

The action-value function is also called Q-function in many
literatures. The Q-function can be writen in a recursive format
by Bellman Equation:

Qπ(st, at) = r(st, at) + Eat+1∼π [Q
π(st+1, at+1)] (4)

B. DDPG

DDPG is a popular off-policy actor-critic method in con-
tinuous action space domain, which is consisted of a Q-
function (critic) Qθ, parameterized by θ, and a deterministic
policy (actor) µφ, parameterized by φ. Besides, DDPG uses
slowly updated critic and actor target networks to stabilize the
training, which are represented by Qθ′ and µφ′ respectively.

The critic is learned using temporal difference (TD) learn-
ing, an update rule based on the Bellman equation. The loss
function is given by the expectation of TD error:

L(θ) = Eai∼β,si∼ρβ
[
(yi −Qθ(si, ai))2

]
(5)

where β and ρβ are the behavior policy and the corresponding
state visitation distribution, and the target Q value yi is
evaluated by:

yi = r(si, ai) +Qθ′(si+1, µφ′(si+1)) (6)

As (6) utilizes the next state, it is called 1-step estimate.
The actor is updated to increase the value of Qθ(st, µφ(st))

by appling the chain rule:

∇φJ(φ) ≈ Es∼ρβ ,a∼β
[
∇aQθ(s, a)|a=µ(s)∇φµφ(s)

]
(7)
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Fig. 1. An illustration of the inconsistancy of policy updation in two critic
setting. As the target in Q learning is the same for two critics, Q1 and Q2 are
roughly equal but slightly different in detail.If the actor is updated respect to
one of the critic, the optimal action is a1 or a2. a∗ is the result of updating
with respect to the lower bound of the critics, which performs fairly good on
both critics.

DDPG alternates between running a behavior policy to
collect interaction experiences and updating the network pa-
rameters. The behavior policy is obtained by adding the policy
an noise to allow action exploration.

β(st) = µφ(st) +N (8)

where N is an exploration noise in action space.

C. TD3

Overestimation bias is a property of Q-learning which
is caused by maximization of a noisy value estimate. TD3
introduces a clipped variant of Double Q-learning to reduce
overestimation bias. Specifically, TD3 adopts two critics, Qθ1
and Qθ2 , to get a less optimistic estimate of an action value by
taking the minimum between two estimates. For a transition
(s, a, r, s′), the target Q value y is given by:

y = r(s, a) + min
i=1,2

Qθ′i(s
′, µφ′(s

′)) (9)

The target Q value is used to train the two critics as in DDPG.
(9) is also an one-step estimate of the target value.

There is only one actor in TD3, which is optimized with
respect to Qθ1 . The actor is updated at a lower frequency than
the critic to ensure the TD-error remains small, which results
in higher quality policy updates in practice.

III. PROPOSED METHOD

In actor-critic methods the actor is updated with respect to
the critic. Although TD3 addressed the overestimation bias in
Q-learning, the two critics still cannot be accurate everywhere
in the state-action space.

In this section, we first analyze that the target Q value
estimate in TD3 might be fluctuate violently and give a more
stable estimate method. Then, we show that the updation of
an actor with respect a critic will lead to inconsistent between
the critics and then propose a method to take both critics into
consideration by updating the actor with respect to the lower
bound of the critics.
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Fig. 2. The cumulative rewards for CPG, TD3 and DDPG method. The bold lines are averages of 10 independent trails with different random seeds on the
six simulated environments, and the shaded area denotes 0.5 standard deviation of the rewards.

A. Stablelizing Q updation

As is show in (9) the target action value y is depend on the
current target policy µ′. In the training process, the policy and
target policy are constantly updating. In the k th iteration, for
a transition (s, a, r, s′), the target value is given by:

yk = r(s, a) + min
i=1,2

Qθ′k−1,i
(s′, ak−1) (10)

where ak−1 = µφ′k−1
(s′) +N is the ouput of the noisy target

policy. Similarly, the target value in the k − 1 th iteration is:

yk−1 = r(s, a) + min
i=1,2

Qθ′k−2,i
(s′, ak−2) (11)

As the target actor is changing, the action ak−1 and ak−2
might be quite different. In addtion, the target critics are also
changing. Therefore, the updating in target networks may lead
to a great difference between the action value yk and yk−1,
which would cause instablility in Q fucntion learning and actor
updating.

To stablelizing the Q learning, we combine the 0-step and
1-step action value estimate to evaluate the target action value,
which is given by:

y = αmin
i=1,2

Qθ′i(s, a)+(1−α)(r(s, a)+min
i=1,2

Qθ′i(s
′, µφ′(s

′)))

(12)
where Qθ′i(s, a) is the 0-step estimate of state-action pair
(s, a).

estimate (12) avoids sudden changes in target action value,
which can benefits the stability in Q learning. While this target
value may casue slow updation, this is perferable to instablility.

B. Clipped Double Q Policy Gradient

In the k th iteration of training, the parameters of the actor
µφ(s), are updated along the gradient direction to maximize
Qθ1(s, µφ(s)):

φk = φk−1 + ξEs∼ρβ
[
∇aQθ1(s, a)|a=µ(s)∇φµφ(s)

]
(13)

where α is a small updation stepsize. There exists ε sufficiently
small such that if α ≤ ε the following inequality holds.

Qθ1(s, µφk(s)) ≥ Qθ1(s, µφk−1
(s)) (14)

As the gradient in Eq.13 is respect to critic Qθ1 , the parameters
φk and φk−1 cannot ensure the next inequality holds.

Qθ2(s, µφk(s)) ≥ Qθ2(s, µφk−1
(s)) (15)

However, a reasonable policy updation should make both
Qθ1(s, µφk(s)) and Qθ2(s, µφk(s)) higher. Therefore, the up-
dation in (13) is inconsistancy. The inconsistent is a result
of training the actor by just one critic, which is a common
problem in multi-critic methods as is illustrated in Fig. 1. If
an actor is trained with respect to Q1 or Q2, the optimal action
is a1 or a2. As the critic are not accurate every where in the
state-action space, a∗ that maximizes the lower bound of the
critics is more reasonable.

Inspired by the Expectation Maximum (EM) algothm that
optimize the lower bound of the likelyhood, we update the
actor with respect to the lower bound of the Q functions,
Qlb(s, a), to take both critics into account:

Qlb(s, a) = min
i=1,2

Qθi(s, a) (16)



Qlb is then used to optimize the actor:

φk = φk−1 + ξEs∼ρβ
[
∇aQlb(s, a)|a=µ(s)∇φµφ(s)

]
(17)

As Qlb is the lower bound of Qθ1 and Qθ2 , this updation
makes the worst performance of the actor better than before.

IV. SIMULATED EXPERIMENTS

In this section, we first introduce the experimental settings
and evaluate the proposed algorithm on popular benchmarks
for continuous robotic environments in MuJoCo simulator
from OpenAI Gym. Several experimental results are given
with comparison to DDPG and TD3.

A. Environmental setup
We built the code of CPG based on the implementation

of TD3 provided by the Fujimoto et al. [11]. The DDPG
for comparison in this work is also the implementation given
by Fujimoto, which is better than the original DDPG. Un-
less specified otherwise, these three methods share the same
network architectures and hyperparamters that are used in
Fujimoto’s implementation.

In CPG, the standard deviation of the exploration Gaussian
noise is initialized to 0.3 and decreased to 0.1 with respect
to decay rate 0.95 and decay period 10 thausand time steps.
We utilized two different value for weight α in equation
(12). We set α to 0.5 in simulated environment Ant-v2 and
HalfCheetah-v2, and 0.2 in the rest environments. The
network initialization scheme is also different from that used in
TD3. The differences lie in initializing the last layer of the two
critic networks. The bias and weights of the last layer of critic
Q1 are sampled from a Gaussian distribution N (0, 0.1) and
those of critic Q2 are sampled from a Gaussian distribution
N (0, 0.001). In the first 100 thausand time steps, the actor
is updated with respect to Q1. Then the actor is trained with
respect to the lower bound of the critics.

B. Experiment Results
Each task is trained for 1 million time steps with evaluations

every 5 thausand time steps, where each evaluation records
the averaged return over 10 episodes with no exploration
noise. We measure the performance by the averaged return
and evaluate the stability by the standard deviation over the
evaluations with 10 different random seeds. Figure 2 represent
the mean return by lines and std return by shaded areas.

In CPG, the policy updation respect to the lower bound
of critics can prevent the overestimation bias passing to the
actor and take both critics into account. Therefore, it can find
a more reasonable policy than updating respect to a single
critic. From Figure 2, one can see that CPG obtains higher
averaged return than DDPG and TD3 on Ant-v2, Hopper-
v2, Walker-v2. As these three environments are unstable, the
performance of DDPG is the worst. CPG outperforms TD3
slightly on HalfCheetah-v2, Reacher-v2. Due to the 0-step
value estimate is used in target value estimation, the variance
of returns of CPG is obviously lower than that of DDPG and
TD3 as is shown in Figure 2. The experimental results verify
the effectiveness of CPG.

V. CONCLUSION

In this paper, we propose Conservative Policy Gradient
(CPG), which updates the actor with respect to the lower
bound of the critics to deal with the inconsistancy problem
in multi-critic settings. We also adopt a combination of zero-
step return and one-step return to estimate the target value
to stablize the training. We test the CPG on the on Gym’s
MuJoCo benchmarks and the experimental results show that
CPG can obtain high averaged return and low variance on
most tasks, which confirm the effectiveness of CPG.
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