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Abstract: Object tracking is a very important topic in the field of computer vision. Many sophisticated appearance models have been
proposed. Among them, the trackers based on holistic appearance information provide a compact notion of the tracked object and thus
are robust to appearance variations under a small amount of noise. However, in practice, the tracked objects are often corrupted by com-
plex noises (e.g., partial occlusions, illumination variations) so that the original appearance-based trackers become less effective. This

paper presents a correntropy-based robust holistic tracking algorithm to deal with various noises. Then, a half-quadratic algorithm is

carefully employed to minimize the correntropy-based objective function. Based on the proposed information theoretic algorithm, we
design a simple and effective template update scheme for object tracking. Experimental results on publicly available videos demonstrate
that the proposed tracker outperforms other popular tracking algorithms.
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1 Introduction

Object tracking is a very important topic in computer
vision. It aims to estimate the spatial state of a moving
target in a video sequencell 9. With an object track in the
first frame identified, the tracking problem is usually for-
mulated as automatically tracking the trajectory of the
object over the subsequent frames. It has been widely ap-
plied in many real world problems, such as vehicle navig-
ation and video surveillance. However, accurate tracking
of general objects under complex scenarios is still diffi-
cult due to partial occlusions, illumination variations, ab-
rupt object motions, cluttered backgrounds, etc. Tremen-
dous efforts in object tracking have been made to tackle
these problems in recent years/10-13],

Deep learning based methods have shown superior
performance over traditional methods on object detection,
object segmentation, object recognitionl!6-201, etc. They
have also been widely used for tracking[l?- 21-23], Although
deep learning based tracking algorithms have achieved
big breakthroughs in recent years, they still suffer from
heavy computational cost and limited training data. In
this paper, we mainly focus on traditional tracking al-
gorithms. There are generally two major categories in tra-
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ditional tracking techniques: generative and discriminat-
ive methods. Generative tracking methods usually use an
appearance model to represent the tracked object and
seek the most likely target candidates based on recon-
struction errors. The essence of the general trackers is to
search for target candidates that are the most similar to
the object. Inspired by recent advances in sparse coding
and compressive sensing, some popular generative track-
ers are proposed which include /; tracker (APGL1)24 low
rank sparse tracker (LRST)[25 261 multi-task tracking
(MTT)!4 incremental subspace learning (IVT)R7, con-
sistent low rank sparse tracker (CLRST)M and structural
sparse tracker (SST)[7. APGL1 assumes that the tracked
candidate can be represented by a sparse linear combina-
tion of both target templates and trivial templates. LRST
resorts to the inherent low-rank structure of particle rep-
resentations while MTT employs the sparsity-inducing
mixed norm to enforce sparsity and learns the particle
representation together. IVT tries to learn the principal
component analysis (PCA)-based appearance model incre-
mentally during the tracking process. CLRST can prune
and select particles adaptively under the particle filter
framework for tracking. SST exploits the relationship
among particles via low rank sparse learning. Many ex-
tensions(6: 28, 291 have been proposed to address the time
efficiency and template update scheme.

On the other hand, the discriminative tracking ap-
proaches cast the tracking problem as a binary classifica-
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tion problem. It aims to find the target location that best
separates the target from its background. Popular dis-
criminative trackers include the multiple instance learn-
ing (MIL) tracker, structural output tracker (Struck)?,
online random forest tracker (ORT)BY, structural correla-
tion filter (SCF)B2, etc. Similar to object detection, on-
line multiple instance learning is employed in an MIL
tracker. A structured output support vector machine is
used for adaptive tracking in Struck. Hough forests are
used in ORT for online visual tracking. SCF fuses part-
based tracking strategy into a correlation filter and ex-
ploits circular shifts of all parts to preserve target object
structure. An empirical comparison of different trackers
refers to [33-35].

A tracking method usually consists of three parts: an
observation model, a dynamic model and a search
strategyl® 27, 36, The observation model is used to evalu-
ate the likelihood of an observed image patch belonging
to the object class, while the dynamic model describes the
state of an object over time. The search strategy seeks
the most likely states in the current frame. In this paper,
we mainly address the partial occlusion and abrupt mo-
tion problems in tracking that is related to observation
models. To deal with partial occlusions and abrupt mo-
tions, many sophisticated appearance models have been
proposed through statistical analysis, model analysis and
sparse representation. Among them, the trackers based on
holistic appearance information provide a compact no-
tion of the tracked object rather than treating the object
as a set of independent pixels. Thus, it is more robust to
appearance variations. Eigentracking37 is one of the early
works using a low dimensional subspace method for ro-
bust object tracking. One drawback of the tracker is that
its template is from a large set of training images and will
not be updated during the tracking process. Ross et al.l27]
further developed an incremental visual learning (IVT)
algorithm to handle pose variations, shape deformations
and camera motions. IVT assumes the tracked target is
generated from a low dimensional PCA subspace plus a
Gaussian distributed error term. Compared with Eigen-
tracking, it doesn't need the training phase and learns the
eigenbasis online during the tracking process. IVT is ef-
fective in handling appearance variations caused by illu-
mination and pose. However, it is not robust to some
challenging scenarios due to the formulation based on
construction error with Gaussian noise assumption and
the update scheme without detecting outliers.

Some important issues regarding the holistic appear-
ance-based tracker include how to measure reconstruc-
tion errors and how to update the template during the
tracking process. The representation coefficients of a hol-
istic appearance-based tracker are often obtained by
least-squares solutions with the Gaussian distribution pri-
or. Then l> norm is used to measure the reconstruction
errors with the obtained representation coefficients. New
observations are simply decided from new templates

without detecting outliers. While in many real-world ap-
plications, the error term is much more complex and it is
not appropriate to assume that the error term is the
Gaussian distribution. [i regularization about the error
term is introduced in [38] to deal with the Laplacian
noise. It combines the IVT algorithm with recent sparse
representation schemes for learning effective appearance
models. Experimental results in [38] have shown that the
[1 norm better fits sparse noise than the l2 norm. A least
soft-threshold squares tracking is proposed in [39], which
is used to handle both Gaussian and Laplacian noise.
Both the robust particle representation and the robust
template update are presented in [40] based on the Huber
loss function. Then the Huber loss function is relaxed to a
weighted least squares problem. One drawback of the al-
gorithm in [40] is the computational cost is much higher
compared with [38, 39]. One limitations of these tracking
algorithms is that they are only robust to one or two type
of various noises, e.g., Gaussian or Laplacian noise. To
the best of our knowledge, there are no general frame-
works developed to address the role of robust error func-
tions in the holistic appearance-based tracking al-
gorithms.

In this paper, we propose a robust holistic appearance-
based tracker to address the challenging factors in object
tracking. Our tracker employs a correntropy-based non-
convex loss function that has been introduced in informa-
tion theoretic learning to handle the complex noises[4! 42],
Fig.1 shows the flowchart of the proposed algorithm. The
contributions of our algorithm are summarized as follows.
First, a correntropy-based robust object tracking method
is proposed to deal with complex noises caused by occlu-
sions, abrupt motions, etc. A half-quadratic algorithm is
employed to solve the general robust tracking problem.
Second, a novel dynamic template update scheme is
presented to capture the appearance variations of the
tracked object and to ensure that outliers are properly
identified. It is proven to be a simple and effective solu-
tion for updating the tracking template. Experimental
results show that our algorithm outperforms other popu-
lar tracking algorithms on several benchmark video se-
quences.

The rest of this paper is organized as follows. In Sec-
tion 2, we review some related work about online sub-
space learning. The concept of correntropy and its prop-
erties are introduced in Section 3. The details of our al-
gorithm are presented in Section 4. Section 5 provides a
series of experiments to systematically evaluate the effect-
iveness of the proposed methods, prior to the summary of
this paper in Section 6.

2 Related work

Our work is motivated in part by the online subspace
learning for robust object tracking(?”. 43, 44, The basic idea
of these methods is to use an online update method for
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Fig.1 The flowchart of our algorithm. It consists of three main parts. First, some candidate states around previous tracking results are
sampled using Brownian model. Then an observation model based on low dimensional subspace method is adopted to obtain the best
candidate. Finally, a novel online update scheme is presented to update the tracking template based on the information theoretic

measures

learning and updating a PCA subspace. Hence, the suc-
cess of these methods mainly benefits from the power of
subspace representations as appearance models and the
adaptability of on-line update strategies. Given an image
patch y predicted by X, the online subspace learning
methods assume y is generated from a low dimensional
subspace with Gaussian distribution/27]:

puIX) = N (yip, UU" +<1) (1)

where p denotes the probability that y predicted by X, U
represents a matrix of column basis vector, I is an
identity matrix, p is the mean value, and €I corresponds
to the additive Gaussian noise term in the observation
process. The assumption is reasonable when the error
term is Gaussian distributed with small variations.
However, we are not sure about the error term in real
world applications. Many solutions have been proposed to
deal with different types of noises. For example, Wang et
al.B8 39 models the error term using the Gaussian-
Laplacian distributed error term to alleviate the partial
occlusion problem.

Our work also has some relationship to the sparsity-
based object tracking. Sparse representation has been suc-
cessfully applied in computer vision. Inspired by [45],
sparsity-based trackers(6: 14 24, 25, 46] have attracted much
attention in recent years. The basic assumption is that
the observation vector can be represented by a sparse lin-
ear combination of the trivial templates:

y=Ta+e (2)
where y denotes the observation vector, T is the target

D) Springer

template, « is the corresponding coefficient, and ¢ is the
noise term. « and € are usually regarded as sparse terms.
The sparsity-based trackers have achieved much progress
in object tracking. However, they are computationally
expensive, and how to efficiently handle the noise term is
still an open problem.

3 The concept of correntropy

Similar to [45, 47], we use a linear regression model for
a series of observations:

y=Wz+e (3)

where y € RY*! is an observation matrix, W = [wi,- -,
wq] € R¥* denotes the input data matrix, z = [x1,--- , k]
€ R**! means the unknown representation coefficient,
e=le1, - ,eq) € R*! can be seen as an error term. The
representation coefficient can be solved by maximizing
the posteriori probability with the uniform prior: & =
argmax p (y|z) = argmaxp (e), which is also called the
maxiﬁlum likelihood gstimation. A natural assumption
about the error term ey, - - - , e4 is that it follows independent
and identically zero mean Gaussian distribution. Then
the likelihood function of the estimator is: p(e) = H?zl
p(ei), where e; € N (O, 012\,). Maximizing the log likelihood
function of the model is equivalent to minimizing the
following objective function:

d 1 3 1 2
_ Zizl log [(27T02) exp (_ﬁ (yZ — WTg;i) >:| =

Z; (y - WTa:i)2 + glog (2m0?). (4)
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Equation (4) can be solved by minimizing the follow-

ing least squares problem:
.1 2
min J [}y ~ Wal 2. (5)

In [38, 39], the error vector is modeled as an additive
combination of two independent components: Gaussian
and Laplacian noise vectors. Maximizing the likelihood
function finally turns into the following optimization

problem:
1 2
1211§1§||?/_W$_5H2+)‘”5H1 (6)

where s corresponds to the Laplacian noise term.

In many real world applications, data samples usually
suffer from the unpredictable errors caused by the noise
and outliers. Wang et al.[# uses the Huber loss function
to model the error term. The assumption of the error
term is Gaussian-Laplacian distributed. Recently, the
concept of correntropy was widely used! 48] to deal with
non-Gaussian noise and impulsive noise. He et al.?] pro-
posed a novel correntropy-based face recognition method,
which is robust to occlusion, clutter and illumination
changes. The methods proposed by Chen and Principel48]
are quite effective in dealing with Gaussian and non-
Gaussian noise. Correntropy is the probability of how
similar two random variables are in a joint space, which
is controlled by the kernel bandwidth. It is defined as a

local similarity measure between two variables 4 and B:
Vs (A,B) = E[ks (A — B)] (7)

where ko (-) is a kernel function that satisfies mercer
theory, E (-) is the expectation operator. Fig.2 shows the
comparison of different loss functions. As shown in Fig. 2,
a new metric has been introduced by correntropy. It is
similar to the /o norm distance when the data samples
become close. Then when the data samples get further, it
performs similar to /1 norm distance. Finally when the
data samples are far away, it approaches the [y norm.
This geometric meaning interprets the robustness of
correntropy for outlier rejection. It is symmetric, positive
and bounded with a theoretic foundation. The kernel
bandwidth provides an effective way to eliminate the
detrimental effect of outliers. It is different from the use
of a threshold in previous methodsil. Based on (7), Liu
et al.®l further extended the correntropy for a general
similarity measurement between two random vectors: the
correntropy induced metric (CIM). For two vectors
A= (a1, - ,ad)T and B = (b1, -- ,bd)T, CIM is defined as

4 C -
. -
v
5 1% 1]
" mmam y=ez -
" —y:I*exp(*ZQZ) :
. -

Fig.2 Comparison of different loss functions. Compared with
l2 or l1 loss functions, correntropy-based loss function is more
robust to various noises.

where the error term is defined as e; = a; — b;. Compared
with mean square and Huber-based loss functions,
correntropy is more robust to outliers inherited from the
advantage of the robust local metric.

4 Proposed model and algorithm
4.1 Markov model for object tracking

Object tracking is regarded as an inference task using
a hidden Markov model in this paper. Given a set of ob-
served images y'* = {y', -+ ,y'}, object tracking aims to
estimate the value of hidden state variable z*, which cor-
responds to the affine parameters of the target at time ¢
based on the observations to the previous time step. Sup-
pose that z! represents the i-th candidate sample of the
state z°, then the most probable hidden state variable can
be obtained by maximizing a posteriori estimation:

&' = argmaxp (z|y""). 9)

t
i

Utilizing Bayes theorem, we have

» (mt|y1:t) x p (yt|ZCt) /p (:Et|xt71)p (xtfl‘ylztfl) dxt71
(10)

where p (z*|z'"") is the dynamic model. It represents the
state transition probability between two frames. p (yt|xt)
is the observation model, which estimates the likelihood
of an image y' belonging to the state variable z'. The
dynamic model is formulated by Brownian model: Each
parameter in z' is modeled by a Gaussian distribution

1

around the previous state variable z'™!, i.e., p (xt\mtfl) =

N (xt;xt_l,E), where ¥} is a diagonal covariance matrix
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that indicates the variance of state transition parameters.
The tracking process is mainly governed by the observation
model and the dynamic model. While the dynamic model
is usually fixed, the key step for a robust object tracking

algorithm is determined by the observation model.
4.2 Correntropy-based observation model

Similar to [27, 38], the tracked target object can be
represented by a robust PCA subspace:

d(y—Uz—p) (11)

where y € R¥! is a target tracking object, U € R4**
means a PCA basis matrix, z € R**! denotes the corres-
ponding coefficients with respect to the PCA basis matrix,
1€ RY*! represents the average vector, ¢ (+) is a robust
loss function. In this paper, we use a correntropy-based
function ¢ (z) = 1 — exp (—z°/0?). The correntropy-based
methods treat each individual pixel differently and puts
emphasis on those pixels corresponding to the same class
as target tracking object y. That means if there are noises
and outliers in the target tracking object y, they will
have small contributions to the correntropy. Hence various
noises can be handled uniformly under this framework.

Equation (11) is a nonconvex formulation and doesn't
have a closed form solution. According to the conjugate
function theory and half-quadratic theoryl4, we can use
the additive form of half-quadratic algorithm to solve this
problem. Lemma 1 can be used for optimizing ¢ () in a half-
quadratic way.

Lemma 1. Suppose that ¢ (-) is a potential loss func-
tion that satisfies certain conditions, then there exists a
dual potential function for a fixed z: v (-), such that ¢

2
(x) = Siglf{ % (x\/E — %) + (p)} , where p is an auxi-

liary variable. It is determined by ‘a minimizer function
0 (+) with respect to ¢ (-).

Some of the functions ¢ (-) and their minimizer func-
tions ¢ () are listed in Table 1. The correntropy-based ob-
servation model is defined as

1—exp(—(y—Uz—p)*/c°). (12)

According to Lemma 1, the augmented cost-function
of (12) reads as

1 2 d
J(z,p) = argmin 5 ly = Uz == pll; + > v
(13)

where auxiliary variable p is determined by the
minimization function ¢ (-) with respect to ¢ (-). Because
the auxiliary variables are determined by their minimizer
functions, when the auxiliary variables are fixed, the
analytic forms of ¢ () in (13) can be removed.

Based on the half-quadratic optimization theory, (13)
can be alternately minimized as follows:

P (g - U — ) {1 e <_(y‘U;"‘)2>}

1 2 d
t+1 . t+1 t+1
S =argmin g |ly = Uz —p—p o+ 30 0 (1)
(14)
where t is the iteration number. Note that the basis

matrix U comes from the PCA subspace and thus it is
orthogonal. Equation (14) can be further optimized as

follows,
141 t (y_UZt_ﬂ)Q
P :(y—Uz —u) 1 —exp S R
L T (y —u _pt+1) .

(15)

After obtaining the optimal solution %2 and p, the dis-
tance between the tracked target and the linear repres-
entative PCA subspace can be calculated as

1 ) . .
d(y:2.p) = 5 ly = Uz = p—plly + Apll,- (16)

For every observed target candidate, we calculate
their distance according to (18). The observation likeli-
hood can be represented by

p(ylz) = exp (—7d) (17)

where y is a constant. Finally, we choose one observed
target object with the maximal observation likelihood.
According to the properties of the half-quadratic al-
gorithm, for a fixed z¢, J (zt,pH'l) <J (zt,pt). And for a
fixed p't1, J (z”l,ptH) <J (zt,ptﬂ).ThuS, J (z”l,p”l)
<J (zt,ptH) <J (zt,pt). The cost function is non-incre-

Table 1 Loss functions and their minimizer functions

Functions ¢ ($)

2
1 —exp <fx—2>
o

z?/2, if |z| < A
A2 log (cosh (ax))
)\|x|—?, if x| > A

Minimizer functions & (1’)

x — actanh (ax)

{0, if |z| < A

x —Asgn(z), if|z]> A
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asing at each step. Since the objective function is boun-
ded, it should be decreased until converges.

4.3 Model update

Updating the observation model for handling the ap-
pearance change of a target object is essential for object
tracking. If some imprecise samples are used, the track-
ing model degrades and thereby causes tracking drift.
Correntropy-based loss functions can efficiently predict
the outliers and occlusions, therefore ensuring the tem-
plate is clearer and cleaner. After obtaining the best can-
didate state of each frame, the observation vector is ex-

tracted as y = [y1,y2, -+ ,yaq] and the corresponding aux-

Occlusion 1 Occlusion 2

300

Center error

Center error

Center error

657

iliary variable is represented as p = [p1,p2,- - ,pa4]- Based
on half-quadratic analysis, p can be seen as an error cor-
rection term. Each auxiliary variable p corresponds to an
image. An element of this image indicates that pixel is oc-

il

(a) Occluded image (b) Corresponding auxiliary variable p

Fig. 3 Anillustrative example of auxiliary variable p
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Fig. 4 Center location errors of different methods on thirteen video sequences. The smaller location error is, the better a tracker is.
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cluded or not. Fig.3 shows an example. As shown in
Fig. 3, the occluded region can be accurately estimated by
the methods based on correntropy. Compared with other
loss functions, those of correntropy are smoother, espe-
cially in non-occluded regions.

Considering the above properties of correntropy, we
use the following template update strategy:

yi, if p; < mean(p)
Yrec = . (18)
w;, if p; > mean(p)
where y,.. represents the reconstructed template, and

= [p1, 2, -+ ,pa) is the mean template. We use the
mean value of p as the threshold to determine the pixel in

the template is occluded or not. If p; > mean(p), it
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indicates the pixel is not occluded. Then the pixel is used
as part of the reconstructed template. Otherwise, we
replace the occluded pixels by the corresponding average
observation u. Wang et al.38 simply used hand-tuned
values to determine the template is occluded or not.
There are mainly two benefits for our template updating
strategy. On the one side, we have a theoretical foun-
dation for updating the template based on the half-
quadratic analysis. The error correction term p can be
used as an evaluation of the occlusion. On the other side,
a fixed threshold is not flexible enough for handing the
complex video sequences. Compared with [38], the pro-
posed template update scheme takes the mean error term
into account, thereby making it more robust to various
noise.
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Overlap rates of different methods on thirteen video clips. The higher an overlap rate is, the better a tracker is.
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5 Experiments

In order to evaluate our method and other methods
thoroughly, we have selected 13 representative publicly
available video sequences with different challenging prop-
erties from the benchmark dataset3d and the Caviar
dataset. These datasets are captured in different scenari-
os and contain challenging appearance variations due to
various noises. These challenging video sequences suffer
from partial occlusions, illumination variations, pose vari-
ations, background clutters and motion blurs. In this sec-
tion, we have also compared our method with different
methods on OTB-13 datasets?4, which contains 50 fully-
annotated sequences. Note that some of the videos in
OTB-13 are the same as those in the Caviar dataset.

5.1 Experimental settings

For the affine parameters in the particle filter, we set
them according to previous tracking papers instead of

performing an exhaustive grid search. This can verify the
generalization performance of our method. The location of
the tracked target in the first frame is labeled for all
video sequences. Several state-of-the-art methods are
compared, including the frag-track (FragT)[%, increment-
al subspace learning (IVT)R27, multiple instance learning
(MIL)BY visual tracking decomposition (VID)B, local
sparse appearance tracking (LSAT)PB2, tracking-learning-
detection (TLD)B3, accelerated proximal Gradient L,
(APGL1)29, multi-task tracking (MTT)I, sparsity-
based collaborative model (SCM)H46l, adaptive structure
local sparse appearance (ASLSA)B4 and object tracking
with sparse prototypes (OSPT)B3l.

The kernel size o in (15) is important, which controls
the robust properties of correntropy. Outliers and noise
can be effectively eliminated by the kernel size. It is set
as the mean reconstruction error. The values of auxiliary
variables are also determined by the Gaussian kernel
function. The regularization parameter o is set to 0.3.
The target image observation is resized to a resolution of

|_OSPT s TID s MTT s APGL1 s ASLSA s IVT s Our tracker|

Fig. 6 Qualitative results on some typical frames with partial occlusions
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|— OSPT mm TLD mmmm MTT msssss APGL1 mowssss ASLSA msssss IVT mssssm Our tracker |

Fig. 7 Qualitative results on some typical frames with illumination variations, background clutters and abrupt motions

32 x 32. Sixteen eigenvectors are used for PCA represent-
ation for the template update, and are incrementally up-
dated every 5 frames. For the particle filter, 600 particles
are adopted.

5.2 Quantitative evaluation via standard
criteria

Three widely used criteria are employed to evaluate
the performance of different trackers: the center location
error, the overlap rate and the successful tracking rate.
The center location error denotes the relative average er-
rors between the predicted and the ground truth center
locations. A smaller center location error indicates a more
accurate result. The overlap rate is defined as

score — rea (BBr N BBg) (19)
" area (BBr U BBg)

where BBr is the bounding box of each frame predicted

D) Springer

by the trackers, BB¢ is the ground truth bounding box.
An object is regarded as being successfully tracked when
this score is bigger than 0.5. A larger overlap rate
indicates a more accurate result. The successful tracking
rate is defined as

or = % « 100% (20)

where N; and N; denote the number of successfully
tracked frames and the total number of tracked frames.
Table 2 tabulates the average center location errors of
different tracking methods. Table 3 summarizes the aver-
age overlap rates of different tracking methods. Table 4
further presents the successful tracking rate of different
tracking methods. As shown in Tables 2—4, our method
outperforms other popular tracking methods in terms of
the average center location error, the average overlap rate
and the average successful tracking rate. Figs.4 and 5
further plot the center location error plots and the over-



W. N. Wang et al. / Robust Object Tracking via Information Theoretic Measures 661

Table 2 Average center location errors (number of pixes) of different methods. We highlight the best three results using red, blue, and
green colors respectively.

Sequence IvT FragT TLD MIL VTD APGL1 MTT LSAT SCM ASLSA OSPT Ours
Caviarl 45.2 5.7 5.6 48.5 3.9 50.1 20.9 1.8 0.9 1.4 1.7 1.4
Caviar2 8.6 5.6 8.5 70.3 4.7 63.1 65.4 45.6 2.5 62.3 2.2 2.3
Caviar3 66.0 116.1 44.4 100.2 58.2 68.6 67.5 55.3 2.2 2.2 45.7 3.3
Occlusionl 9.2 5.6 17.6 32.3 11.1 6.8 14.1 5.3 3.2 10.8 4.7 5.2
Occlusion2 10.2 15.5 18.6 14.1 10.4 6.3 9.2 58.6 4.8 3.7 4.0 3.7
DavidOutdoor 53.0 90.5 173.0 38.4 61.9 233.4 65.5 101.7 64.1 87.5 5.8 6.5
Singerl 8.5 22.0 32.7 15.2 4.1 3.1 41.2 14.5 3.7 5.3 4.7 4.6
Car4 2.9 179.8 18.8 60.1 12.3 16.4 37.2 3.3 3.5 4.3 3.0 3.3
Carll 2.1 63.9 25.1 43.5 27.1 1.7 1.8 4.1 1.8 2.0 2.2 1.8
Football 18.2 16.7 11.8 16.0 4.1 12.4 6.5 14.1 10.4 18.0 33.7 6.4
Jumping 36.8 58.4 3.6 9.9 63.0 8.8 19.2 55.2 3.9 39.1 5.0 3.8
Owl 141.4 148.0 8.2 148.9 86.8 104.2 184.3 110.7 7.3 7.6 47.4 6.0
Face 69.7 48.8 22.3 134.7 141.4 148.9 127.2 16.5 125.1 95.1 24.1 11.7
Average 38.8 59.7 30.0 56.3 37.6 55.7 50.8 37.4 18.0 26.1 14.2 4.6
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Fig. 8 Precision plots of different methods based on attributes of image sequences on the OTB-13 dataset. (a)—(k): precision plots on
11 tracking challenges of fast motion, background clutter, motion blur, deformation, illumination variation, in-plane rotation, low
resolution, occlusion, out-of-plane rotation, out of view and scale variation. (1): overall precision plots of OPE. The legend contains the
precision score of each method.
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Table 3 Average overlap rates of different methods. The best three results are shown in red, blue, and green colors respectively.

Sequence IvVT FragT TLD MIL VTD APGL1 MTT LSAT SCM ASLSA OSPT Ours
Caviarl 0.28 0.68 0.70 0.25 0.83 0.28 0.45 0.85 0.91 0.90 0.89 0.90
Caviar2 0.45 0.56 0.66 0.26 0.67 0.32 0.33 0.28 0.81 0.35 0.71 0.82
Caviar3 0.14 0.13 0.16 0.13 0.15 0.13 0.14 0.58 0.87 0.82 0.25 0.86
DavidOutdoor 0.52 0.39 0.16 0.41 0.42 0.05 0.42 0.36 0.46 0.45 0.77 0.76
Occlusionl 0.85 0.90 0.65 0.59 0.77 0.87 0.79 0.90 0.93 0.83 0.91 0.89
Occlusion2 0.59 0.60 0.49 0.61 0.59 0.70 0.72 0.33 0.82 0.81 0.84 0.84
Singerl 0.66 0.34 0.41 0.34 0.79 0.83 0.32 0.52 0.85 0.78 0.82 0.79
Car4 0.92 0.22 0.64 0.34 0.73 0.70 0.53 0.91 0.89 0.89 0.92 0.91
Carll 0.81 0.09 0.38 0.17 0.43 0.83 0.58 0.49 0.79 0.81 0.81 0.83
Football 0.55 0.57 0.56 0.55 0.81 0.68 0.71 0.63 0.69 0.57 0.62 0.72
Jumping 0.28 0.14 0.69 0.53 0.08 0.59 0.30 0.09 0.73 0.24 0.69 0.69
Owl 0.22 0.09 0.60 0.09 0.12 0.17 0.09 0.13 0.79 0.78 0.48 0.79
Face 0.44 0.39 0.62 0.15 0.24 0.14 0.26 0.69 0.36 0.21 0.68 0.77
Average 0.52 0.39 0.52 0.34 0.51 0.48 0.43 0.52 0.76 0.65 0.72 0.81
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Fig.9 Success plots of different methods based on attributes of image sequences on the OTB-13 dataset. (a)—(k): success plots on 11
tracking challenges of fast motion, background clutter, motion blur, deformation, illumination variation, in-plane rotation, low
resolution, occlusion, out-of-plane rotation, out of view and scale variation. (1): overall success plots of OPE. The legend contains the
AUC score of each method.
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Table 4 Successful tracking rates of different methods. The best three results are shown in red, blue, and green colors respectively.

Sequence VT FragT TLD MIL VTD APGL1 MTT LSAT SCM ASLSA OSPT Ours
Caviarl 0.30 0.96 0.96 0.28 0.97 0.30 0.30 0.99 1 0.99 1 1
Caviar2 0.43 0.58 0.94 0.34 0.76 0.40 0.43 0.37 1 0.41 1 1
Caviar3 0.16 0.16 0.17 0.16 0.14 0.15 0.16 0.69 0.99 0.99 0.17 0.99
Occlusionl 1 1 0.78 0.76 0.97 1 1 1 1 0.97 1 1
Occlusion2 0.56 0.65 0.52 0.72 0.68 0.93 0.93 0.40 1 1 1 1
DavidOutdoor 0.62 0.46 0.18 0.35 0.53 0.05 0.56 0.48 0.58 0.51 0.97 0.97
Singerl 0.94 0.25 0.46 0.25 0.95 1 0.35 0.51 1 1 1 1
Car4 1 0.27 0.86 0.27 1 1 0.38 0.99 1 1 1 1
Carll 1 0.09 0.47 0.08 0.53 1 0.87 0.42 0.99 1 0.99 1
Football 0.72 0.75 0.61 0.70 0.99 0.77 0.88 0.77 0.83 0.69 0.77 0.89
Jumping 0.37 0.14 0.92 0.46 0.10 0.72 0.22 0.10 0.98 0.30 0.96 0.99
Owl 0.28 0.06 0.82 0.08 0.07 0.16 0.07 0.12 0.96 0.98 0.57 1
Face 0.58 0.33 0.97 0.15 0.23 0.17 0.26 1 0.46 0.24 0.92 1
Average 0.61 0.44 0.67 0.35 0.61 0.59 0.49 0.60 0.91 0.78 0.87 0.99

lap rate plots of different video sequences. These results
further verify that our method achieves better tracking
results than its competitors.

From Tables 2, 3 and 4, we can also see that most of
the tracking methods can handle the partial occlusion
problems (e.g., Occlusionl and Occlusion2). Furthermore,
SCM, OSPT and our algorithm can handle the severe oc-
clusion problems (e.g., Caviar2, Caviar3 and DavidOut-
door). Our method can also deal with the illumination
variations problems (e.g., Singerl, Car4 and Car 11) due
to the usage of robust error functions and the novel tem-
plate updating strategy. While for the abrupt motion
(e.g., Football, Jumping, Owl and Face), our method
seems to be better than other tracking methods.

5.3 Qualitative evaluation for challenging
factors

Figs.6 and 7 show some tracking results of different
tracking methods on 14 challenging video sequences. The
challenging factors of these sequences include partial oc-
clusions, scale changes, in-plane rotations, pose vari-
ations, illumination variations, abrupt motions and back-
ground clutters. As shown in Fig.6, video sequences Oc-
Dav-

idOutdoor pose long-time partial occlusions, and scale

clusionl, Occlusion2, Caviarl, Caviar2, Caviar3,

changes. From Fig.6, we can see that our method per-
forms well even when the target undergoes severe partial
occlusions. In contrast, most of the other tracking meth-
ods only work well on three or four sequences. When the
tracked object presents large scale changes and partial oc-
clusions (e.g., Occlusion2 #0431), APGL1, TLD, MTT
and IVT fail to track the target. OSPT and ASLSA have
small drift from the tracked object in Caviar2 #0088 and
DavidOutdoor #0083. When our tracker deviates from
the target in Caviar3 #0083, we still track the object suc-

cessfully in the following sequences (e.g., #0087). Com-
pared with IVT, our method is more robust for various
outliers. This is partly because our method adopts the
correntropy-based holistic appearance model to handle
the complex noises. What is more, our method only has
one parameter to determine: the kernel size of corren-
tropy, which is different from its competitors.

Fig.7 further shows the tracking results on the se-
quences (Car4, Singerl, Football) with significant illumin-
ation variations and background clutters. Even with
severe occlusions and illumination variations, our method
can handle the situation in Singerl #0098 and Singerl
#0135. Although OSPT and IVT can track the target,
their output positions are not very accurate. Other track-
ing methods cannot track the target successfully. MTT
and TLD are less effective in these cases (e.g., Card
#0651 and Singerl #0088). IVT, OSPT and our method
achieve good performance even with the appearance vari-
ations caused by light changes due to the usage of incre-
mental PCA algorithm. Our tracker performs better than
its competitors in these videos when there are drastic illu-
mination variations and background clutters (e.g., Sing-
erl #0128 and Football #0177). Fig.7 also shows the
tracking results on the Jumping, Owl and Face se-
quences with abrupt motion. MTT, ASLSA and IVT fail
to predict the true locations of the target objects when
they undergo abrupt motions (e.g., Jumping #0097 and
Owl #0024). The appearance changes caused by motion
blur pose great challenges for accurately capturing the
tracked targets. Experimental results on Fig.7 further
demonstrate that our method performs better than its
competitors.

5.4 Experimental results on the OTB-13
dataset

In this subsection, we evaluate different algorithms on
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the OTB-13 dataset, which contains much more challen-
ging factors than previous datasets. The proposed track-
er is evaluated and compared with different trackers. The
one-pass evaluation (OPE) protocol with precision and
success plots is used in this dataset to evaluate different
trackers. The precision metric computes the percentage of
frames whose estimated center location is within the giv-
en threshold distance with the ground truth location. The
success metric calculates the number of successful frames
whose overlap ratio between the tracked and ground
truth bounding boxes is larger than a given threshold.
Similar with [34], for precision plots we use the results at
error threshold of 20 pixels for ranking, while we use area
under curve (AUC) scores to summarize the trackers for
success plots.

Fig. 8 illustrates the precision plots of different meth-
ods on the OTB-13 dataset based on center location er-
ror. The sequence attributes of this dataset include 11
challenging factors in the tracking problem, e.g., fast mo-
tion, background clutter, motion blur, deformation, etc.
We can analyze the performance of different trackers in
different aspects with these attributes. As shown in Fig. 8,
SCM performs better than other trackers. The overall
success rate of SCM is 0.649, which performs better than
TLD and VTD by 4.1% and 7.3% in terms of success
rate. The overall success rate of our method is 0.694,
which further beats SCM by 4.5%. Note that SCM per-
forms best in dealing with challenging factors including il-
lumination variation and scale variation. Our method
performs best in dealing with challenging factors includ-
ing background clutter, motion blur, deformation, in-
plane rotation, occlusion, out-of-plane rotation and out of
view. For the sequences with all of the attributes, our
method performs best among all the other trackers.

Fig.9 further shows the OPE success plots of differ-
ent tracking methods. Overall, the proposed algorithm
performs well against other methods. For example, the
AUC score of TLD, ASLSA and VTD is 0.437, 0.434 and
0.416. The AUC score of our method is 0.482, which out-
performs TLD, ASLSA, VID by 4.5%, 4.8% and 6.6%,
respectively. It is worth noticing that SCM performs
slightly better than our algorithm in terms of the success
plots. The AUC score of SCM is 0.499, which beats our
method by about 1.7%. The possible reason is that under
some circumstances, our method fails to follow the tar-
gets, while SCM can still track the objects with a small
overlap ratio due to the combination of generative and
discriminative modules.

6 Conclusions

In this paper, we have proposed a robust incremental
object tracking algorithm. Correntropy has been intro-
duced to deal with various non-Gaussian noises in video
sequences. Furthermore, a novel template update scheme
has been proposed to deal with the imprecise samples

@ Springer

during the tracking process. The effectiveness of our al-
gorithm is demonstrated by various video sequences with
complex noises. Compared with the current incremental
object tracking algorithms that assume a certain noise
distribution, our tracker can perform better under much
more complex noises in various tracking tasks.
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