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Abstract: For complex systems with high nonlinearity and strong coupling, the decoupling control technology based on proportion

integration differentiation (PID) neural network (PIDNN) is used to eliminate the coupling between loops. The connection weights

of the PIDNN are easy to fall into local optimum due to the use of the gradient descent learning method. In order to solve this

problem, a hybrid particle swarm optimization (PSO) and differential evolution (DE) algorithm (PSO-DE) is proposed for optimizing

the connection weights of the PIDNN. The DE algorithm is employed as an acceleration operation to help the swarm to get out of local

optima traps in case that the optimal result has not been improved after several iterations. Two multivariable controlled plants with

strong coupling between input and output pairs are employed to demonstrate the effectiveness of the proposed method. Simulation

results show that the proposed method has better decoupling capabilities and control quality than the previous approaches.

Keywords: Particle swarm optimization, differential evolution, proportion integration differentiation (PID) neural network, hybrid

approach, decoupling control.

1 Introduction

Proportion integration differentiation (PID) control is a

loop feedback mechanism widely used in industrial control

systems. The controller attempts to minimize the error be-

tween a measured process variable and a desired set-point

by adjusting the process through use of a manipulated vari-

able. It is easy to combine PID control with other algo-

rithms such as fuzzy and neural network[1−3]. PID neu-

ral network (PIDNN)[4] is a new kind of networks and its

hidden layer neurons simply work as PID controller terms

through their activation functions. Thus, it simultaneously

utilizes advantages of both PID controller and neural struc-

ture. The connection weights of PIDNN are vital to the

system performance. However, the connection weights are

easy to fall into local optimum due to the use of gradient

descent learning method. Some researchers are interested in

optimization of the weights of PIDNN with meta-heuristic[5]

algorithms including genetic algorithm (GA)[6], fish swarm

algorithm[7], particle swarm optimization (PSO)[8, 9], and

chaotic PSO[10]. These methods have better quality than

the traditional PID decoupling control method.

The PSO algorithm is an optimization technique devel-

oped by Kennedy and Eberhart[11] in 1995. It is inspired by

the social behavior of bird flocking or fish schooling. The

PSO is capable of handling non-differentiable, discontinu-

ous and multimodal objective functions. It has become a
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popular algorithm due to its relative simplicity and quick

convergence. Similar to GA, PSO is also a population-based

optimization tool, which searches for optima by updating

generations[12]. Each particle adjusts its trajectory towards

its own previous best position and towards the current best

position attained by any other member in its neighbor[13].

However, the main disadvantage of PSO is the risk of a

premature search convergence, especially in complex multi-

peak-search problems[14].

To improve the performance and the convergence behav-

ior of PSO, hybridization of PSO with differential evolution

(DE) algorithm has garnered significant attention in the

research literature[15−17]. These approaches aim to aggre-

gate the advantages of both algorithms to efficiently tackle

the optimization problem. DE[18] is a branch of evolu-

tionary algorithms for optimization problems over contin-

uous domains. Like other evolutionary algorithms, DE is

a population-based stochastic search algorithm. DE has

the distinguishing advantages of computation simplicity as

well as convergence efficiency[19]. It is relatively immune

to differences in initial populations than one-point optimiz-

ers. Because it is a direct search method, DE is versatile

enough to solve problems whose objective functions lack the

analytical description needed to compute gradients. There

are 3 crucial parameters in classical DE algorithms: 1) the

population size NP , 2) the mutation scale factor F , 3) the

crossover rate Cr.

In this paper, to exploit the advantages of PSO in fast

exploitation and the exploration ability of DE[20], we will

combine these 2 global optimization algorithms, and pro-

pose the hybrid algorithm PSO-DE. Unlike the existed hy-

brid PSO/DE algorithms, the hybrid PSO-DE employs DE
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to accelerate the convergence of the algorithm in case that

the optimal result has not improved after several iterations.

The PSO-DE is used for optimizing the connection weights

of PIDNN. Simulations have demonstrated that the pro-

posed method can be effectively used to solve optimization

problems of PIDNN decoupling control.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly describes the basic operations of the canonical

PSO and the DE algorithms. Section 3 presents the hybrid

method, namely PSO-DE, to optimize PID neural network

decoupling control. Section 4 reveals the simulations and

analysis. Finally, conclusions are given in Section 5.

2 The basic PSO and DE algorithms

2.1 The particle swarm optimization

In PSO, each particle consists of a position vector xn

which represents a candidate solution of the optimization

problem, a velocity vector vn and a memory vector pbestn

which is the best candidate solution encountered by the par-

ticle. Each particle position is modified through iterations

with the aim of finding the optimum position, where an

optimum value for the fitness function or optimum state is

achieved. Thus, at every iteration (g+1), the velocity and

position of the particle are updated by

vn,g+1 = wvn,g + c1r1(pbestn,g − xn,g)+

c2r2(pbestg − xn,g) (1)

xn,g+1 = xn,g + vn,g (2)

where w is the inertia weight, which determines how much

of the previous velocity of the particle is preserved. c1 and

c2 are positive constants. r1 and r2 are two uniformly dis-

tributed random numbers in the interval [0, 1]. gbest rep-

resents the best position achieved by any member of the

population.

In this paper, we consider the canonical PSO version pro-

posed by Clerc and Kennedy[12], which incorporates the pa-

rameter χ , called the constriction factor. The constriction

factor is used to control the magnitude of the velocities

and alleviate the swarm explosion effect that sometimes

prevents the convergence of the original PSO. Then, the

velocity adjustment is executed by the equation as

vn,g+1 =

χ(wvn,g + c1r1(pbestn,g − xn,g) + c2r2(pbestg − xn,g))

(3)

where χ = 2k

|2−ϕ−(ϕ2−4ϕ)
1
2 |

with ϕ = c1 + c2 > 4 . The

aforementioned scheme is typically utilized for the constant

ϕ = 4.1, with χ = 0.729 84 and c1 = c2 = 2.05[12, 21].

2.2 The differential evolution algorithm

The basic strategy of DE can be described as follows.

Initialization. DE is a parallel direct search method.

It begins with a randomly initiated population of N D-

dimensional parameter vectors xi,g, i = 1, 2, · · · , N as a

population for each generation. The initial population

(g = 0) of the j-th parameter of the i-th vector is

xj,i,0 = xj,min + randi,j [0, 1](xj,max − xj,min) (4)

where xj,min and xj,max are the lower and upper bounds,

respectively. randi,j [0, 1] is a uniformly distributed random

number lying between 0 and 1.

Mutation. DE mutates and recombines the population

to produce a population of N trial vectors. Specifically,

for each individual xi,g, a mutant vector vi,g is generated

according to

vi,g = xri
1,g + F (xri

2,g − xri
3,g) (5)

where F , commonly known as scale factor, is a positive real

number. Three other individuals xri
1,g, xri

2,g, xri
3,g are sam-

pled randomly from the current population. The mutation

strategy described above is known as DE/rand/1.

Crossover. To complement the differential mutation

search strategy, DE adopts a crossover operation, often

referred to as discrete recombination. In particular, DE

crosses each vector with a mutant vector.

uj,i,g =

{
vj,i,g, if (randi,j [0, 1] ≤ cr or j = jrand)

xj,i,g, otherwise
(6)

where cr is called the crossover rate.

Selection. To decide whether or not it should become a

member of generation g+1, the trial vector vi,j is compared

to the target vector xi,g using the greedy criterion. The

selection operation is described as

xi,g+1 =

{
ui,g, if f(ui,g) ≤ f(xi,g)

xi,g, otherwise
(7)

where f(x) is the objective function to be minimized.

3 PSO-DE in optimizing PID neural

network decoupling control

3.1 PID neural network decoupling con-
trol system

PIDNN is a new type of dynamic feed-forward network,

and the output functions of the neurons in its hidden layer

are different from each other, which are proportional (P)

function, integral (I) function and differential (D) function

so they are named as P-neuron, I-neuron and D-neuron,

respectively. The input layer has 2 P neurons. One re-

ceives system setting input, and another connects system

output. The output layer has only one neuron which com-

pletes the control output duty. The output layer completes

the synthesis of PID control law and forms the input of the

controlled objective. PIDNN completes system decoupling
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and control by adjusting the connection weights. The de-

coupling and control ability comes from its nonlinear map-

ping property and PID style processing of the hidden layer.

The basic structure of PIDNN decoupling control system is

shown in Fig. 1.

Fig. 1 Basic structure of PIDNN decoupling control system

The PIDNN consists of input layer, hidden layer, and

output layer. The forward algorithm of PIDNN at any sam-

pling time k for each layer is calculated as follows.

1) Input layer is

xsi(k) = usi(k) (8)

where usi(k) (i=1, 2) is input value of input layer neurons,

xsi(i = 1, 2) is output value of input layer neurons, and

s(s = 1, 2, · · · , n) is the number of controlled variables.

us1(k) = rs(k) (9)

us2(k) = ys(k). (10)

2) Hidden layer is

u′sj(k) =

2∑
i=1

wsijxsi(k) (11)

where u′sj(k) is input value of hidden layer neurons, and

wsij is net weight from input layer to hidden layer.

The function of P-neuron is the same as that of the input

layer.

x′s1(k) = u′s1(k). (12)

The function of I-neuron is

x′s2(k) = u′s2(k) + x′s2(k − 1). (13)

The function of D-neuron is

x′s3(k) = u′s3(k)− u′s3(k − 1). (14)

3) Output layer is

vh(k) =

n∑
s=1

3∑
j=1

w′sjhx′sj(k) (15)

where vh(k) is output value of output layer neurons, and

w′sjh is net weight from hidden layer to output layer.

3.2 PID neural network decoupling con-
trol based on hybrid PSO-DE

The main idea of the hybrid PSO-DE algorithm is to in-

tegrate the DE operators into the PSO, and thus increasing

the diversity of the population and the ability of escaping

from local minima. The swarm may be damped to equi-

librium state. For an extreme case, if the particles have

the same location and all in zero velocities at certain evolu-

tion stage, then the swarm is in stationary equilibrium with

no possibility to evolution. If the swarm is going to be in

equilibrium, the evolution process will be stagnated as time

goes on. To prevent the trend, if the stagnating step of evo-

lution process g0 is larger than threshold value G0, this is

incorrect, perhaps you mean: the particles perform as DE

operators. In this paper, we utilize only the DE/rand/1/bin

strategy. The initial connection weights of PIDNN are re-

ceived at random. In order to avoid getting into a local

minimum, the connection weights of the PIDNN are opti-

mized by the PSO-DE algorithm. The stepwise operation

can be described as follows.

Step 1. Initialization of particles in swarm. The PSO

generates an initial population P with N (population size)

particles and sets the current generation number g = 1.

Each particle represents a weight of the PIDNN.

Step 2. Initial evaluation of fitness function. The fit-

ness function is defined as the controlled variable error J of

PIDNN decoupling control system and calculated as

J =
1

l

n∑
p=1

l∑

k=1

[rp(k)− yp(k)]2 (16)

where rp(k) and yp(k) represent the set value and actual

value, respectively, and l is the number of samples.

Step 3. Updating of pbestn,g and gbestg. For each

particle xn,g in the swarm, if the fitness of xn,g is better

than pbestn,g, then pbestn,g is updated by xn,g. Similarly,

pbestn,g is updated accordingly if the new fitness function

value is better than the previous.

Step 4. Updating of the position and velocity of the

n-th particle according to (2) and (3).

Step 5. Evaluation of fitness function. After modifica-

tion of the particle positions, the controlled variable error

J is calculated.

Step 6. Judge the evolution process. If the stagnating

step of evolution process g0 is larger than threshold value

G0, the particles perform as DE operators, otherwise go to

Step 7. The 3 main DE evolution steps (mutation, crossover

and selection) are applied to the best, please check if it is

correct by (5)−(7).

Step 7. Update pbestn,g and gbestg. The pbestn,g and

gbestg values have to be updated according to the new fit-

ness value. If the best position of all new particles is better

than the current gbestg, then gbestg is updated by the new

solution. Similarly, pbestn,g is updated accordingly if the

new fitness function value is better.

Step 8. Termination criteria. If the stopping criterion

is met, then output the weights of the PIDNN, otherwise,
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repeat Steps 2 to 7.

4 Algorithms′ simulations and results

In this section, we present a simulation study to validate

the proposed PIDNN decoupling control system based on

the PSO-DE.

4.1 Test problem 1

The process to be controlled is a 3-input and 3-output

coupling system described by





y1(k + 1) = 0.3y1(k) + 0.4y2(k) +
u1(k)

1 + u2
1(k)

+

0.4u3
1(k) + 0.4u2(k)

y2(k + 1) = 0.4y2(k) + 0.4y3(k) +
u2(k)

1 + u2
2(k)

+

0.3u3
2(k) + 0.2u1(k)

y3(k + 1) = 0.2y3(k) + 0.3y1(k) +
u3(k)

1 + u2
3(k)

+

0.2u3
3(k) + 0.3u2(k)

where y = [y1, y2, y3]
T and u = [u1, u2, u3]

T are system

output and input vectors, respectively.

The controlled target y is set to [0.7, 0.5, 0.4]T. The pa-

rameter settings used are the following. Population size:

N = 30, maximal number of generations: G = 500, c1 =

c2 = 2.05, χ = 0.729 84, ϕ = 4.1, Cr = 0.9, F = 0.5, G0 =

10.

Output responses y1, y2 and y3 of the coupling system

with PIDNN decoupling controller based on PSO-DE (PSO-

DE-PIDNN) are shown in Fig. 2. For comparison purpose,

output responses using PIDNN decoupling controller based

on PSO (PSO-PIDNN) are also given in the same figure. As

shown in Fig. 2, the PSO-DE-PIDNN decoupling controller

has a faster rise time compared to the PSO-PIDNN decou-

pling controller and there is almost no overshoot. The PSO-

DE-PIDNN has properties of quick response, quick conver-

gence and good stability than the PSO-PIDNN. The error

J of the PSO-PIDNN and PSO-DE-PIDNN are shown in

Fig. 3. It can be observed that the error of PSO-DE-PIDNN

algorithm is less than PSO-PIDNN. The better performance

of the PSO-DE-PIDNN for this study could be attributed to

its greater ability to explore efficiently the search space with

the aid of DE operators and thus enhancing the chances of

finding the global optimum.

4.2 Test problem 2

Biochemical wastewater treatment is a complex system

with high nonlinearity and strong coupling. The application

of PIDNN decoupling control based on PSO-DE in wastew-

ater treatment system will be discussed in this section.

In wastewater treatment system, the concentration of

ammonia nitrogen and nitrate nitrogen reflects the system′s
internal nitrification and denitrification progress. Ammo-

nia nitrogen and nitrate nitrogen couple to each other.

Therefore, the decoupling is required to achieve nitrification

and denitrification process control and improve wastewater

treatment efficiency.

According to activated sludge model No.1 (ASM1)[22],

ammonia nitrogen and nitrate nitrogen material balance

equation is described as

Fig. 2 Control performance of the PSO-PIDNN and PSO-DE-

PIDNN

Fig. 3 Error curve of PSO and PSO-DE for PIDNN decoupling

control

dSNH

dt
=

[
− iXBµ̂H

(
SS

KS + SS

) { (
SO

KOH + SO

)
+

ηg

(
KOH

KOH + SO

) (
SNO

KNO + SNO

) }
+

kaSNO

]
XBH − µ̂A

(
iXB +

1

YA

)

(
SNH

KNH + SNH

) (
SO

KOA + SO

)
XBA+

(
Qa + Qo + Qr

V2

)
(SNH,in − SNH) (17)
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dSNO

dt
=

− ηgµ̂H

(
1− YH

2.86YH

) (
SS

KS + SS

) (
KOH

KOH + SO

)

(
SNO

KNO + SNO
)XBH + µ̂A

(
1

YA

) (
SNH

KNH + SNH

)

(
SO

KOA + SO

)
XBA+

(
Qa + Qo + Qr

V2

)
(SNO,in − SNO)

(18)

where SNH is ammonia nitrogen concentration, SNO is ni-

trate nitrogen concentration, Qa is inner circulation flow,

Qo is influent flow, Qr is sludge recycle flow, SS is easily

biodegradable organic compounds concentration, SNH,in is

ammonia nitrogen concentration of influent, SNO,in is ni-

trate nitrogen concentration of influent, and SO is dissolved

oxygen concentration.

The model of ammonia nitrogen and nitrate nitrogen is

established by partial least squares regression[23]. The in-

puts of the model include Qa and SO, and the outputs

include SNH and SNO. The model can be described in

discrete form as

SNH(k) =− 0.004SO(k − 1)− 0.014Qa(k − 1)+

0.49SNH(k − 1) + 0.46SNH(k − 2)
(19)

SNO(k) =− 0.005SO(k − 1)− 0.039Qa(k − 1)+

0.45SNO(k − 1) + 0.48SNO(k − 2).
(20)

Fig. 4 Simulation curves of nitrate nitrogen and ammonia ni-

trogen

To compare the decoupling performance of PSO-DE-

PIDNN and PSO-PIDNN, a simulation is established for

concentration control of ammonia nitrogen and nitrate ni-

trogen. The initial value of SNO is set to 6 mg/L, and SNH

is set to 12 mg/L. Then, SNO is set to 4 mg/L when one

day is passed and SNH is set to 9 mg/L when two days are

passed. The results are shown in Fig. 4. It can be observed

that the settling time of PSO-DE-PIDNN algorithm is less

than PSO-PIDNN. The value of SNH is not affected by the

change of SNO, and the value of SNO is also not affected by

the change of SNH . The PSO-DE-PIDNN decoupling con-

troller has better accuracy compared to the PSO-PIDNN

decoupling controller.

5 Conclusions

In this paper, a new method named PSO-DE, which im-

proves the performance of the PSO by incorporating DE,

is proposed to solve optimization problems of PIDNN de-

coupling control. The PSO-DE is shown to outperform the

canonical PSO in terms of the ability to find the optimum

solution. The results of this study demonstrate that the

proposed PSO-DE algorithm can be effectively used to solve

optimization problems of PIDNN decoupling control.
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