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Abstract:   Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rig-
ging system, which constitute its front-end assembly. The arrangements of dragline front-end assembly provide the necessary motion of
the dragline bucket within its operating radius. The assembly resembles a five-link closed kinematic chain that has two independent gen-
eralized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope. Previous models failed to represent
the actual closed loop of dragline front-end assembly, nor did they describe the maneuverability of dragline ropes under imposed geomet-
ric constraints. Therefore, a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of general-
ized speeds. It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles.
The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories. The in-
verse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estim-
ate  the  trajectories of  the  ropes. The  trajectories are  solved only during  the digging phase and  the  singularity was  eliminated using
Baumgarte′s stabilization technique (BST), with appropriate inequality constraint equations. It is shown that the feedforward displace-
ment algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry. The re-
search findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in
machine downtime due to better control strategies of the dragline cycles.
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1   Introduction

The global increase in energy demands necessitates en-

ergy  producers  to  develop  methods  and  techniques  that

expedite the exploration and extraction of energy miner-

als.  The strip mining method is one of these methods in

the surface coal mining industry. This method is primar-

ily used to excavate overburden (waste materials) and to

expose the coal seams beneath the overburden materials.

Dragline excavators play a key role in the stripping meth-

od due to their unique designs, large bulk handling capa-

city, and quick return on investment. Draglines are a spe-

cial  kind of  cable  driven robotic  excavators  that  operate

using wire ropes, which reel in/out on sheaves, and carry

suspended loads of between 50 tons and 500 tons[1].

The ropes  and  rigging,  boom,  bucket  and  their  sup-

port  structures  are  termed  as  the  front-end  assembly  as

depicted  in Fig. 1 (b).  Dragline  operations  are  cyclic  in

nature and include digging by dragging the bucket to ex-

cavate  materials,  lifting  and  swinging,  and  dumping  the

materials  in  the  bucket.  During  the  digging  phase,  the

drag rope retracts, and the hoist rope increases in length

to engage the bucket into the bench for achieving a prop-

er filling with the materials.  However,  during the dump-

ing phase, the change of rope lengths is reversed, and the

machine house swings to lift and maneuver the bucket for

dumping on the spoil area as shown in Fig. 1 (a).

The  dragline  cycle  constitutes  the  following  phases:

empty-bucket swinging  back,  dragging  bucket  to  excav-

ate material, filled-bucket swinging, and dumping. It usu-

ally lasts for 60 s and that depends on the operator skills,

as  well  as  machine  availability,  utilization,  and  bucket

filling efficiency.

Several researchers have investigated the dragline per-

formance and  developed  models  to  monitor  its  key  per-

formance indicators (KPIs).  KPIs are critical  parameters

for  defining  the  dragline  mining  efficiencies,  including

mine  production  targets,  reliability  of  equipment,  and

maintenance  schedules,  workplace  safety  and  health[2].

For  example,  dragline  suspended  load  can  be  monitored

instantly  to  ensure  that  the  operator  runs  the  machine

within its limits. Other KPIs include, but are not limited

to, bucket  pose,  swinging  angle,  and  sequence  of  opera-

tion[3].  Kemp[4] used  an  on  board  sensor  monitor  that

tracks machine  variables,  such  as  total  power  consump-

tion,  hoist  and  drag  ropes  wear  index,  and  swinging
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angle. A minicomputer is used to print out data on pro-

duction and delays  and  serves  reducing  power  consump-

tion per unit cost of operation.

McCoy Jr. and Crowgey[5] designed static and dynam-

ic anti-tight line control systems that use signals derived

from the rope′s variable lengths and speeds. The systems

can control the bucket movement and provide corrective

actions  that  prevent  it  from colliding  with  the  machine.

Godfrey  and  Susanto[6] developed  mathematical  models

that  describe  the  static  and  dynamic  characteristics  for

the hoist,  drag,  and swing drive systems.  Characteristics

that pertain to the hoist and drag drive include magnetic

and electrical models for the generators and motors, elec-

trical  torque  generation,  mechanical  losses,  inertia  and

forces in the ropes. The characteristics of the swing drive

include variable inertia, inclination of the tub of machine

house, pendulum effect of the bucket, but not those Cori-

olis  and  centrifugal  forces.  The  kinematics  analysis

showed  a  general  agreement  with  the  physical  model.

However, these  mathematical  models  cannot  be  elabor-

ated  in  further  analysis  due  to  the  limitations  of  stated

assumptions.

A dragline machinery weighs from 500 to 13 500 met-

ric tons and its boom length ranges from 100 ft to 400 ft.
A dragline is a very capital-intensive investment for over-

burden  stripping  in  surface  coal  mining  operations  with

very high operating costs[7].  This  equipment can only  be

designed and fabricated upon a customer request. Its pro-

ductivity, the amount of materials moved per hour (buck-

et  size/hour)  and the operating cost  per  ton ($/tons),  is

greatly  impacted  by  poor  mining  process,  unscheduled

maintenance,  and  breakdowns.  There  are  also  multiple

factors that affect the dragline productivity, such as cycle

time,  bucket  size,  availability,  and  utilization.  Different

scaled  physical  prototypes  were  developed  in  order  to

measure the effect of each factor on the productivity.

Haneman et  al.[8] performed  multiple  physical  testing

on small-scale  and large-scale  buckets  to assess  its  effect

on  the  performance.  The  authors  found  that  large-scale

models do  not  affect  the  filling  behavior,  but  they  im-

prove the productivity when compared to the field data.

Esterhuyse[9] investigated  the  effects  of  bucket  geometry

on the filling behavior using a scaled down, physical pro-

totype of a dragline. His findings indicate that filling be-

havior  is  the  same  for  different  bucket  geometries.

Knights  and  Shanks[10] reported  an  increase  of  the

dragline  productivity  by  2%  with  the  aid  of  short-term

monitoring  of  a  dragline  bucket.  Corke  et  al.[11] and

Roberts et al.[12] tested a physical prototype of a dragline.

The authors  used  a  real-time  kinematic  (RTK)-GPS  re-

ceiver to track the operations of a dragline and with a 3D

digital  map  terrain,  they  were  able  to  perform  50

autonomous cycles.

Kyle and Costello[13] constructed a 1/16-scale dragline

physical  prototype to capture the dynamic effects  in the

bucket during digging. They also formulated a simplified

analytical  model  that  uses  discrete  element  ropes  and

three Euler angles for the bucket orientations. Their mod-

el has shown good agreement for the bucket motion and

rope lengths,  except  for  the  bucket  and  hoist  pitch  dy-

namics  due  to  unmolded  damping  effects.  Yang  et  al.[14]

developed  a  dynamic  model  for  a  ship-mounted  crane

with an adaptive anti-swing control. The controller design

uses a double-layer neural-network structure to handle is-

sues associated with dead zones and unidirectional input

constraints.  Lyapunov-based  functions  are  used  to  prove

the  stability  of  the  system  and  the  convergence  of  the

payload  swing  angle.  According  to  the  authors,  payload

swing is suppressed to zero degrees and the rope position-

ing is achieved in a finite time.

Yang  and  Tan[15] designed  a  sliding  mode  control

scheme to control the position of a single flexible-link ma-

nipulator  based  on  an  adaptive  radial  basis  function

(RBF)  neural  network.  The  authors  used  Lyapunov′s
method based on an infinite dimensional model to ensure

the stability of the closed-loop system. Zhang et al.[16] de-

veloped  second-order  sliding  mode  controllers  and  fixed-

time  disturbances  observer  for  a  5  degrees  of  freedom

(DOF)  exoskeleton  robot.  The  stability  of  position  and

velocity subsystems are analyzed using Lyapunov theory.

According to the authors, these designs achieve fast con-

vergence and excellent tracking performance.

In the recent developments  in the power devices,  the

dragline control has evolved more and new adaptive para-

meter identification with predictive control techniques are

used in  active  front  end (AFE) rectifiers[17].  Liu et  al.[18]
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used computed torque control (CTC) and robust control

(RC) approaches to control the arm of a hydraulic excav-

ator. The authors show that the RC reduces the tracking

error  and  improves  the  excavator  performance.  Niu  et

al.[19] applied an adaptive sliding mode control (SMD) to

handle  the  stability  issues  in  a  three  degrees  of  freedom

parallel manipulator with actuation redundancy. The au-

thors  claim  a  substantial  improvement  in  the  trajectory

of the end-effector when the controller is  coupled with a

synchronization error.

Demirel and Frimpong[20] used a vector approach and

simultaneous  constraint  method  (SCM)  to  construct  a

two  2D  planar  kinematic  model  of  dragline  during  the

digging phase. However, their model is limited to a 6-link

closed kinematic chain and the bucket and its rigging are

modeled  as  a  single  rigid  element.  Li  and  Liu[21] formu-

lated a 3-link closed chain kinematic model of a dragline

using  a  vector  approach  and  SCM.  The  bucket  and  its

rigging as well as the boom sheave are modeled as a point

mass.

Research findings  using  the  mathematical  formula-

tions of  dragline kinematics  immensely contribute to the

body of  knowledge  and  provide  a  basis  for  better  ma-

chinery design and analysis.  Unfortunately,  these studies

and their results do not capture a real-world representa-

tion  of  the  dragline  front-end  assembly,  nor  do  they

provide accurate measures of the kinematics and dynam-

ic behaviors in a 3D operational space. For example, the

exclusion of  a  heavy  mechanical  element  adversely  im-

pacts the results. Moreover, the lack of field data and use

of  simplified  physical  models  make  the  kinematics  and

dynamic analysis unrealistic. Thus, it is critical to formu-

late a new kinematic model of a dragline robotic excavat-

or that can realistically capture the real dragline kinemat-

ics during  its  operational  cycle,  overcome  the  shortcom-

ings  of  previous  models,  and  improve  mining  machinery

design and analysis.

This  paper  presents  a  new  kinematics  formulation  of

dragline  kinematics  using  the  concept  of  generalized

speeds from Kane method in Kane and Levinson[22].  The

kinematics model  is  a  3 DOF model  that captures  drag-

ging and swinging motions of the bucket in a 3D working

space.  The  model  accounts  for  the  excluded  components

of  the  front-end  assembly  such  as  boom  sheave,  rigging

system, sliding effect of the bucket. Once the kinematics

model is  formulated, the solution is  sought using a feed-

forward  solution  algorithm.  Then,  the  solution  approach

is analyzed against singularity using a minimal set of con-

straint equations. Finally, the linear and angular displace-

ments  of  ropes  and  bucket  are  plotted  and  verified

against field data.

2   Geometry of the dragline front-end
assembly

Dragline is a massive mining equipment, whose unique

design  allows  excavating,  hauling,  and  dumping  waste

materials  in  a  cyclic  nature  within  the  mine  area. Fig. 1
shows  a  dragline  with  a  tabular  structural  steel  boom

pinned  in  its  foot  to  the  machine  house  and  holds  a

boom-point sheave at its farthest end. The boom is fixed

at an angle of 30° to 40° using galvanized bridge-strands.

The machine house sits on a tub with rollers and can ro-

tate 360° around an axis,  which passes through the cen-

ter  of  its  tub.  The  house  contains  electric  drives  for

swinging,  hoisting,  dragging,  and  propelling,  as  well  as

the  operator  cabin.  The  machine  house  (B)1,  boom (C),

boom  sheave  (D),  ropes  (E, F, G and H),  and  bucket

(H1) constitute the front-end assembly as shown in Fig. 2.

The kinematics modeling is carried out under the fol-

lowing assumptions:

1) The inertia reference frame is fixed in a Newtonian

reference frame N.

b⃗22) Swinging axis is coincident with . It is, however,

not  coincident  with  the  machine  house  center  of  mass

(COM).  This  allows  capturing  the  inertia  effect  during

swinging motion.

3) Machine  house,  boom,  ropes,  and  chains  are  inex-

tensible  and  rigid.  Hoist  and  drag  ropes  are,  however,

changeable  in  length and weight  in  reaction to  the  duty

cycle of the machine.

4) Angular displacements of each element in the loop

is measured from y-axis and is positive if the link rotates

clockwise.

q1 .⃗b2

5)  The  machine  house  has  already  made  an  angular

displacement  of  to  position  the  bucket  in  front  of

bank to start the excavation process.

6) Linear velocities of drag and hoist ropes as well as

swinging displacement are known.
−−−−→
(B1B2)Machine house height is modeled as a vector ,
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Fig. 2     Dragline kinematics diagram and its vector loop closure

 

1The machine house is not part of the front-end assembly, but it

has  been  incorporated  into  the  model  to  create  a  robust  model

framework.
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and is followed by the boom whose length vector is 

and is inclined by a constant angle (q2) with respect to a

global reference frame . The boom-sheave interaction is

represented  by  vector .  The  orientations  of the

hoist,  dump,  and  drag  ropes  are  not  constants  and  are

defined  by ,  and ,  respectively.  The  dump  rope

 has  a  fixed  length  during  filling  and  full  bucket

swinging  phases.  During  the  digging  phase,  the  position

and  orientation  of  the  bucket  are  defined  by  the  vector

 and the angle ( ), respectively. During the full-

bucket  swinging  phase,  its  motion  and  orientation  are

defined by angles (  and ).

3   Kinematic model of the front-end
assembly

The productivity of any excavator is a measure of the

amount of  materials  being excavated and moved in tons

per hour. This productivity is driven by a trajectory that

the bucket should follow within machine reach and mine

constraints.  This  motion  resembles  the  orientations  and

paths that  a  rigid  multilink  robot  end-effector  must  fol-

low from an initial  position to  a  desired one  in  order  to

reach the required productivity. However, this path plan-

ning is  not  trivial  in  a  case  of  a  multilink  robot-like  ex-

cavator that has ropes or cables. The search for an optim-

al path  that  meets  productivity  targets  becomes  a  chal-

lenging task, especially when the system is a type of un-

der-actuated  closed  loop  mechanisms.  The  under-actu-

ated  closed  loop  mechanism  has  fewer  inputs  than  the

number of DOFs. For these mechanisms, if the solution is

to find the joint space angles for a given bucket pose, the

analyst  would  then  attempt  to  exclude  some  important

components in the mechanism. Consequently,  this  exclu-

sion reduces the accuracy of the model and its capability

of reflecting the real motion.

The  solution  approach starts  with  the  definition  of  a

set of constraint equations that guarantee loop closure of

the front-end  assembly.  Numerical  procedures  are  de-

veloped with the aid of user-defined functions in Mathem-

atica. At the beginning of digging, the configuration con-

straint equations are first solved in order to find the ini-

tial conditions of the ropes and bucket trajectories. Input

data for the mathematical models are given in Table 1 for

a Marion 7 800 dragline and parameter notations are giv-

en in the Appendix (Table A1).

3.1   Configuration constraint equations

Fig. 2 shows the closed-loop mechanism of the dragline

front-end with three independent generalized coordinates

q1, q4 and q6 and three dependent ones q5, q7 and q8. Gen-

eralized  coordinates q1, q7 and q8 represent  the  angular

displacement of the machine house, linear displacement of

the  drag  rope  and linear  displacement  of  the  hoist  rope,

respectively.  These  entities  are  known functions  of  time,

and  they  are  defined  from  the  field  observations  of  the

machine during  operation.  For  example,  the  linear  dis-

placements of the hoist and drag ropes during digging are

2.54t+75  and  –1.32t+75,  respectively.  The  negative  sign

indicates  the  drag  rope  is  retracted  during  digging.  The

loop  must  satisfy  the  configuration  constraint  equations

as provided in (1) and (2) and an additional (3) defined

by an imaginary link D1F1.

(L5 + L6) c2 + L7s2 + L8c4−
q8s4 − (L9 + L10) c5 − q7c6 = 0 (1)

L0 + (L5 + L6) s2 − L7c2 − L8s4+

q8c4 − (L9 + L10)s5 + q7s6 = 0 (2)

− 11 986.81 + 220c

(
37π

180
+ q6

)
q7 − q27+

q28 − 21c (1.57 + q4 + q5)
√

2.94 + q28 = 0. (3)

Equations (1)–(3) are nonlinear, non-differential algeb-

raic equations (AE) and are commonly found in the kin-

ematics analysis  of  mechanisms  or  robots.  These  equa-

tions must be converted from AE to differential algebraic

equations  (DAE)  by  taking  the  first  differentiation  with

respect to time. Li denotes the length of the i-th link in

the  front-end  assembly  and ci and si are  the  abbrevia-

tions of the trigonometric functions Sin and Cos.

It is worth noting that the type of the mechanism and

the  functionality  of  its  links  affect  the  structure  of  the

constraint equations.  In other words,  when a mechanical

system  has  a  closed-loop  mechanism  of  many  rigid  and

flexible links,  it  will  be  very  difficult  to  establish  a  geo-

metrical relationship among them. For example, Fig. 3 (a)

shows  the  same  model  with  the  vector  loop  of  interest

shown in  dotted-line  vectors,  but  some  vectors  are  as-

sembled  to  facilitate  the  analysis.  However,  this  loop  is

 

Table 1    Input data for the mathematical model

Parameter Value (m) Parameter Value

L0 7 L11 2.29 (m)

L1 10.76 L12 7.14 (m)

L2 10.76 L13 7.14 (m)

L3 7.95 Rs 1.715 (m)

L4 7.95 D1E1 q8 (m)

L5 45.7 B1F1 q7 (m)

L6 45.7 E1F1 10.5 (m)

L7 1.715 B1D 110 (m)

L8 1.715 ca 5π/180

L9 5.25 q2 32π/180

L10 5.25 λ 37π/180
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not a pentagon shape because it does not have the prop-

erties of pentagon. Therefore, (3) is necessary to comple-

ment the analysis and interrelate the generalized coordin-

ates.

From Fig. 3 (a),  it  can  be  seen  the  wire  flexibility  is

not included in this kinematics model. This assumption is

valid during the digging phase and is based on the shapes

of hoist and drag ropes. Field observations show that the

hoist rope is straight under the effect of bucket weight, as

well  as  the  drag  rope  under  the  effect  of  direct  tension

provided by the drag motors. After filling the bucket, the

operator partially  releases  the  drag  clutch  and  fully  en-

gages the hoist motors, which allow the drag rope to sag.

Rope flexibility can be modeled using finite segment or fi-

nite  element  approach,  or  by  introducing  component

model representation  with  cubic  polynomial  shape  func-

tions. The first method relies on discretizing the rope in-

to a finite number of rigid links with torsional springs at

nodes between two elements, as shown in Fig. 3 (b), while

the second approach depends on selecting modal displace-

ments and modal coordinate matrices whose elements are

a  function  of  position  vectors  and  time.  For  the  first

method,  it  is  suggested  to  lump  the  masses  at  nodes  to

eliminate  the  effect  of  rigidity  of  links.  The  stiffness,  at

the first discretized point,  can be calculated by equating

the bending moment at that point subject to a tip load P

to  the  restoring  moment  of  spring  at  joint,  Banerjee[23].

For  joint  1,  at  distance x,  the  stiffness  coefficient κ of

spring and the deflection can be found as given in (4) and

(5):

κ1θ1 = P (nL− x) (4)

θ1 =
δ2
L

(5)

where δ2 is the deflection at joint 2 of the rope, which can

also  be  computed using  the  linear  beam theory  as  given

in (6).

δ2 =
P

6EL
x2 (3nL− x) . (6)

Now, for the i-th joint, the relative rotation of θi can

be calculated using the finite difference method, as given

in (7).

θi =
(δi+1 − 2δi + δi+1)

L
. (7)

There are other different approaches to deal with the

rope  flexibility  and this  topic  is  out  of  the  scope  of  this

paper.

3.2   Initial condition search

The configuration constraint  equations  resulting from

loop closure are a set of nonlinear, non-differential algeb-

raic equations  that  cannot  be  solved  without  differenti-

ation. Thus,  to  solve  the  kinematics  and  dynamic  equa-

tions of  the dragline front-end assembly,  these equations

must be differentiated and integrated at every time step.

By taking time derivatives of equations (1)–(3), the equa-

tions take a matrix form and are given in (8).
(75+2.54 t) c4−1.715 s4 10.5 s5 (75−1.32 t) s6

−1.715 c4 −(75+2.54 t) s4 −10.5 c5 (75−1.32 t) c6

Z6 Z6 Z7

×

 q̇4
q̇5
q̇6

 =


−1.32 c6 − 2.54 s4

−2.54 c4 + 1.32 s6

Z8

 (8)

where Z6, Z7 and Z8 are  intermediate  variables,  which

can be written as

Z6 = 21

√
2.94 + (75 + 2.54t)2s (1.57 + q4 + q5)

Z7 = 220 (75− 1.32t) s

(
37π

180
+ q6

)
Z8 = 2.64 (75− 1.32t) + 5.08 (75 + 2.54t)−

53.34 (75 + 2.54t) (1.57 + q4 + q5)√
2.941 + (75 + 2.54t)2

−

290.4c

(
37π

180
+ q6

)

 

(a) Closed-chain with a reduced vector representation

(b) Drag rope representation using finite segment approach
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Fig. 3     Kinematic modeling of the dragline closed-loop
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q̇iwhere  is  the  time  derivative  of  the i-th  generalized

coordinate.  By  inspecting  (8),  one  can  see  that  linear

displacements  of  ropes  are  also  included.  The solution is

achieved  by  integrating  (8)  at  interval  [0, tdig]  using  a

good guess of trajectories q4, q5 and q6. Equation (8) will

have  a  solution  only  when  the  Jacobian,  is  a  full  rank

matrix.  If  the  Jacobian is  rank deficient,  singularity  will

result during the integration. Singularity means that two

or  more  links  in  the  mechanism  are  coincident  and  the

mechanism becomes very stiff. For more details about the

constraint equations and initial conditions search, refer to

Wardeh[24].

3.3   Singularity of the dragline front-end
mechanism

Singularity is  a  common issue  in  the  kinematics  ana-

lysis of multibody systems when integrating a set of non-

linear,  constraint  differential  equations  at  time  interval

[0, t].  During the integration, the step size becomes very

small  at  the  singular  position  and  the  algorithm fails  to

converge to a solution with a minimal error. Singular pos-

itions can be found by setting the determinant of the Jac-

obian matrix  to  zero.  From a geometrical  point  of  view,

the  singularity  of  a  dragline  closed-loop  can  result  when

the drag and dump ropes are coincident, either making 0

or 180°, as shown in Fig. 4.

Singularity can  be  eliminated  by  applying  appropri-

ate  numerical  constraints  to  the  solution  algorithm.

However,  adding  more  constraints  to  the  solution  space

would make the numerical model stiffer and may not lead

to a quick solution. Thus, one must carefully bound some

parameters  that  greatly  affect  the solution to  upper  and

lower bounds. This approach is equivalent to an optimiz-

ation  method  with  inequality  constraints.  For  example,

the  kinematics  constraints,  which  are  the  limits  of  the

lengths  of  both  hoist  and  drag  ropes,  are  added  to  the

solution algorithm  and  they  become  inequality  con-

straints as per (9).

61.67 ≤ q7 ≤ 75.00

75.00 ≤ q8 ≤ 100.18

}
(9)

where q7 and q8 are the linear displacements of the drag

and hoist ropes, respectively. These are given functions of

time.

q4.1[0] =
10π

180
q5.1[0] =

30π

180
q6.1[0] =

−30π

180

Starting the  integration  with  a  set  of  initial  condi-

tions, , ,  and ,

whose  values  do  not  violate  the  machine′s  limits,  it  was

seen that singularity appears at t = 1.52 s of the integra-

tion time as shown in Fig. 5 (a). It can be concluded that

this  guess  estimate  makes  the  system  stiffer  and  affects

the solution progress of the numerical solver. Integrating

(8)  at  interval  [0,  10] s  was  performed  successfully  using

zero initial conditions of trajectories q4, q5 and q6 as giv-

 

(a) Digging phase

(b) Full-bucket hoisting phase
 

Fig. 4     Singularity positions of dragline front-end structure
 

 

Hoist rope trajectory q4

Dump rope trajectory q5

Drag rope trajectory q6

Hoist rope trajectory q4

Dump rope trajectory q5

Drag rope trajectory q6

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

Time (s)

100

0

−100

−200

−300

300

250

200

150

100

0 2 4 6 8 10

T
ra

je
ct

o
ry

 q
 (

°)
T

ra
je

ct
o
ry

 q
 (

°)

(a) Singularity issue at 1.52 s

(b) Incorrect values of trajectories
 
Fig. 5     Trajectories of hoist, dump, and drag ropes versus time
during digging phase
 

 532 International Journal of Automation and Computing 17(4), August 2020

 



en in Fig. 5 (b). The singularity problem was not an issue,

but these trajectories are not bounded to the operational

limits of  the  machine.  Making  the  search  space  unboun-

ded with zero initial guess of trajectories leads to a viola-

tion  and  undesirable  evolution  of  the  trajectories  over

time. The reason is that, in the next step of the solution,

the algorithm quickly  tries  to  find  consistent  initial  val-

ues  to  reduce  the  residual  error.  In  addition,  the  initial

conditions must  be  consistent  and  must  satisfy  con-

straint equations and their derivatives. It is, therefore, re-

commended to provide consistent initial conditions for all

variables and their time derivatives.

From  these  experiments,  it  can  be  concluded  that

there  is  a  trade-off  between  the  initial  value  search  and

numerical  stability  of  the  applied  method.  In  addition,

the resulting trajectories are not consistent with the real-

world  dragline  kinematics  due  to  the  presence  of  hidden

constraints upon  differentiation  of  (8).  The  hidden  con-

straints  are  shown  in  the  right  hand  side  (RHS)  of  (8)

and they can be determined using the second term in the

RHS of (10).

d
dt (Fj (qi (t) , t)) = J (q (t) , t) .q̇ (t)+ht (q (t) , t) = 0. (10)

Further  differentiation  will  accumulate  the  numerical

error due  to  the  generation  of  additional  hidden  con-

straints as shown in (11).

d2

dt2 (Fj (qi (t) , t)) = J (q (t) , t) .q̈ (t) + Jq (q (t) , t) . (q̇.q̇)+

htt (q (t) , t) + 2htq (q (t) , t) = 0

Jq (q (t) , t) =
∂J (q (t) , t)

∂q

htt (q (t) , t) =
∂(ht (q (t) , t))

∂t

htq (q (t) , t) =
∂ (ht (q (t) , t))

∂q
. (11)

4   Solution approach

4.1   Baumgarte′s stabilization technique
(BST)

To overcome the stability issue of the numerical solv-

er and to improve the accuracy of the results, the integra-

tion  must  include  constraint  (8),  as  well  as  their  first-

time  and  second-time  derivatives  as  per  equations  (10)

and (11). This inclusion is called the Baumgarte′s stabil-

ization technique following Baumgarte[25] and is given by

(12).

F̈ + αB .Ḟ + βB .F = 0 (12)

where αB and βB are parameters defined by the user and

must meet the following rule, as given in (13):

αB ≥ 0 & αB
2 = 4βB . (13)

The benefit  of  using BST is  the reduction of  the nu-

merical error from the hidden constraints at velocity and

acceleration levels. As will be seen in the next section, the

application  of  Baumgarte′s  technique  solves  the  system

singularity problem and improves the accuracy of the res-

ulting trajectories.

4.2   Feedforward displacement algorithm

The  productivity  of  a  dragline  excavator  depends  on

the capacity and trajectory of its bucket, cycle time, and

other factors. A reduction in cycle time, by some seconds,

can result in significant production increases with reduc-

tions in production costs. The operations, therefore, must

be performed  using  robust  control  schemes,  which  guar-

antee a short path and an effective filling of the bucket.

Accurate bucket motion planning requires solving the in-

verse  kinematics  problem  of  the  closed-loop  of  the

dragline front-end assembly. The inverse kinematics ana-

lysis resolves the unknown rope trajectories, which are re-

quired  in  order  to  move  the  bucket  through  a  desired

path. It is just a mapping between task space velocities of

bucket  (end  effector)  and  ropes  angular  velocities  (joint

velocities). This definition is already shown in (8) and it

requires  a  substantial  work  for  the  kinematics  model

shown in Fig. 2. Instead of building an inverse kinematics

using  closed  loop  geometry,  it  is  possible  to  derive  the

trajectories using the following scheme based on the New-

ton method in Mathematica:

1)  Input:  List  of  constraints  algebraic  equations

G(qi) = 0,  kinematics  model  parameters,  bucket  traject-

ory based on q7 and q8
2) Initialize: trajectories q4init, q5init and q6init

3) Define a trajectory vector:

　　　q4={}, q5={}, and q6={}
4) Setup: start time t0, end time tfinal, time increment

dt, and max-error

5) Loop:

While {t0 < tfinal do
π

2
Setup max rotational displacement to ;

Find Root: qiinit = Solve {G(qi(t = t0))} using New-

ton method

Update q4init = q4(t0), q5init = q5(t0),  and q6init =

q6(t0)
π

2
Find the reminder of qinit: qinit = Mod[qiinit, ]

Update q4Trjct = q4(t0), q5Trjct = q5(t0), and q6Trjct =

q6(t0)

maxerror1= Max[Abs[G(qi(t)) = 0], t= t0]; t0 = t0 +

dt;

If maxerror1 > max-error

max-error = maxerror1;

}
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Interpolate: qiInterp = Interpolation[qiTrjct, Interpol-

ation Order]

　If qimin < qiInterp and qiInterp> qimax

　qi = qiInterp;

　Else

　Replace the constraint equations G(qi) = 0 by

　the equation (12)

　Redo Step 5

6) Plot: Output qi and maxerror1

If the  algorithm outputs  interpolated trajectory func-

tions, whose values are not consistent with the machine′s
operational limits,  the  structure  of  the  constraint  equa-

tions  or  the  initial  trajectory  guess  must  be  changed  to

satisfy consistency conditions. The output of the solution

algorithm is  used  directly  to  calculate  the  velocities  and

accelerations  of  the  links.  These  kinematics  entities  can

be  used  to  compute  forces  and  torques  that  actuate  the

dragline front-end mechanism.

A solution  of  the  kinematics  model  can  also  be  per-

formed using  neural  networks,  which  are  usually  trained

against field data to provide acceptable values of traject-

ories.  However,  their  application  can  result  in  over-fit-

ting  and  requires  model  regularization  or  simplification.

Over-fitting is not an issue in the solution algorithm due

to the robustness of the kinematics model, selection of ap-

propriate initial conditions based on machine operational

limits, application of penalty constraints of ropes traject-

ories and the ability to converge to a solution with min-

imal residual.  The  trajectories  do  not  necessarily  in-

crease/decrease at the same rate at each cycle operation,

but  they  must  be  consistent  with  machine′s  limits.  In

some cases, at the beginning of digging, the operator may

throw the bucket in zones beyond the boom point sheave

or  accelerates  the  bucket  during  the  filling.  Therefore,

there  is  no  unique  solution  for  the  trajectory′s  evolution

with  time.  As  a  result,  it  is  not  recommended  to  solve

this model using machine learning techniques.

The solution algorithm takes  only 2.125 s  to  compute

the  initial  values  of  the  trajectories  of  the  ropes  and

1.095 s  to  evaluate  the  trajectories  over  10 s  of  digging.

The machine used for  the  computation is  an 8 Gb RAM

personal  computer  and  has  an  Intel  Core  (TM)  i7-

4710HQ CPU at 2.5 GHz. That confirms the robustness of

the  solution  algorithm  and  the  efficiency  of  using

Baumgarte′s  stabilization technique (BST) to  reduce the

error.

5   Results and discussions

5.1   Verification of the solution scheme

Although  the  inverse  kinematics  is  solved  directly

from joint constraint equations and their first and second

derivatives,  at  the  velocity  and  acceleration  levels,  it  is

necessary to verify the model against resulting errors. The

kinematics model also must generate acceptable trajector-

ies that meet the machine′s operational limits. These lim-

its  are  determined  by  the  fixed  structures,  maximum

reach  of  the  bucket,  as  well  as  dynamics  loading  on  the

dragline  structural  components.  The  constraint  (1)–(3)

can be chosen as system invariants for calculating the nu-

merical  tolerance.  The  invariant  means  that  the  system

properties do not change within time due to an external

disturbance. Since these equations serve as a mathematic-

al  model  that  defines  the  geometric  relationship  among

the  links,  their  variations  must  be  within  the  machine′s
design standards.

Fig. 6 shows the plots of the numerical errors that res-

ulted from the violation of the geometric constraint equa-

tions. The absolute error of each variable (q4, q5 and q6) is

retuned at the end of each numerical  experiment.  It  can

be seen that the trajectory′s absolute error in each of the

hoist and dump ropes is well bounded, but the drag rope

trajectory error  increases  with  time and has  the  maxim-

um value  at  5 s.  It  can  be  noticed  that  the  errors  of  all

trajectories  are  less  than  10–4 degrees,  which  proves  the

accuracy  of  the  kinematics  model  and  the  robustness  of

the solution scheme.

5.2   Verification of the machine operation-
al limits

Fig. 7 shows the trajectories generated using the BST

for two sets of parameters αB=1 and βB=0.25 and αB=6

and βB=9.  From experiments,  it  was  noticed  that  small

values of the parameters improve the results, whereas the

higher values tend to destabilize the algorithm. This  be-

havior is due to the structure of the constraint equations

and their derivatives, which are solved together as given

by (8). It can be seen that αB = 1 and βB = 0.25 minim-

ize  the  influence  of  configuration  constraint  equations,
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Fig. 6     Absolute errors  in the trajectories of ropes of the  front-
end assembly
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while  it  does  not  change  the  velocity  equations.  These

values resulted in trajectories that follow a real behavior

and  meet  the  machines  operational  limits  as  shown  in

Fig. 7 (a). For example, after 1 s of digging, there is initial

tension in the hoist rope due to its self-weight and buck-

et  weight.  And,  the  operator  has  already  engaged  the

drag motor clutch to correctly position the bucket against

the  bank.  These  actions  control  the  orientations  of  the

ropes with respect to the vertical axis in their local refer-

ence frame. Consequently, the hoist and drag ropes make

–10° and –20°, but the dump rope has already made –60°
since it has more mobility than the other ropes.

Fig. 7 (b) analyzes the effect of selecting higher values

of  Baumgarte′s  parameters  on  the  solution  accuracy.

These  trajectories  are  not  representative  of  the  angular

motions  of  the  dragline  ropes.  Also,  there  are  no  quick

variations  in  rope  displacement  at  short  interval  [0,  1] s.
Thus, BST does not improve the simulation results when

bigger value parameters are used in the model. However,

the  technique  may  work  efficiently  with  the  selection  of

higher values  in  different  mechanisms.  The initial  condi-

tions  of  the  rope′s angular  displacements  and their  velo-

cities are listed in Table 2.

5.3   Validation of the kinematics model

The  kinematics  model  of  the  dragline′s  closed-loop

mechanism must also be validated against the real-world

data. The numerical simulations are performed during the

digging phase to predict the evolution of ropes trajector-

ies  with  time. Fig. 8 (a) shows  that  both  hoist  and  drag

ropes have initial length of 75 m at the beginning of dig-

ging  when  the  bucket  is  empty.  As  the  bucket  engages

the  bank,  the  hoist  rope  reels  out  and  the  drag  rope  is

paid out  by  engaging  the  drag  motor  clutch  and  releas-

ing  the  hoist  motor  clutch.  The  operator  performs  these

actions  simultaneously  to  avoid  toppling  the  bucket  and

to  guarantee  a  proper  filling  behavior.  In  the  course  of

digging,  the  bucket  becomes  partially  submerged  in  the

bank  and  slides  on  the  digging  face.  This  control,  from

the operator, makes the hoist rope longer to reach a max-

imum length of 100 m and a maximum angular displace-

ment  of  –27° at  10 s  as  given  in Fig. 8 (b).  However,  the

drag  rope  becomes  the  shortest  of  61 m  when  it  has

already  made  a  maximum angular  displacement  of  – 65°
at 10 s.

The  bucket  and  its  rigging  system  have  a  trajectory

 

Table 2    Initial angular displacements and angular
velocities of ropes

Rope Initial angle (rad) Initial velocity (rad/s)

Hoist rope q4[0] = – 0.043 7 q̇4 [0] = 0.0

Dump rope q5[0] = 0.283 1 q̇5 [0] = 0.0

Drag rope q6[0] = – 0.469 2 q̇6 [0] = 0.0
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Fig. 7     Trajectories  of  ropes  using  Baumgarte′ s  stabilization
technique (BTS) during digging phase
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Fig. 8     Displacements of hoist and drag ropes
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defined by the trajectory of dump rope since both bucket

and dump rope are assumed to be rigidly connected. This

assumption  is  valid  and  is  based  on  field  observations

within the digging phase where these links do not change

their orientations. From Fig. 9, it can be noticed that the

angular displacement of  the dump rope varies more rap-

idly  compared  to  angular  displacements  of  other  ropes,

especially  at  time  interval  [0,  4] s.  This  is  an  important

feature for a mining manipulator operated by ropes like a

dragline. It means a better orientation of the bucket and

a reduction  in  cycle  time,  which  results  in  higher  pro-

ductivity. The  maximum  absolute  value  of  angular  dis-

placement of  dump rope is  25° at  6 s.  This  displacement

slightly varies after 6 s to avoid spillage of the filled ma-

terials from the bucket.

As soon as the bucket is  filled,  the operator switches

the clutches of the hoist and drag motors and engages the

swinging motors to rotate the assembly toward dumping

area.  At  this  time,  the  hoist  rope  retracts  and  the  drag

ropes reel  out due to inversing the displacements q7 and

q8. In addition, a sufficient angular displacement of q1 to

the machine house lifts the filled bucket off the ground in

a  3D  space  below  the  boom. Fig. 10 shows  the  machine

house and its front-end moving the bucket under the ef-

fect  of  three  displacements q1, q7 and q8.  At  the  end  of

full-bucket swinging,  the  hoist  and  drag  ropes  have  ro-

tated  25° and 15 s,  while  the  machine  house  has  rotated

– 80°.  As  a  result,  the  bucket  is  positioned  below  the

boom point sheave and the operator is ready to dump the

materials in the spoil area.

This work advances the dragline research frontiers by

augmenting the  number  of  links  in  the  front-end  as-

sembly, applying new kinematics formulation, and by ac-

curately  improving  the  trajectory′s  measures  of  every

rope. These improvements have a positive impact on the

mining industry through understanding the underlying ef-

fects  of  digging  scenarios  on  the  dragline  rope′s endur-

ance and correlating it to the availability and productiv-

ity  of  dragline  and  the  economic  useful  life  of  ropes.  In

other  words,  selecting  appropriate  trajectories  can  help

not  only  increasing  productivity  with  a  reduction  in  the

cycle  time,  but  also  reduce  wear  and  tear  in  the  wire

ropes. As  a  result,  failures  in  the  ropes  can  be  signific-

antly reduced to ensure an efficient and reliable dragline

operating system.

6   Conclusions

Kinematics  analysis  of  closed-loop mechanisms of  the

dragline is an area of research that has not been studied

in  detail  in  literature.  Most  kinematics  mechanisms that

have  closed-loop  structures  are  solved  by  splitting  the

mechanism  at  joints  to  convert  it  into  two  open  chain

mechanisms.  This  results  in  additional  unknowns  and

makes the  analysis  lengthy  and  computationally  ineffi-

cient.  This  paper  studies  the  kinematics  of  a  closed-loop

system of dragline excavator using the method of general-

ized  speeds.  It  also  forms  a  basis  for  performing  full

multibody dynamic analysis using Kane′s method.

The closed-loop dragline front-end assembly is an un-

der-actuated mechanism, which has more degrees of free-

dom than the number of actuators. The initial conditions

search and the inverse kinematics are done by solving the

configuration constraint equations using feedforward solu-

tion algorithm.  Singularity  was  eliminated  by  augment-

ing the Jacobian through coupling the solution algorithm

with  the  Baumgarte′s stabilization  technique.  The  kin-

ematics  model  can  produce  accurate  trajectories  of  the

machine wire ropes and its bucket motion in a 3D opera-

tional space.  It  was  shown that  no interference  is  detec-

ted between the machine′s fixed and moving components.

The bucket motion was successfully simulated during dig-

ging and full-bucket swinging phase. The kinematics mod-

el  will  be used in the dynamic analysis in a forthcoming

paper. It can also serve as a basis for further research in

the area of robotics or mechanisms operated by ropes.
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