International Journal of Automation and Computing

17(5), October 2020, 621-636
DOI: 10.1007/s11633-020-1239-y

Item Response Theory Based Ensemble in

Machine Learning

Ziheng Chen

Hongshik Ahn

Department of Applied Mathematics and Statistics, Stony Brook University, New York 11794-3600, USA

Abstract: In this article, we propose a novel probabilistic framework to improve the accuracy of a weighted majority voting algorithm.
In order to assign higher weights to the classifiers which can correctly classify hard-to-classify instances, we introduce the item response
theory (IRT) framework to evaluate the samples’ difficulty and classifiers’ ability simultaneously. We assigned the weights to classifiers
based on their abilities. Three models are created with different assumptions suitable for different cases. When making an inference, we
keep a balance between the accuracy and complexity. In our experiment, all the base models are constructed by single trees via boot-
strap. To explain the models, we illustrate how the IRT ensemble model constructs the classifying boundary. We also compare their per-
formance with other widely used methods and show that our model performs well on 19 datasets.

Keywords: Classification, ensemble learning, item response theory, machine learning, expectation maximization (EM) algorithm.

1 Introduction

Classification ensembles are increasingly gaining atten-
tion from the area of machine learning, especially when
we focus on improving the accuracy. The most important
feature distinguishing the ensemble learning from other
types of learning is that it combines the predictions from
a group of classifiers rather than depending on a single
classifier(ll. It is proved in many cases that the aggreg-
ated performance metrics, such as bagging, boosting and
incremental learning outperform others without a collect-
ive decision strategy.

If one had to identify an idea as central and novel to
ensemble learning, it is the combination rule, which can
be characterized in two ways: simple majority voting and
weighted majority voting. Simple majority voting is just a
decision rule which combines the decisions of the classifi-
ers in the ensemblelll. It is widely applied in ensemble
learning due to its simplicity and applicabilityl2l.
Weighted majority voting can be done by multiplying a
weight to the decision of each classifier to reflect its abil-
ity, and then make the final decision by combining the
weighted decisionsl3l. These two methods utilize the abil-
ity of classifiers based on their performance on training
the data. Thus it does not require any parameter tuning
once the individual classifiers have been trained.

Here we propose a novel probabilistic framework for
the weighted voting classification ensemble. We treat

Manuscript received February 16, 2020; accepted June 4, 2020;
published online September 9, 2020
Recommended by Associate Editor Matjaz Gams

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2020

each data point as a problem and different classifier as a
subject taking an exam in class. As we know, the per-
formance of one student on a problem depends on two
major factors: difficulty of the problem and competence of
the studentll. In the training data, some have significant
features and are easy to classify, whereas some are diffi-
cult cases because they are near class boundaries. Thus,
similar to an exam in class, we define the competence of a
classifier as the capability of correctly classifying difficult
cases, rather than the number of correctly classified cases.
For instance, suppose a classifier correctly classifies some
easy cases but fails to deal with difficult cases. Another
classifier correctly classifies some difficult cases, while in-
correctly classifies easy cases. Then it makes sense that a
higher weight is given to the second classifier than the
first one.

In this paper, we propose a method which can simul-
taneously evaluate the ability of a classifier and difficulty
of classifying a case. Here, we employ the item response
theory (IRT) framework(6 which is widely applied to
psychological and educational research, to estimate the
latent ability of classifiers.

2 Motivation and background

2.1 Classifier's ability

Classifier i's ability is defined by the parameter 0,
which measures its capacity to handle different samples.
Not only the number of cases it can classify, but diffi-
culty of each case is also considered when estimating the
parameter. The classifier's ability is directly connected
with the weight assigned to each classifier in the en-

@ Springer

622 International Journal of Automation and Computing 17(5), October 2020

semble, which is a real value between 0 and 1. A classifi-
er having highly negative ability leads to a weight close
to 0, while the opposite is true for the classifier with
highly positive ability. Outliers, observations near the
boundary and observations surrounded by multiple obser-
vations from the other class can usually only be correctly
classified by a classifier with a high value of the ability.

2.2 TItem response theory

Item response theory considers a set of models that re-
late responses given to items to latent abilities of the re-
spondentsl®l. It is widely applied in educational testing
and psychological evaluation. In this model, the probabil-
ity of a response is a function of the classifier's ability and
observation's difficulty. As one classifier either correctly
classifies or incorrectly classifies an observation in our
case, we only focus on the dichotomous models. In the
original model, their relationship can be described as

0i=B; 1 2

P(yi; = 110;,8;) = (0 — B;) = \/—Q?e’7 dt

where y;; is a binary response of a classifier i to
observation j, y;; =1 for a correct classification and
yi; = 0 otherwise. The parameter 6; is latent ability
parameter for classifier ¢ and [; is the difficulty of
observation j. As it only contains one item parameter [3;,
it is named 1PNO. For the 2PNO model and 3PNO
model, we will introduce 2 item parameters and 3 item
parameters correspondingly. In our first method, we will
use the 3PNO as the basic framework. In our second
method, we design a 2PNO.

2.3 Related works

Many prior works focus on assigning the weights to
different classifiers constructed by bootstrapping!’. A hy-
brid voting method is proposed in [8], combining the res-
ults from different classifiers. Rojarath et al.l% suggest a
method to improve each classifier's ability based on the
result of others. A ranking measurement to evaluate the
instance's preference toward the classifiers is defined in
[10]. Although fast and efficient, all these methods fail to
consider the classifiers' abilities. The problem of having
different distribution between training data and testing
data is tackled via transfer learningl!ll. However, they
need a powerful pre-train model. The weighted ensemble
is applied into high-dimensional cases in [12] and [13]. En-
semble pruning algorithms are also considered in [14] and
[15], focusing on pruning the ensembles with significant
features.

Recently, probabilistic models are also adopted in en-
semble learning. For a comprehensive weight majority
vote, recall the naive Bayes combiner is presented in [16].
Based on their probabilistic framework, four ensemble

@ Springer

methods are derived subsequently by progressively relax-
ing the assumption. They construct the model directly by
considering the misclassification probability, rather than
the difficulty of the observations and the ability of the
classifier. In [17], although instance difficulty is taken in-
to consideration, they didn't discuss the detailed decision
mechanism between the classifiers and the observations.
Weights are assigned to the class distribution at leaf
nodes, which requires a large number of parameters as
the feature dimension increases!!8l.

As a fundamental method to improve the classifica-
tion performance, ensemble learning is used in different
tasks. The text mining methods are combined with ma-
jority voting to detect the fake news on websites[19. A
double layer Bayesian neural network is designed and ap-
plied into multiple data setsl) Bagging, boosting and
stacking methods are used to assess the credit score of
applicants(2Ll.

We propose the IRT ensemble to evaluate the diffi-
culty of samples and the ability of classifiers simultan-
eously. To the best of our knowledge, our method is the
first approach introducing the IRT into the ensemble
learning and giving a statistical explanation of the
samples' difficulty and classifiers' ability. This work is si-
milar to WAVEM, However, although they use a similar
idea, they didn't statistically explain the weight. Our pro-
posed methods model the weight assignment in a probab-
ilistic way and can explain the corresponding relation-
ship between the classifier's ability and observations' diffi-
culty.

3 Model development

In this section, we introduce the proposed method in
detail. We treat the classifiers as competitors and want to
evaluate their performance by considering the accuracy in
classifying hard-to-classify samples. The basic rule is to
assign a higher weight to the classifiers with higher accur-
acy in classification. Thus, we adopt the framework in the
item response theory2?), which is widely applied in the
educational testing to evaluate the items and people sim-
ultaneously(23: 24 We firstly describe our model and ex-
plain why it works. Then we introduce two methods to
make an inference. Throughout the paper, vectors or
matrices are denoted using boldface.

3.1 Model description

We consider a set of classifiers @ = {C1,Cs, -+ ,Cn}
and a set of data points ® = {S1,S52, - ,Sm}. For each
classifier C;, there is a corresponding parameter 6; to de-
note the ability of the classifier. Similarly, we assign a
difficulty parameter [; for each data point S;. Based on
the IRT framework, the probability of a response for a
data point is a function of the classifier's ability and diffi-
culty of classifying the case. Although there have been

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 623

various models developed within the IRT framework, we
focus on the basic unidimensional IRT model because it
models the classifier-sample interaction by two single uni-
fied traits @ and (. In this model, the response generated
from the interaction has only two choices: success or fail-
ure. In our problem, success means the classifier recogniz-
ing the label of a sample correctly.

Now we can formulate the model. Suppose we have k
classifiers and n data points in a training set. We denote
the & X n matrix Y as the performance matrix. For each
element Y;;, 1 is assigned if classifier 7 correctly classifies
sample j, or 0 is assigned otherwise. We also define ! as
an n X 1 vector with all vector elements being 1. Finally,
I is a k x k identity matrix. For an easy description, we
first propose Assumptions 1 and 2.

Assumption 1. The performance parameter of a clas-
sifier and difficulty parameter of a sample are rational
numbers, and the probability of a correct classification
can be expressed as a cumulative distribution function
(CDF).

Assumption 2. The classifiers give their decisions in-
dependently conditioned upon the training data.

For each classifier C}, the probability of a correct clas-
sification for sample point S; equals to:

P(Yi; = 1) = ¢(ay0i — B5) + v (1 — d(a;0: — B;))

where ¢(z) is a CDF. Now we explain extra parameters
and their original purpose.

1) The discrimination parameter a; of case S; reflects
the steepness of the probability function. If we set v; =0
and differentiate the function ¢ of 6;, then the derivative
is a;j¢’(a;0; — B;), and «; serves as the multiplier. The
larger the value of «; is, the steeper the probability is.
Hence at some point, any small improvement of the clas-
sifier's ability can make a huge difference in the response,
which can be used to detect subtle differences in the abil-
ity of the classifier.

2) We also define 7; as a guessing parameter. There is
a small probability that a classifier can correctly classify
the situation without really learning the features from the
training data.

We can see the advantage of the model. The perform-
ance of a classifier is estimated based on the responses to
discriminating items with different levels of difficulty, but
not by the accuracy. Classifiers which correctly classify
the difficult cases will get a high estimated value of the
performance parameter. Hard-to-classify data points tend
to be correctly classified by highly performing classifiers.

3.2 Inference

According to the second assumption, we can write the
likelihood function as

n k

Fwlay) = [T P0G =D (1 = P(Yi; = 1),

i=1j=1

If we directly optimize the likelihood function, it will
be very unstable due to the non-convexity of the func-
tion. Thus, we consider using Markov Chain Monte Carlo
(MCMC) to estimate the parameters25: 26, The basic idea
of MCMC is to use a series of Markov chains and trans-
ition kernel to estimate the parameters. After the proced-
ure, we obtain an estimation of the parameters. To make
a concise notation, we denote a set of all the parameters
as ©, which includes all the discrimination parameters o,
the guessing parameters +;, difficulty parameters ; and
performance parameters 6;. For the training data, we de-
note the sample space as II. Thus the joint probability
function can be written as f(II|©).

1) Metropolis hastings algorithm. The metropol-
is hastings (M-H) algorithm is a very basic method in the
MCMC family, which constructs the Markov chain from
the parameter's posterior distribution with a proposal ker-
nel?7. If we supply a prior distribution f(©) to the para-
meters, we can write the joint distribution of the para-
meters and data as f(II,©) = f(II|©) f(©), and following
the Bayes rule, the posterior distribution of © is

f11©)f(©)

PO = 5 e) f(0)d6

o f(I1]©)f(O).

Thus, we get the posterior distribution of certain
parameter O.

Then we grow the Markov chain by sampling from the
posterior distribution in multiple steps(28l. In particular
step ¢ of the algorithm, in which the target parameter is
©', we draw a sample ©' from the proposal kernel
q(©'|8%). The probability of accepting it as the value of
©! in next iteration is

i | 18 Irest)g(e]07)
aom { F(Ofrest)q(©7]6")’ 1} '

Here, the rest parameters are denoted as rest. Sup-
pose u < «, then we can generate another random num-
ber u from uniform distribution U(0,1). We update ©*!
as ©'. Otherwise, we reject the proposal value.

The above is a brief summary of the M-H algorithm.
In practice, we have to estimate an array of parameters
rather than a single parameter, so we need to decompose
the parameter vector into different components and up-
date them one by one through the M-H algorithm. This
slows down the M-H algorithm. Besides, the prior distri-
bution of the parameters should be carefully determined
by considering the effectiveness of the rejection process.
Last but not least, the initial value also plays a funda-
mental role in the efficiency of estimating the parameters.

In this model, we assign the parameters with the fol-

@ Springer

624 International Journal of Automation and Computing 17(5), October 2020

lowing priors:

0; ~ N(0,07)

log(a;) ~ N(jta,02) (we constrain a; > 0)
B; ~N(0,0%)

o7 ~ 1G(ap, Bo).

Then we derive the posterior probability density func-
tion based on the given prior. We can use Pystan to con-
struct the model and assign priors to the parameters.
Pystan also provides us different algorithms to make an
inference. It is obvious that we cannot obtain a concise
form of the posterior distribution because the posterior
form does not belong to any exponential family except
the last step. Thus, we resort to the M-H algorithm for
the updating of parameters 6;, o, ;. Finally, we use the
updated inverse gamma distribution to update o;. Al-
though straightforward, this algorithm is very inefficient
and time consuming because of the low accepting rate.

2) Gibbs sampling algorithm. We employ the
Gibbs sampling algorithm, a special M-H algorithm with
a proposal acceptance rate of 1, in the hope of improving
the efficiency. The probability of a correct classification
stays the same as

P(Yi; = 1) = ¢(j0; — B5) + v (1 — ¢(a;0: — B5))-

In order to make inference, we use the data augmenta-
tion method? in the likelihood function so as to make it
easier to analyze. In many cases when the likelihood func-
tion cannot be closely approximated by the normal likeli-
hood, the data augmentation method can simplify it by
introducing a series of latent variables(30; 31,

Introducing latent variables

In our problem, we define two n by m matrix vari-
ables W, Z which are associated with the generating pro-
cess of the performance matrix. Before explaining them,
we make Assumption 3.

Assumption 3. If a sample point falls in the stable
region, which is constructed by the classifier, and is not
close to the boundary, the classifier can correctly classify
the sample with probability 1.

1, ifsample j within classifier ¢ is in stable region
Wi; = <0, if sample j within classifier ¢ is in unstable
boundary.

Zi; ~ Nz, 1), mij = a;0; — B;. Z serves as a latent
indicator variable of W.

For the relation between W and Z, we have the fol-
lowing definition:

W = [1 T2 >0
Y0, if Zi; < 0.

Prior for normal parameters
For the classifier's ability 6;, we assign a normal distri-

@ Springer

bution 6; ~ N (u,0%)B2. As o and j3; are parameters to
describe the discrimination and difficulty of problem j,
we can stack a; and 8; up for simplicity and denote the
vector as ¢;. In accordance with 6;, we also assign the
new vector of a multivariate normal distribution prior[3:

d

[¢17 ¢27 sy ¢m]
ol POOS
POOB a%
Qa; Hos
ﬂj Ha;
We also assume the parameter:

el (])
J -) .
Ha; T8,

For the hyperparameters 7o; and 75, we assign a

bIP)

value related to the number of people who correctly an-
swer problem j.

Finally, for the guessing parameter v, we also assign a
beta distribution:

®vy; ~ Beta(s,t).

Thus, the joint distribution of

(0,2, M,I',W, Z|y) is

posterior

P(©,o,M,I'\W, Z|y) =
Py|W,T)P(W|Z)P(Z|©,®, M)P(©)P(®|M)P(M)P(T).

Parameter inference

According to the Gibbs algorithm, we can generate
the posterior samples by sweeping through each variable.
In each iteration, we sample from the conditional distri-
bution with the remaining values fixed at the current
value.

Inference on latent variables

The conditional distribution of W;; can be derived as
follows:

. D(nij)) .
Bernoulli , ify,; =1
(%‘ + (1 =) ®(nij) !
0 5 if Yij = 0.

Wi]‘ =

Similarly, we can obtain the conditional distribution
of Z as
{N(mgv DI(Zi; 2 0), if Wi =1
ij =
N(?],],l)I(Z” < 0), if Wij =0.
Inference on normal variables

1) For 6,
Because of the conjugate prior, we have

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 625

0. o N [2=+ Bi)as + 55 1
EtYhied T E+ o]

2) For .5,
We denote X as follows:

0, -1
B 0 —1
X =
0, -1
Then we have
mi M2 o Mm
_ 21 M22 o 12m
Xo = . . .
Mni Mn2 - TNnm

Thus, we have
P(®;| ~) ~ N (pe.;,00.;)

_ _ —1 _
where M,jz(XTXJFE;I) (XTZ4J-+2;1M]-),0¢,J.
_ _ —1
:(XTX+Z;1) .

3) For Mj,
P(M;| ~) ~ N (par;, o0,)
—1
where g, = (550 +1) (3505 + 1) sou, =
-1

—1
(2¢ +I) .

4) For ~;,

v; ~ Gamma (A1, A2)

n

where A= 321 2'2:1 IWi = 0,95 = 1) +5,d2 = 121 i;l
(Wij = 0,yi; = 0) + t.

4 Bernoulli-beta model
4.1 Bernoulli-beta model construction

In the previous model, we quantify the classifier's abil-
ity by defining the probability of a correct classification,
and make an assumption about the parameters for simpli-
city of calculation in the MCMC approach. However, this
method is limited in that it confines the distribution of a
correct classification, which cannot be directly measured
by the performance matrix. To obtain a closed form, we
introduce many normal assumptions for the relationship
between latent variables. Besides, Gibbs sampling is also
time consuming. Thus, instead of assuming a certain dis-
tribution for the latent variables, a new model is pro-

posed in which a constraint relaxation is applied to the
latent parameters. In this model, the successful predic-
tion of sample j is also determined by its difficulty and
the ability of classifier i. Now, we consider the generat-
ing process of each element Y;; in performance matrix Y.
For each element Y;;:

Yi; ~ Bernoulli(P;;)
Pij ~ Beta(mij, n”)

Based on the Bernoulli-Beta conjugate distribution,
we can see the value of Y;; is strongly associated with a
probability P;;, and we define it as the successful para-
meter. It is clear that the larger the P;; is, the higher the
probability of Y;; =1 is, meaning that the classifier ¢ cor-
rectly classifies sample j. Their relationship can be shown as

P =1) =Py
F(ml—i—nz) myi—1 1
P =Y W p™ii lfpi'n” .
f() F(m”)l—x(n”) 1% (])
Thus, we want the successful parameters to be in-
creasing functions of A;; = 6; — 8; and keep the paramet-
ers m;; and n;; positive. We need to construct a special
relationship to link them with 6; and ;. We can con-

struct a function:

m;; = exp {;@01‘27 /Bj }
Nij = exp { 7_%% +5i }

The exponential function ensures that m;; and n;; can
take on positive values. With this structure, the success
probability can be indirectly affected by the classifier's
ability and the sample's difficulty. Most importantly, no
assumptions are made for the classifier's ability[33].

We can also view the relationship in a different per-
spective. If we find the expectation of P;; under the as-
sumption and expand it as a function of parameters 6;
and S, the following sigmoid function will appear.

mij o 1

E(Py) = - .
m;+ng 1+6Xp{70f]91+ﬂ]}

Obviously, we bridge the latent parameter P;;, 6, B;
in a more flexible approach than the previous model.
Their relation is no longer defined by a constant equa-
tion, but a distribution with a sigmoid function. Al-
though the relation here has no distributional interpreta-
tion, it quantifies how the distance between 6; and pf;
contributes to the successful probability, and then gener-
ates a prediction result(34. Moreover, 6; and B; are all free
variables without a strong distributional constraint. Fig. 1
displays the expected response function with different dif-
ficulties and discriminations.

@ Springer

626 International Journal of Automation and Computing 17(5), October 2020

Alpha=2 Alpha=3
© Beta=-0.6 © Beta=-0.6
1.0 10— Beta=-03] L0 Beta=—03
------ Beta=0
. - Beta = 0.3
Beta=0.6

0.8 0.8 0.8
= = =
8 .S 8
5 0.6 5 0.6 5 0.6
=] (=] g
2 2 £
2 2 2
] 5 =
o =} Q
a a, 2,
8 3 g
= = =
L o L
Q Q Q
2 04 2 04 2 04
] < <
4] m 5]

0.2 0.2 0.2

0 0 0 J
-6 4 2 0 2 4 © -6 4 -2 0 2 4 o6 -6 4 2 0 2 4 6
Ability Ability Ability

Fig.1 The expected response function with different difficulty and discrimination. The higher the discrimination is, the steeper the
curve is. The difficulty can affect the probability for correctly classifying the sample.

Now we can summarize the full model log joint prob-
ability as follows:

n

L(Y,P,M,N) = > " (yij + mi; — 1) In(Pyj)+
i=1 j=1

(nij — yi;) In(1 — Pyj) + In (%) -

We denote all the parameters m;; and n;; as

6 = J (mij.nij) -

%7
Now the model is constructed.
4.2 Parameter inference
A more difficult, but common, situation is that we in-

@ Springer

troduce a latent parameter P;; while making no distribu-
tional assumption about parameters 6; and (;. To solve
this problem, we adopt the expectation maximization
(EM) algorithml33 which is a standard tool for the max-
imum likelihood algorithm with latent variables36l. We
notice that the parameters are redundant because the
likelihood function only depends on the distance of 6; and
Bj. Thus, a constraint for the parameters is necessary. We
set the mean of j3; equals to 0, i.e., 327", 8; = 0.

E-step

The E-step, on the (k+ 1)-th iteration, requires the
calculation of

Q(8]0") = Egr[L(O, PIY))]

i=1 j=1

n m n m

D) DD 3) peH
=1 j=1 =1 j=1

From the full probability function above, we can de-

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 627

rive the posterior distribution of P;;:

y17+m

S
P(Pijlmij, nij, yis) < Py TPy~

Beta (yz] + m”, nZ] Yij + 1)
Therefore, @ can be expressed as
Q(LIM,N,Y) =

YD Qi=>>" Bk, ok [Lislyis] =

=1 j=1 =1 j=1

DD iy +miy —)¢ (yz‘j + mfj) +
i=1 j=1

ZZ nij = Yij) (nlj Yij + 1)

i=1 j=1

D> (mig+ni =1y (nfj +mi+ 1)
i=1 j=1

where ¢(x) = 1;(&); is a digamma function.

M-step

As we have the constraint E;":l B; =0, we can ex-
press the @ function as follows:

Q(LIM,N,Y) =

n m-—1 a92+ "‘77'_71 .
}:ZMMM@+Z}MM<J§J1& N
=1 j=1

n m—1 0101 _ ”.”7*1 .
Z anSNz] +ZSN7,'m < d 2 =1 !
=1 j=1

where SM;; = ¥(yi; +mb;) —(nk; + mk; +1), SN;; =
w(nfj —yi; + 1) — w(nfj + mfj +1).

To estimate the parameters, we iterate over the set of
parameters until they converge. We can use different op-
timization methods such as gradient ascent, RMSProp or
Adam. Here we show the algorithm for gradient ascent.
The partial derivative of @) with respect to 6; and j; is as

follow:
gg = i %mijsMij - %nijSNij
(?:0? = Ji”:éll mi;SMij + inijSNij
gfgi = ;Nl <_%mijSMij> + %mimSMim+
ln”SNU - %nimSN'im
325622 = ;Nl %mijSMij + imimSMim‘F
inijSNij + %nimSNim.

Based on the partial derivatives, we can use the gradi-
ent ascent algorithm to update the parameters © in each

iteration.
oQ
k+1 k
8Q
k+1
" = + a—=
B] 57 aaﬂ] @k

5 Assigning weights to classifiers

As the estimators of 6 reflect classifiers' ability, we
should assign classifier ¢ a weight according to the estima-
tion of #;. The estimator, however, can be either positive
or negative. Thus, we employ the following transforma-
tion to decide the value of weight:

efi

> hep e

w; =

The weights clearly illustrate the order of classifiers'
ability and are normalized by the above formula.

6 Results
6.1 Results of the inference

A simulation study is presented below to show the es-
timation of the parameters from two 10 by 1000 datasets,
which are generated from different parameter settings.
The difference lies in the parameters' distributions. For
simplicity, we denote the normal IRT model estimated by
the M-H algorithm, by Gibbs sampling algorithm and the
Bernoulli-Beta IRT model as Models 1, 2 and 3, respect-
ively, and our experiments focus more on Models 2 and 3.
First, we apply the three models to estimate the paramet-
ers of the two datasets generated from two different sets
of parameters. Both settings contain 10 samples with 1000
classifiers, which have fixed difficulty and ability. In the
first dataset, all parameters are sampled from a normal
distribution so that they meet the assumption of the first
two models. However, the distributions of the paramet-
ers in the second dataset vary. The difficulty is manually
set to have a large variance and a relatively large range,
and the ability is sampled from a highly skewed gamma
distribution that the second dataset cannot satisfy the
first two models' assumption. Thus, we can compare the
accuracies of the two models in different situations.

Four measures were computed to evaluate the per-
formance of the three models. 0 is the real parameter and
6°" is an estimate of the parameter:
1) Correlation:
NS, 650 -

Noesto

07 i

Corr =

2) Mean square error:

@ Springer

628 International Journal of Automation and Computing 17(5), October 2020

S (05— 0:)°

MSE = N

3) Mean absolute error:
i 165 — 6]
N

MAE =

4) Variance ratio:

2
VR = Jest,

o2

The correlation is to test the linear relationship
between the parameter estimates and the real parameters.
The MSE and MAE measure the precision of the estima-
tion and the variance ratio illustrates the comparative
stability. In Tables 1 and 2, we list the previous four
measures of the estimators (classifiers' abilities and prob-
lems' difficulties) obtained from different models. In
Tables 3 and 4, we show the real parameters and their es-
timated values from three different models.

As we can see from the result, models 1 and 2 per-
form well on the first dataset while model 3 beats the
others on the second dataset. The reason is the first two
models tend to give a relatively stable solution due to the
normal prior, which has the advantage of minimizing the
range between the estimators. Thus, when the paramet-
ers are generated from a normal distribution, they fit

Table 1 Measures for dataset 1

Table 3 Measures for dataset 2

Model Parameter Correlation MSE MAE VR
Model 1 0 (Classifiers’ ability) 0.63 23 4.2 0.87
Model 2 6 (Classifiers’ ability) 0.87 21.22 3.9 0.81
Model 3 0 (Classifiers’ ability) 0.93 19.33 3.1 0.95
Model1 B (Samples’ difficulty) 0.86 15.75 3.53 0.8
Model 2 B (Samples’ difficulty) 0.93 12.64 2.58 0.18
Model 3 S (Samples’ difficulty) 0.98 1.716 1.13 1.08

Table4 Real and estimated parameters for dataset 2

Parameter Parameters Model 1 Model 2 Model3

component value estimation estimation estimation
B -9.075 ~4.35 ~3.256 -9.824
B2 ~2.485 -1.3 ~1.296 -2.68
Bs -3.395 -1.2 -2.24 -3.85
Ba ~1.015 -2.2 ~0.192 ~0.203
Bs -0.075 0.461 1.593 1.248
Bs 0.165 1.36 0.96 1.628
Br 4.035 3.194 3.045 5.591
Bs 6.485 3.85 3.783 6.998
Bo -6.395 -3.171 -2.904 -8.462
Bro 11.755 3.23 3.534 9.553

Model Parameter Correlation MSE MAE VR
Model 1 0 (Classifiers’ ability) 0.86 0.97 0.96 0.97
Model 2 0 (Classifiers’ ability) 0.88 0.31 0.37 0.88
Model 3 0 (Classifiers’ ability) 0.87 0.91 0.96 1.9
Model1 B (Samples’ difficulty) 0.97 0.007 0.16 1.15
Model2 B (Samples’ difficulty) 0.99 0.003 0.05 0.99
Model 3 B (Samples’ difficulty) 0.99 0.016 0.12 1.36

Table 2 Real and estimated parameters for dataset 1

Parameter Parameters Model 1 Model 2 Model 3

component value estimation estimation estimation
A ~1.024 -0.94 -0.953 -1.107
e ~0.934 -0.99 -0.91 ~1.08
Bs ~0.694 -0.732 ~0.709 ~0.869
Bs ~0.464 -0.56 ~0.514 ~0.579
Bs 0.356 0.472 0.408 0.503
Pe 0.336 0.336 0.319 0.382
Br 0.616 0.694 0.576 0.722
Ps 0.806 0.85 0.757 0.956
Bo ~0.074 ~0.171 ~0.145 ~0.172
Bro 1.076 1.23 1.141 1.243

@ Springer

well. In model 3, we didn't have such an assumption, so
the parameters can take any value to minimize the loss
function and the range may be larger than that of the
first two estimations. It clearly produces a better estima-
tion when the ranges of the real parameters are large. To
compare the accuracy of the estimation, we calculate the
error ratio for each parameter in both datasets:

(eest _ 9)2
Average MSE
MSE; + MSE; + MSE3
3 .

Error ratio =

Average MSE =

In Fig.2, we use a bar plot to compare the error ra-
tios for all models on two datasets.

From the results, we can make a conclusion that real
parameters and parameter estimates are highly correl-
ated. For both datasets, the correlations are almost al-
ways higher than 0.85, implying that the parameter es-
timates hold a strong linear relationship with the true
parameter values. Thus, it makes more sense to keep the
weights of different classifiers as ordinal consistent with
the classifiers' ability[37).

6.2 Analysis of difficulty parameters

As we mentioned before, an IRT ensemble can evalu-

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 629

Dataset 1
1.0
mm Model 1
Model 2
I Model 3
0.8
0.6
2
= 04
o~
0.2
0 .7/ || I — .7 ‘l/ I |-//, _— M‘ A
Betal Beta2 Beta3 Beta4 Beta5 Beta6 Beta7 Beta8 Beta9 Betal0
Dataset 2
1.0
mm Model |
«+ Model 2
I Model 3
0.8
0.6
2
= 04
0.2
.
0 G, i ./ o T ||]] | % Al

Betal Beta2 Beta3 Beta4 Beta5

Beta6 Beta7 Beta8 Beta9 Betal0

Fig. 2 Error ratio for the two datasets

ate the classifiers' ability and samples' difficulty simultan-
eously. To better understand the model, we first show
what the parameters can reflect, and how they can affect
the classification. Then we will illustrate the performance
of our method on different datasets.

We depict the sample points from the chess board
dataset to show how the IRT ensemble model evaluates
samples' difficulty. Figs.3 and 4 illustrate the dual char-
acter of location and difficulty, which is shown by the size
of the sample points. The larger the point is, the larger
the difficulty of parameter is. Points in the same block
share the same color in the original chess board. We first
show how the estimated values change with increased it-
erations. In Fig.3, we constructed 500 base classifiers. As
we increase the number of iterations, difference is gradu-
ally increased. The outcome of the 100 iterations is simil-
ar, while the outcome of the 500 iterations is various,
meaning each sample is well distinguished by its diffi-
culty evaluated by a bunch of classifiers. Zooming in to
Fig.3, we can find some rules. The IRT ensemble meth-
od tends to assign a higher difficulty to the points that
are closer to the boundary, and these points support the

decision boundary in return. It is obvious that when the
points are close to their counterparts with a distinct la-
bel, they are more likely to be misclassified. Only those
classifiers which are powerful enough can correctly com-
plete the task of difficult classification. Thus, it makes
sense to take their capability for constructing the classi-
fication boundary.

For some other ensemble methods, it proves that in-
creasing the number of classifiers can improve the per-
formance, which also applies to the IRT ensemble meth-
od. In Fig. 4, we fixed the number of iterations to be 2000
and changed the number of classifiers. According to the
experiment, when we increase the number of classifiers,
those sample points constructing the boundary within the
block will stand out while those inside the boundary will
shrink to a dot. In order to distinguish the important
sample points from others, more classifiers should be in-
cluded to make a joint decision. The interesting bit comes
when we increase the number of classifiers to a large
enough value. In the last two subplots, the sizes of the
points seem to be unchanged. In many cases, increasing
the decision size cannot guarantee improved performance.

@ Springer

630 International Journal of Automation and Computing 17(5), October 2020

50 iterations

400 — T "
300 R ol .,
200 [l T L S
100 A
0 - .
0 100 200 300 400
X

1 000 iterations

400 = G
300 SRS e Sl =2

- ol I

B 200 - i % o '
= * . LR

100 A T S

0 -
0 100 200 300 400
X

300 iterations

400 = i

300 TR e g B
-’ s il i

. 200 . A .-- s 0 a- Le

2 u A . :

100 | BT SRS

0 -
0 100 200 300 400
X

2 000 iterations

400 — _ — iz
300 SEEa——te— = .
-’ | i
~ 200 ¢ = 4 e
. ¢ i |t .
100 o B R G
0 -
0 100 200 300 400
X

Fig. 3 500 Classifiers with different iterations. X and Y axes illustrate the position of the points, and different class labels are shown by

distinct shape.

When we have sufficient classifiers, it will come across
the bottleneck.

6.3 Analysis of classification

We collected 15 real datasets and 2 artificial datasets
to compare our Model 2 with a single treeB¥l, random
forest (RF)BY, bagging!”, gradient boosting decision tree
(GBDT)1, linear discriminant analysis (LDA)M, and
support vector machine (SVM)[42l. We didn't make exper-
iments for Model 1 because it is time consuming. For all
the ensemble methods, we used a single classification tree
as the base classifier. When it comes to a single tree, the
pruning option is necessary for preventing overfitting.
However, we didn't implement the pruning algorithm for
the base classifiers in bagging, gradient boosting and ran-
dom forest because pruning decreases the variance but in-
creases the bias. For all the ensemble algorithms, boot-

@ Springer

strap can be used to construct various base tree struc-
tures, which can reduce the variance effectively. Thus in
all the ensemble models, we used unpruned trees as the
base classifiers to account for bias and then used boot-
strap to reduce the variance.

Most of the datasets summarized in Table 5 are from
the UCI datasets. As our model is constructed using the
base classifiers, it is suitable for all kinds of features as
long as the base model is adequate for the data. In order
to show a generalization of our method, we intentionally
selected some datasets containing both the categorical
features as well as the continuous features. One-hot en-
coding is also a must for all the nominal features. We
conducted all the experiments on Python 3.6 platform.
To compare the accuracy of these methods, we randomly
split the dataset to 10 folds and set the test set propor-
tional to 0.3. A simulation of each setting was performed
30 times for each dataset. In order to compare the ac-

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 631

50 Classifiers
400 ,
300 oy = SR
>~ 200 S
100 .. - —t
0 .
0 100 200 300 400
X
500 Classifiers
400 L
300 o St
~ 200 Syt
100 HiEleEt S —t 5
- L 2)
A N .
0 . :
0 100 200 300 400
X

100 Classifiers
400 e .
300 . L
200 L wen 3
100 [EEEE. e ——
0
0 100 200 300 400
X
1 000 Classifiers
400 — :
300 O Yot
200 boen ot
100 = .°, o T
0 . » .
0 100 200 300 400

X

Fig. 4 Different number of classifiers. X and Y axes illustrate the position of the points, and different class labels are shown by distinct

shape.

curacies of various methods, we set the number of trees in
each ensemble algorithm to 500.

The result of the average accuracy is in Table 6. We
highlighted the best two results and the worst result for
each data set. From Table 6, it seems that for Model 2,
random forest and gradient boosting perform well in gen-
eral. However, for some kinds of data sets, gradient
boosting fails to recognize that pattern and yields the
worst resulti3l, The weakness of gradient boosting has
been reported in some papers. The performance of SVM
greatly fluctuated(44],

Bagging generally performs better than the tree mod-
el. Although bagging is not the best, it is more stable
than gradient boosting in some cases. It is noted that
Model 2 is within the scope of a weighted voting model,
which extends from the bagging strategy. Thus, we can
explain the reason why Model 2 is more stable than the
gradient boosting method.

A win tablel5] summarizes the comparison in Table 7.

In the win table, a; ; illustrates the frequency that meth-
od j gives a higher accuracy than method i. For instance,
a1,3 equals 11 means in total 17 comparisons between
Model 2 and gradient boosting, Model 2 produces more
accurate or the same result than gradient boosting in 11
datasets. This table shows every pairwise comparison in
detail. In order to rank the methods, we need to calcu-
late the goal difference from the win table, subtracting
the frequency of loss from the frequency of wins for each
model. The frequency of wins can be obtained by sum-
ming within the row, while the frequency of losses can be
obtained within the column for each model. From there,
the goal difference can be calculated. The result is shown
in Table 8. It is clear that Model 2 has an overwhelming
superiority over others. This table provides another way
to show the consistently high accuracy of our model com-
pared to other methods shown in Table 6.

We also conducted an experiment to investigate how
the ensemble size affects the prediction with 13 datasets

@ Springer

632 International Journal of Automation and Computing 17(5), October 2020

Table 5 Dataset information

Table 7 Win table

Continuous Discrete

Method Model2 RF GBDT SVM Single tree Bagging LDA

Dataset Observations foatures foatures Class Source
IRIS 150 4 0 3 UCI
Bld 345 6 0 2 UCI
Spe 267 44 0 2 UCI
Glass 214 9 0 6 UCI
Veh 846 18 0 4 UCI

Checkboard 160000 2 0 2 Artificial
BTD 106 9 0 4 UCI
IPLD 583 8 1 2 UCI
Haberman 306 3 0 2 UCI
Tonos 351 32 2 2 UCI
Multiangle 160000 2 0 2 Tensorflow

Balance 625 0 4 2 UCI
AUS 690 5 9 2 UCI
ECOLI 336 7 0 6 UCI
LEN 24 0 3 3 UCI
TAE 151 0 5 3 UCI
LC 33 0 56 3 UCI
LSVT 126 310 0 2 UCI
SCADI 70 205 0 8 UCI

Model 2 0 13 11 13 16 14 16
RF 5 0 8 11 14 12 14
GBDT 7 9 0 11 13 10 14
SVM 4 6 6 0 10 9 15
Tree 1 3 4 7 0 3 10
Bagging 3 5 8 8 17 0 13
LDA 2 3 4 3 8 5 0
Table 8 Summary of win table
Models ‘WinLoss Win Loss

Model 2 61 83 22

RF 25 64 39

GBDT 23 64 41

SVM -3 50 53

Tree -50 28 78

Bagging 1 54 53

LDA =57 25 82

Table 6 Average of accuracy

DataSet Model2 RF GBDT SVM Single tree Bagging LDA

IRIS 0.967 0.962 0.945 0.932 0.947 0.954 0.88
Bld 0.703 0.69 0.693 0.68 0.62 0.66 0.59
Spe 091 091 0.88 0.828 0.861 0.911 0.865
Glass 0.729 0.766 0.77 0.63 0.72 0.72 0.59
Veh 0.74 0.73 0.75 0.76 0.63 0.68 0.53
Checkboard 0.88 0.82 0.96 0.5 0.58 0.87 0.5
BTD 0.85 0.875 0.88 0.89 0.82 0.86 0.85
IPLD 0.723 0.712 0.7 0.71 0.68 0.7 0.68
Harman 0.677 0.668 0.65 0.74 0.71 073 0.73
Tonos 0.928 0.926 0.92 0.886 0.888 0.923 0.855
Multiangle 0.92 0.9 0.96 0.51 0.83 0.83 0.49
Balance 0.815 0.849 0.623 0.78 0.59 0.65 0.73
Aus 0.858 0.865 0.81 0.76 0.82 0.83 0.68
ECOLI 0.833 0.755 0.65 0.87 0.8 0.81 0.829
Len 0.738 0.706 0.725 0.717 0.708 0.72 0.725
TAE 0.565 0.468 0.582 0.511 0.37 0.43 044
LC 0.5 0484 0.5 0.45 0.43 0.43 0.2

(4 datasets were discarded because of the failure of com-
putation when the ensemble size is too small). We still
used the same method for getting the accuracy and 20 re-
petitions were conducted for each sample size, which are

averaged to calculate the t statistics. In Fig.5, we show

@ Springer

the boxplot. When comparing our method with random
forest, gradient boosting and SVM, we conclude that the
gain of our model tends to be enhanced as the ensemble
size increases. It seems that our model has a good poten-
tial to improve the accuracy if the ensemble size is large
enough.

Model 3 has predominant advantage when applying to
some datasets. We illustrate the cumulative accuracy on
4 cases in Fig.6. In these datasets, samples contain many
attributes compared to the sample size, which means they
include a lot of redundant information. Consequently, the
samples' difficulties vary and there may exist a small sub-
sample contributing a lot for constructing the decision
boundary. It is hard for most of the classifiers to detect
the important variables. Only a small subset of classifiers
are powerful. Thus, the distribution of the classifiers are
no longer symmetric and the variance of the classifiers'
abilities increases. Model 3 is more powerful than Model 2
when the variance of the parameters is large enough,
higher weights are assigned for the stronger classifiers.
Thus, it can outperform other methods in these cases. We
found that Model 3 can consistently produce a higher ac-
curacy than random forest and gradient boosting.
However, when the difficulty of each sample is similar,
Model 2 tends to perform better.

7 Conclusions

In this paper, we proposed the IRT ensemble, a
weighted majority voting method focusing on the classifi-
ers that can correctly deal with the hard-to-classify prob-
lems, by adopting the item response theory. The classify-

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning 633

Model 2 versus LDA Model 2 versus SVM Model 2 versus single tree
40 _ _
6
35
— 15
30
4
25
8 8 5 10 +
z 20 Z 2]
g E ‘ g
[_l 15 ‘ — [—“ — E—“
5
10 0 -
0 |- C
0
. =
0 L _ I — — _ = 4
B128 B256 B512 B1024 B2048 B128 B256 B512 B1024 B2048 B128 B256 B512 B1024 B2048
Ensemble size Ensemble size Ensemble size
Model 2 versus bagging Model 2 versus gradient boosting Model 2 versus random forest
4 - 4
6 p—
3
3
4 _ 2
172} w 2 72}
2 2 21
z Z Z T
s s s —
% 5 7
[_‘I . E—<‘ | E—<‘ 0 ‘ 1 J
0 - 0 l -1 |
- ‘
-2 - — -1

B128 B256 B512 B1024 B2048
Ensemble size

B128 B256 B512 B1024 B2048
Ensemble size

B128 B256 B512 B1024 B2048
Ensemble size

Fig.5 Comparison with LDA, SVM, single tree, bagging, gradient and random forest

ing boundaries are constructed by the points that are fre-
quently misclassified and higher weights are assigned to
the classifiers with higher abilities. We also proposed
three models to estimate the ability parameters and in-
troduced the assumptions behind the models.

For the performance of the models, we analyzed them
in two stages. First, we evaluated their accuracy in the
estimation of parameters. We concluded that Models 1
and 2 perform well when the variance of the parameters
are small, while Model 3 is more suitable when the para-
meters vary. We also explained how the lengths of the
Markov chains and the number of classifiers would affect
the estimation of samples' difficulty. The chessboard
dataset also provides us an intuitive explanation about
the idea behind the IRT ensemble algorithm. Finally, we
implemented an experiment with Model 2 using 19 data-
sets and compared the performance with other classifica-

tion methods. We showed that the advantage of Model 2
is enhanced with the increased ensemble size compared to
LDA, SVM, single tree, bagging, and gradient boosting.
It showed compatible performance with random forest.
Finally, we found Model 3 has an edge in high dimension-
al datasets.

Future work includes combining Model 3 with kernel
methods. Another modification is to introduce the Beta
model, which is widely used in the network analysis.

References

(1] Z. H. Zhou. Ensemble learning. Encyclopedia of Biomet-
rics, S. Z. Li, Ed., Berlin, Germany: Springer, pp.411-416,
2009.

[2] L. Lam, S.Y. Suen. Application of majority voting to pat-
tern recognition: an analysis of its behavior and perform-
ance. IEEFE Transactions on Systems, Man, and Cybernet-

@ Springer

634

(8]

International Journal of Automation and Computing 17(5), October 2020

LC

0.600

0.575

o o
W W
N W
W (=)

0.500

0.475

Accumulative accuracy

0.450

0.425

40 60
Iteration

SCADI

o
=
o0

I
9
[*))

Accumulative accuracy

e
93
N

e
N
2

0 20

40
Tteration

60

100

100

0.850

0.825

Accumulative accuracy

0.700

0.675

0.650

Accumulative accuracy

I
(o5}
S
S

¢
9
N
W

0.750 |

0.725

0.95

e
o
x

0.93

0.92

0.91

LSVT

40 60
Iteration

Inonos

60
Tteration

40 100

Fig. 6 Cumulative accuracy for Model 3 on 4 different datasets

ics— Part A: Systems and Humans, vol.27, no.5, pp.553—
568, 1997. DOI: 10.1109/3468.618255.

A.F.R. Rahman, H. Alam, M. C. Fairhurst. Multiple clas-
sifier combination for character recognition: revisiting the
majority voting system and its variations. In Proceedings
of the 5th International Workshop on Document Analysis
Systems, pp. 167-178, Springer, Princeton, USA, 2002.

H. Kim, H. Kim, H. Moon, H. Ahn. A weight-adjusted vot-
ing algorithm for ensembles of classifiers. Journal of the
Korean Statistical Society, vol. 40, no.4, pp.437-449, 2011.
DOI: 10.1016/j.jkss.2011.03.002.

S. E. Embretson, S. P. Reise. Item Response Theory, New
York, USA: Psychology Press, 2013.

F. Martinez-Plumed, R. B. C. Prudéncio, A. Martinez-
Usd, J. Hernandez-Orallo. Item response theory in Al:
Analysing machine learning classifiers at the instance
level. Artificial Intelligence, vol.271, pp.18-42, 2019. DOI:
10.1016/j.artint.2018.09.004.

L. Breiman. Bagging predictors. Machine Learning,
vol.24, mno.2, pp.123-140, 1996. DOI: 10.1007/BF000
58655.

I. Gandhi, M. Pandey. Hybrid ensemble of classifiers using
voting. In Proceedings of International Conference on

@ Springer

(10]

(1]

(13]

Green Computing and Internet of Things, IEEE, Noida,
India, pp.399-404, 2015. DOI: 10.1109/ICGCIoT.2015.
7380496.

A. Rojarath, W. Songpan, C. Pong-Inwong. Improved en-
semble learning for classification techniques based on ma-
jority voting. In Proceedings of the 7th IEEE Internation-
al Conference on Software Engineering and Service Sci-
ence, IEEE, Beijing, China, pp.107-110, 2016. DOL:
10.1109/ICSESS.2016.7883026.

C. Cornelio, M. Donini, A. Loreggia, M. S. Pini, F. Rossi.
Voting with random classifiers (vorace). arXiv:
1909.08996, 2019. https://arxiv.org/abs/1909.08996.

X. B. Liu, Z. T. Liu, G. J. Wang, Z. H. Cai, H. Zhang. En-
semble transfer learning algorithm. IEEE Access, vol.6,
pp-2389-2396, 2017. DOI: 10.1109/ACCESS.2017.2782
884.

S. J. Winham, R. R. Freimuth, J. M. Biernacka. A
weighted random forests approach to improve predictive
performance. Statistical Analysis and Data Mining, vol.6,
no. 6, pp.496-505, 2013. DOI: 10.1002/sam.11196.

Y. C. Chen, H. Ahn, J. J. Chen. High-dimensional canonic-
al forest. Journal of Statistical Computation and Simula-
tion,vol.87,n0.5,pp. 845-854,2017.D01:10.1080,/00949655.

http://dx.doi.org/10.1109/3468.618255
http://dx.doi.org/10.1016/j.jkss.2011.03.002
http://dx.doi.org/10.1016/j.artint.2018.09.004
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1109/ICGCIoT.2015.7380496
http://dx.doi.org/10.1109/ICGCIoT.2015.7380496
http://dx.doi.org/10.1109/ICSESS.2016.7883026
https://arxiv.org/abs/1909.08996
http://dx.doi.org/10.1109/ACCESS.2017.2782884
http://dx.doi.org/10.1109/ACCESS.2017.2782884
http://dx.doi.org/10.1002/sam.11196
http://dx.doi.org/10.1080/00949655.2016.1231191
http://dx.doi.org/10.1109/3468.618255
http://dx.doi.org/10.1016/j.jkss.2011.03.002
http://dx.doi.org/10.1016/j.artint.2018.09.004
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1109/ICGCIoT.2015.7380496
http://dx.doi.org/10.1109/ICGCIoT.2015.7380496
http://dx.doi.org/10.1109/ICSESS.2016.7883026
https://arxiv.org/abs/1909.08996
http://dx.doi.org/10.1109/ACCESS.2017.2782884
http://dx.doi.org/10.1109/ACCESS.2017.2782884
http://dx.doi.org/10.1002/sam.11196
http://dx.doi.org/10.1080/00949655.2016.1231191

Z. Chen and H. Ahn / Item Response Theory Based Ensemble in Machine Learning

(14]

(15]

(16]

(17]

18]

(19]

20]

[21]

(22]

[25]

[26]

(27]

2016.1231191.

H. F. Zhou, X. Z. Zhao, X. Wang. An effective ensemble
pruning algorithm based on frequent patterns. Knowledge-
Based Systems, vol.56, pp.79-85, 2014. DOI: 10.1016/j.
knosys.2013.10.024.

Y. Zhang, S. Burer, W. N. Street. Ensemble pruning via
semidefinite programming. Journal of Machine Learning
Research, vol. 7, no. 1, pp.1315-1338, 2006.

L. I. Kuncheva, J. J. Rodriguez. A weighted voting frame-
work for classifiers ensembles. Knowledge and Informa-
tion Systems, vol.38, no.2, pp.259-275, 2014. DOI:
10.1007/s10115-012-0586-6.

A. Kabir, C. Ruiz, S. A. Alvarez. Mixed bagging: a novel
ensemble learning framework for supervised classification
based on instance hardness. In Proceedings of IEEE Inter-
national Conference on Data Mining, IEEE, Singapore,
Singapore, pp.1073-1078, 2018. DOI: 10.1109/ICDM.
2018.00137.

L. V. Utkin, M. S. Kovalev, A. A. Meldo. A deep forest
classifier with weights of class probability distribution sub-
sets. Knowledge-based Systems, vol.173, pp.15-27, 2019.
DOI: 10.1016/j.knosys.2019.02.022.

H. Reddy, N. Raj, M. Gala, A. Basava. Text-mining-based
fake news detection using ensemble methods. Internation-
al Journal of Automation and Computing, vol.17, no.2,
pp-210-221, 2020. DOI: 10.1007/s11633-019-1216-5.

W. G. Yi, J. Duan, M. Y. Lu. Double-layer Bayesian clas-
sifier ensembles based on frequent itemsets. International
Journal of Automation and Computing, vol.9, no.2,
pp. 215-220, 2012. DOI: 10.1007/s11633-012-0636-2.

G. Wang, J. X. Hao, J. Ma, H. B. Jiang. A comparative as-
sessment of ensemble learning for credit scoring. Expert
Systems with Applications, vol.38, no.1l, pp.223-230,
2011. DOI: 10.1016/j.eswa.2010.06.048.

F. Martinez-Plumed, R. B. Prudéncio, A. Martinez-Us¢, J.
Hernandez-Orallo. Making sense of item response theory in
machine learning. In Proceedings of the 22nd FEuropean
Conference on Artificial Intelligence, 10S Press, The Hag-
ue, The Netherlands, pp.1140-1148, 2016. DOI: 10.3233/
978-1-61499-672-9-1140.

C. Zanon, C. S. Hutz, H. Yoo, R. K. Hambleton. An ap-
plication of item response theory to psychological test de-
velopment. Psicologia: Reflexao e Critica, vol.29, no.1,
Article number 18, 2016. DOI: 10.1186/s41155-016-0040-x.

H. L. Fu, G. Manogaran, K. Wu, M. Cao, S. Jiang, A. M.
Yang. Intelligent decision-making of online shopping beha-
vior based on internet of things. International Journal of
Information Management, vol.50, pp.515-525, 2020. DOI:
10.1016/j.ijinfomgt.2019.03.010.

W. R. Gilks, S. Richardson, D. J. Spiegelhalter. Markov
Chain Monte Carlo in Practice. Boca Raton, USA: Chap-
man & Hall, CRC, 1995.

Y. Chen, T. S. Filho, R. B. C. Prudencio, T. Diethe, P.
Flach. f3-IRT: a new item response model and its applica-
tions. arXiv: 1903.04016, 2019. https://arxiv.org/abs/
1903.04016.

B. W. Junker, R. J. Patz, N. M. VanHoudnos. Markov
chain Monte Carlo for item response models. Handbook of
Item Response Theory, Volume Two: Statistical Tools, W.
J. van der Linden, Ed., Boca Raton, USA: Chapman and
Hall, CRC, pp.271-325, 2016.

(28]

(29]

(30]

(31]

(32]

(33]

34]

(35]

(36]

(37]

(38]

39]

[40]

[41]

[43]

635

J. S. Kim, D. M. Bolt. Estimating item response theory
models using Markov chain Monte Carlo methods. Educa-
tional Measurement: Issues and Practice, vol.26, no.4,
pp-38-51,2007. DOI: 10.1111/j.1745-3992.2007.00107 .x.

M. A. Tanner, W. H. Wong. The calculation of posterior
distributions by data augmentation. Journal of the Amer-
ican Statistical Association, vol.82, no.398, pp.528-540,
1987. DOI: 10.1080,/01621459.1987.10478458.

J. H. Albert. Bayesian estimation of normal ogive item re-
sponse curves using Gibbs sampling. Journal of Education-
al Statistics, vol.17, no.3, pp.251-269, 1992. DOI: 10.
3102/10769986017003251.

Y. Y. Sheng. Markov chain Monte Carlo estimation of nor-
mal ogive IRT models in matlab. Journal of Statistical
Software,vol. 25 no. 8,pp. 1-15,2008.DOI1:10.18637/jss.v025.
i08.

Y. Y. Sheng. Bayesian estimation of the four-parameter
IRT model using Gibbs sampling. International Journal of
Quantitative Research in FEducation, vol.2, no.3-4,
pp-194-212, 2015. DOI: 10.1504/TJQRE.2015.071736.

Y. Noel, B. Dauvier. A beta item response model for con-
tinuous bounded responses. Applied Psychological Meas-
urement, vol.31, no.1l, pp.47-73, 2007. DOI: 10.1177/
0146621605287691.

J. C. Xu, Q. W. Ren, Z. Z. Shen. Prediction of the strength
of concrete radiation shielding based on LS-SVM. Annals
of Nuclear FEnergy, vol.85, pp.296-300, 2015. DOI:
10.1016/j.anucene.2015.05.030.

S. Borman. The expectation maximization algorithm: a
short tutorial. Submmitted for Publication, vol.41, 2004.

W. Deng, H. M. Zhao, L. Zou, G. Y. Li, X. H. Yang, D. Q.
Wu. A novel collaborative optimization algorithm in solv-
ing complex optimization problems. Soft Computing,
vol.21, no. 15, pp.4387-4398, 2017. DOI: 10.1007/s00500-
016-2071-8.

M. H. Fang, X. H. Hu, T. T. He, Y. Wang, J. M. Zhao, X.
J. Shen, J. Yuan. Prioritizing disease-causing genes based
on network diffusion and rank concordance. In Proceed-
ings of IEEE International Conference on Bioinformatics
and Biomedicine, IEEE, Belfast, UK, pp.242-247, 2014.
DOI: 10.1109/BIBM.2014.6999162.

S. R. Safavian, D. Landgrebe. A survey of decision tree
classifier methodology. IEEE Transactions on Systems,
Man, and Cybernetics, vol.21, no.3, pp.660-674, 1991.
DOI: 10.1109/21.97458.

A. Liaw, M. Wiener. Classification and regression by ran-
domforest. R News, vol.2-3, pp. 18-22, 2002.

J. H. Friedman. Stochastic gradient boosting. Computa-
tional Statistics & Data Analysis, vol.38, mno.4,
pp.367-378, 2002. DOI: 10.1016/S0167-9473(01)00065-2.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K. R.
Mullers. Fisher discriminant analysis with kernels. In Pro-
ceedings of IEEE Signal Processing Society Workshop,
IEEE, Madison, USA, pp.41-48, 1999. DOI: 10.1109/
NNSP.1999.788121.

J. A. K. Suykens, J. Vandewalle. Least squares support
vector machine classifiers. Neural Processing Letters,
vol.9, no.3, pp.293-300, 1999. DOI: 10.1023/A:10186286
09742.

E. Bauer, R. Kohavi. An empirical comparison of voting
classification algorithms: bagging, boosting, and variants.

@ Springer

http://dx.doi.org/10.1080/00949655.2016.1231191
http://dx.doi.org/10.1016/j.knosys.2013.10.024
http://dx.doi.org/10.1016/j.knosys.2013.10.024
http://dx.doi.org/10.1007/s10115-012-0586-6
http://dx.doi.org/10.1109/ICDM.2018.00137
http://dx.doi.org/10.1109/ICDM.2018.00137
http://dx.doi.org/10.1016/j.knosys.2019.02.022
http://dx.doi.org/10.1007/s11633-019-1216-5
http://dx.doi.org/10.1007/s11633-012-0636-2
http://dx.doi.org/10.1016/j.eswa.2010.06.048
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
http://dx.doi.org/10.1186/s41155-016-0040-x
http://dx.doi.org/10.1016/j.ijinfomgt.2019.03.010
https://arxiv.org/abs/1903.04016
https://arxiv.org/abs/1903.04016
http://dx.doi.org/10.1111/j.1745-3992.2007.00107.x
http://dx.doi.org/10.1080/01621459.1987.10478458
http://dx.doi.org/10.3102/10769986017003251
http://dx.doi.org/10.3102/10769986017003251
http://dx.doi.org/10.18637/jss.v025.i08
http://dx.doi.org/10.18637/jss.v025.i08
http://dx.doi.org/10.1504/IJQRE.2015.071736
http://dx.doi.org/10.1177/0146621605287691
http://dx.doi.org/10.1177/0146621605287691
http://dx.doi.org/10.1016/j.anucene.2015.05.030
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1109/BIBM.2014.6999162
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1109/NNSP.1999.788121
http://dx.doi.org/10.1109/NNSP.1999.788121
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1080/00949655.2016.1231191
http://dx.doi.org/10.1016/j.knosys.2013.10.024
http://dx.doi.org/10.1016/j.knosys.2013.10.024
http://dx.doi.org/10.1007/s10115-012-0586-6
http://dx.doi.org/10.1109/ICDM.2018.00137
http://dx.doi.org/10.1109/ICDM.2018.00137
http://dx.doi.org/10.1016/j.knosys.2019.02.022
http://dx.doi.org/10.1007/s11633-019-1216-5
http://dx.doi.org/10.1007/s11633-012-0636-2
http://dx.doi.org/10.1016/j.eswa.2010.06.048
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
http://dx.doi.org/10.3233/978-1-61499-672-9-1140
http://dx.doi.org/10.1186/s41155-016-0040-x
http://dx.doi.org/10.1016/j.ijinfomgt.2019.03.010
https://arxiv.org/abs/1903.04016
https://arxiv.org/abs/1903.04016
http://dx.doi.org/10.1111/j.1745-3992.2007.00107.x
http://dx.doi.org/10.1080/01621459.1987.10478458
http://dx.doi.org/10.3102/10769986017003251
http://dx.doi.org/10.3102/10769986017003251
http://dx.doi.org/10.18637/jss.v025.i08
http://dx.doi.org/10.18637/jss.v025.i08
http://dx.doi.org/10.1504/IJQRE.2015.071736
http://dx.doi.org/10.1177/0146621605287691
http://dx.doi.org/10.1177/0146621605287691
http://dx.doi.org/10.1016/j.anucene.2015.05.030
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1109/BIBM.2014.6999162
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1109/NNSP.1999.788121
http://dx.doi.org/10.1109/NNSP.1999.788121
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742

636

International Journal of Automation and Computing 17(5), October 2020

Machine Learning, vol. 36, no. 1-2, pp.105-139, 1999. DOI:
10.1023/A:1007515423169.

[44] H. Li, F. D. Chen, K. W. Cheng, Z. Z. Zhao, D. Z. Yang.
Prediction of zeta potential of decomposed peat via ma-
chine learning: comparative study of support vector ma-
chine and artificial neural networks. International Journal
of Electrochemical Science, vol.10, no.8, pp.6044-6056,

2015.

[45] Y. C. Chen, H. Ha, H. Kim, H. Ahn. Canonical forest.
Computational Statistics, vol.29, no.3-4, pp.849-867,
2014. DOI: 10.1007/s00180-013-0466-x.

@ Springer

Ziheng Chen received the B.Sc. degree in
statistics from Renmin University of
China, China in 2016. He is currently a
Ph.D. degree candidate in Department of
Applied Mathematics and Statistics, Stony
Brook University, USA.

His research interests include reinforce-
ment learning, recommending system, tree
structure model and ensemble learning

theory.
E-mail: ziheng.chen@stonybrook.edu (Corresponding author)
ORCID iD: 0000-0002-2585-637X

Hongshik Ahn received the B.Sc. degree
in mathematics from Seoul National Uni-
versity, South Korea, and the Ph.D. de-
gree in statistics from University of Wis-
consin-Madison, USA in 1992. From 1992
to 1996, he was a mathematical statisti-
cian at the National Center for Toxicolo-
gical Research, U.S. Food and Drug Ad-
ministration, and a faculty member in the
Department of Applied Mathematics and Statistics at Stony
Brook University, USA from 1996 to present. He was the first
Vice President of SUNY Korea for two years from 2012. Cur-
rently, he is a professor at Stony Brook University. He has pub-
lished 2 books, 3 book chapters, over 70 papers in peer-reviewed
journals, and 25 conference papers.

His research interests include classification of high-dimension-
al data, tree-structured regression modeling, survival analysis,
and multi-step batch testing for infectious diseases.

E-mail: hongshik.ahn@stonybrook.edu

http://dx.doi.org/10.1023/A:1007515423169
http://dx.doi.org/10.1007/s00180-013-0466-x
http://dx.doi.org/10.1023/A:1007515423169
http://dx.doi.org/10.1007/s00180-013-0466-x
http://dx.doi.org/10.1023/A:1007515423169
http://dx.doi.org/10.1007/s00180-013-0466-x
http://dx.doi.org/10.1023/A:1007515423169
http://dx.doi.org/10.1007/s00180-013-0466-x

