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Abstract:   In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision, a binocular vision
positioning method based on coarse-fine stereo matching is proposed to achieve object positioning. The random fern is used in the coarse
matching to identify objects in the left and right images, and the pixel coordinates of the object center points in the two images are cal-
culated to complete the center matching. In the fine matching, the right center point is viewed as an estimated value to set the search
range of the right image, in which the region matching is implemented to find the best matched point of the left center point. Then, the
similar triangle principle of the binocular vision model is used to calculate the 3D coordinates of the center point, achieving fast and ac-
curate object positioning. Finally, the proposed method is applied to the object scene images and the robotic arm grasping platform. The
experimental results show that the average absolute positioning error and average relative positioning error of the proposed method are
8.22 mm and 1.96% respectively when the object′s depth distance is within 600 mm, the time consumption is less than 1.029 s. The meth-
od can meet the needs of the robot grasping system, and has better accuracy and robustness.
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1   Introduction

As an important part of intelligent robots[1], the robot

vision  positioning  system  can  acquire  image  information

through visual sensors, and use image processing techno-

logy  to  make  the  robot  have  the  ability  to  perceive  the

space  of  environmental  objects  and  realize  specific  tasks

such  as  robot  autonomous  navigation,  industrial  sorting

and gripping, etc.

At present, the vision positioning system is mainly di-

vided into monocular vision positioning and binocular vis-

ion positioning according to the number of visual sensors

used. The monocular vision system[2] uses only one cam-

era  to  obtain  the  position  information  of  object  feature

point by establishing a projection transformation relation-

ship  between  the  spatial  point  and  corresponding  image

point  through  the  camera  mathematical  model.  This

method  is  simple  and  flexible  in  structure,  and  easy  in

calibration, but its  positioning accuracy is  low. The bin-

ocular  vision  system[3] imitates the  human  visual  struc-

ture, uses two cameras placed at different positions to ac-

quire the scene images of the same object, and calculates

the parallax of object feature points in the two images to

achieve object  positioning,  which  has  a  higher  position-

ing  accuracy.  The  key  to  the  binocular  vision  system  is

stereo matching,  which  is  needed  to  select  matched  ob-

ject feature points with spatial position consistency in the

left and right images. There are usually two solutions: the

first solution is to extract local feature points in the left

and right images to achieve object matching and position-

ing,  namely  feature  matching[4].  The  solution  has  high

matching precision and robustness with small calculation

amounts and fast matching speed. The second one is re-

gion  matching[5],  which  can  obtain  a  dense  and  uniform

disparity  map.  It  mainly  finds  the  two  points  with  the

highest similarity of the neighborhood sub-windows in the

two images to complete the matching, but its robustness

is poor when rotation and illumination occur, and it has a

high  computational  complexity.  In  the  binocular  vision

positioning  system  for  robots,  if  the  feature  matching  is

adopted, the final object positioning point will not be the

center point, and the horizontal and vertical distances of

the object in the camera coordinate system cannot be ac-

curately obtained. If the region matching is adopted, the

huge  amount  of  calculation  is  a  problem.  Therefore,  an

improved  matching  method  is  proposed  in  the  binocular

vision positioning system. First,  taking the object  center

point as a feature point, the center matching of objects in

the left  and right images is  realized.  Second,  the match-

ing  result  is  regarded  as  an  estimated  value  to  set  the

search  range  of  the  region  matching.  Finally,  after  the

above  coarse-fine  matching,  the  matched  center  points

obtained in the two images have a better spatial position-

al  consistency,  and  the  obtained  3D  coordinates  of  the

object center point have higher precision.
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The  premise  of  the  center  matching  is  to  obtain  the

pixel coordinates  sets  of  the  object  area  in  the  two  im-

ages, in other words, object recognition is required. Gen-

erally,  the  path  of  object  recognition  is  mainly  achieved

by  extracting  the  local  features  of  object  template  and

scene  image  and  matching  them.  Among  them,  feature

extraction  and  recognition  are  especially  important.

Scale-invariant feature transform (SIFT)[6] has good per-

formance in  the  field  of  object  recognition,  but  the  al-

gorithm  complexity  cannot  meet  the  system  with  high

real-time requirements. On the basis of ensuring the high

specificity  of  SIFT,  speeded  up  robust  features  (SURF)

accelerates the extraction and matching of features, but it

still  cannot  meet  the  high  real-time  requirements.  Many

research works  in  the  later  period  have  been  continu-

ously  improved,  greatly  increasing  the  efficiency  of  the

SIFT and SURF[7, 8]. The above algorithms are based on

the framework of the following ideas: 1) local features ex-

traction,  2)  invariant  description  of  features,  3)  features

matching,  4)  calculating  corresponding  relationship

between two images. To improve matching speed and re-

cognition rate, Ozuysal et al.[9] show the random fern al-

gorithm, treating feature  matching problems as  a  simple

classification  problem.  Compared  with  the  traditional

natural feature  matching  methods,  the  random  fern  al-

gorithm has outstanding online matching speed, which is

widely applied in target tracking[10], augmented reality[11]

and face tracking[12]. In addition, some scholars have ap-

plied it to visual positioning, Luo et al.[13] show the mon-

ocular  vision  real-time  positioning  algorithm  based  on

random ferns.  Therefore,  this  paper  applies  it  to  the  ro-

bot  binocular  vision  positioning  system  to  improve  the

object  recognition  speed  in  the  left  and  right  images,

achieving the fast and accurate center matching.

Based on the center matching, the region matching is

added. The object center points in the two images should

be a pair of natural matched points, but the object areas

identified in the two images are not completely identical,

resulting in poor  consistency of  the left  and right  center

points.  So  taking  the  right  center  point  as  an  estimated

value,  the  pixel  search  range  of  the  region  matching  in

the right image is set, in which the best matched point of

the  left  center  point  is  found,  and  the  matched  object

center points  with  good  consistency  are  extracted.  Fi-

nally, the  similar  triangle  principle  of  the  binocular  vis-

ion is utilized to achieve rapid object positioning.

2   Robot positioning system

2.1   Robot platform

The self-developed  design  of  robot  platform  is  adop-

ted in the paper, which can realize the tasks of object re-

cognition, positioning  and  grasping.  The  overall  struc-

ture is shown in Fig. 1, it shows the main hardware com-

ponents  briefly,  the  visual  sensor  is  the  KS861  parallel

binocular  camera,  the  actuator  uses  the  YiXueTong  6-

DOF (degree of freedom) manipulator, image processing,

operation  interface  display  and  various  communication

tasks are done by a PC with Intel Core i3-3217U.1.8 GHz.

The steps for the robot platform to perform grasping

task are as follows.

Step 1. The internal  and external  parameters  of  the

KS861 camera are calibrated to establish the correspond-

ence between the image pixel points and the depth value

of a certain spatial point. Thus, the spatial distance of a

certain spatial point can be obtained if the image coordin-

ates in the left and right images are known, then the 3D

coordinates of the spatial point can be calculated through

the conversion relationship between the image coordinate

system and  the  camera  coordinate  system.  The  conver-

sion relationships between pixel coordinate values and 3D

coordinate values are shown in (13)–(18).

Step 2. Completing hand-eye calibration on the ma-

nipulator system in order to obtain the 3D coordinates of

the spatial point in the manipulator base coordinate sys-

tem. The  manipulator  base  coordinate  system  is  re-

garded as the reference coordinate system to control  the

manipulator and  effector  to  perform the  grasping  opera-

tion, And  the  conversion  relationship  between  the  cam-

era coordinate system and the manipulator base coordin-

ate system can be described as


Xb

Yb

Zb

1

 =

[
R t
0 1

]
Xc

Yc

Zc

1

 (1)

R 3× 3 t

3× 1

where  is  a  rotation  matrix  with  size ,  is

translation vector with size .

Step 3. Taking the center of the object as the grasp-

ing  point,  a  coarse-fine  matching  method  combining  the

center  matching  based  on  random  fern  and  the  region
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Fig. 1     Hardware structure diagram of the robot platform
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matching  based  on  normalized  cross-correction  (NCC) is

used to obtain the pixel  coordinates of  the object  center

point  in  the  left  and  right  images,  then  the  two  pixel

points  are  substituted  into  the  formulas  of  the  Steps  1

and 2, and the 3D coordinates of the spatial point in the

manipulator base coordinate system are calculated.

Step 4. The 3D coordinates  of  the  spatial  point  ob-

tained in  the  Step  3  is  transformed  into  the  sending  in-

structions  of  the  manipulator  upper  computer  control

software through  inverse  kinematics  calculation  and  tra-

jectory planning of  the  manipulator,  and the  manipulat-

or is driven to complete the object grasping task.

The most critical technical issue throughout the grasp-

ing task is the object positioning, so Sections 3–5 focus on

the object positioning of the binocular stereo vision based

on the proposed coarse-fine matching method.

2.2   Binocular vision positioning method

The binocular  vision system mainly  uses  the  position

difference generated by a certain spatial point on the left

and right images to recover the depth information of the

spatial point and realize the object positioning. The pre-

requisite  for  obtaining  position  difference  is  to  achieve

stereo  matching.  The  paper  adopts  a  coarse-fine  stereo

matching method,  i.e.,  the  region matching is  performed

based on the center matching. The center matching is the

coarse matching, the objects in the left and right images

are detected by the random fern, and the center coordin-

ates of them are calculated to achieve matching. Consid-

ering that the object areas extracted in the left and right

images  are  not  completely  identical,  the  two  obtained

center  points  will  not  be  consistent,  so  the  right  center

point  is  regarded as  the estimated value,  and the region

matching  based  on  NCC  is  used  in  the  stage  of  fine

matching to obtain a more consistent matching result. In

this  way,  the  advantages  of  fast  speed  of  the  center

matching and  the  high  consistency  of  the  region  match-

ing  are  utilized.  The  specific  implementation  process  of

the  positioning  method  is  shown  in Fig. 2.  In  Sections

3–5, the proposed coarse-fine stereo matching method in-

cluding  the  center  matching  based  on  random  fern,  the

region matching based on NCC and the binocular visual

mathematical model for calculating the 3D coordinates of

the object will be introduced in detail.

3   Center matching based on random
fern

3.1   Random fern feature recognition and
matching

The overall framework of the random fern algorithm is

shown in Fig. 3. The random fern uses the Bayesian clas-

sification  model[14] in  the  machine  learning  algorithm  to

deal with  feature  recognition  and  matching,  and  trans-

fers the huge computational amount generated by the fea-

ture description and matching to the classifier.  This sec-

tion  uses  the  naive  Bayesian  classification  model  to

achieve the classification and matching of object features

through classifiers offline training and feature recognition

and  matching,  completing  the  object  recognition  of  the

left and right images.
3.1.1   Bayesian classification model

ci, i = 1, · · · , N
fj , j = 1, · · · ,M

In  the  process  of  the  random  fern  feature  matching,

the  feature  points[15] of the  object  image  are  first  collec-

ted,  and  the  image  patches  are  generated  as  the  basic

unit of  recognition  and classification.  The set  of  all  pos-

sible appearances  of  the  image  patch  surrounding  a  fea-

ture point is treated as a same class. Therefore, given the

patch  surrounding  a  feature  point  detected  in  an  image,

our  task  is  putting  it  into  the  most  likely  class.  Let

 be  the  set  of  classes  and  let

 be the set of binary features that will be

calculated  over  the  patch  we  are  trying  to  classify.  The

classification problem is described as

ĉi = arg max
ci

P (C = ci |f1 , · · · , fM ) (2)

Cwhere  is  a  random variable  that  represents  the  class.

According  to  the  Bayesian  formula,  (2)  can  be
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decomposed into

P (C=ci |f1 , · · · , fM )=
P (f1, · · · , fM |C=ci )P (C=ci)

P (f1, · · · , fM )
.

(3)

P (C = ci)Assuming a uniform prior , since the denom-

inator is simply a scaling factor that is independent from

the class, the problem reduces to

ĉi = arg max
ci

P (f1, · · · , fM |C = ci ). (4)

fjIn implementation, the value of each binary feature 

is calculated as

fj =

{
1, if I(dj1) < I(dj2)
0, otherwise (5)

dj1 dj2

I

where  and  are two random selected pixel locations

in  the  image  patch,  they  are  a  test  point  pair, 

represents the grayscale value.

Assuming that all features are independent with each

other, an extreme version of (4) is to assume complete in-

dependence, i.e.,

ĉ
i
= arg max

ci

M

Π
j=1

P (fj |C = ci ). (6)

K S = M/K

However,  this  assumption  ignores  the  relationship

between  features.  In  order  to  ensure  the  correlation

between features  and reduce the amount of  storage,  fea-

tures  are  divided  into  groups  with  size .

These  groups  are  defined  as  Ferns.  The  features  in  the

fern are correlated with each other, fern and fern are in-

dependent  with  each  other.  The  conditional  probability

becomes

ĉ
i
= arg max

ci

K

Π
k=1

P (Fk |C = ci ) (7)

Fk = {fσ(k,1), fσ(k,2), · · · , fσ(k,S)}, k = 1, · · · ,K
σ(k, j)

where 

represents  the k-th  fern,  and  is  a  random

permutation function with range 1–M.
3.1.2   Classifier offline training

In order to train a classifier with strong robustness to

image projection deformation, illumination variation, im-

age blur and noise, it is a prerequisite to select stable fea-

ture  points  detected  on  the  object  template  and  form  a

training sample set for each class.

Affine deformation  is  a  key  step  in  the  classifier  off-

line  training  of  the  random  fern  algorithm.  It  is  mainly

used to achieve the selection of the stable feature points

and  the  generation  of  the  training  samples  (the  training

sample is  the  image  patch),  which  determines  the  per-

formance  of  the  entire  classifier.  Affine  deformation  is

defined as

A = RθRϕdiag(λ1, λ2)R−ϕ

diag(λ1, λ2) =

[
λ1 0
0 λ2

]
Rθ =

[
cos θ − sin θ
sin θ cos θ

]
R−ϕ =

[
cosϕ sinϕ
− sinϕ cosϕ

]
(8)

Rθ Rϕ

diag(λ1, λ2)

θ, ϕ ∈ [0, 2π)

λ1, λ2 ∈ [0.6, 1.5]

where  and  are an object rotation matrix and scale

transformation  rotation  matrix  respectively. 

is  a  scale  transformation  diagonal  matrix.  Affine

deformation  parameters  are  set: ,

.

NNext,  an  affine  deformation  is  used  to  extract 

stable  feature  points  as  a  stable  point  set  of  the  object

template.  Firstly,  a  certain  number  of  feature  points  of

the  object  template  are  extracted,  then  randomly  select

the affine parameters, and multiple affine deformations on

the  object  template  are  performed,  a  certain  number  of

feature  points  in  each  affine  view  are  extracted.  After

completing all  affine  deformations,  the  number  of  occur-

rences of each feature point in all affine views is counted,

and  the  feature  points  with  the  most  occurrences  are

treated as the most stable points.

The training  sample  set  for  each  class  includes  thou-

sands  of  sample  images  at  different  visual  angles  and

scales, which can be generated by randomly picked affine

deformation. Specifically, the stable feature points in the

object template are taken as the center, the pixel patches

are intercepted, and multiple random affine deformations

are  performed  to  generate  a  plurality  of  pixel  patches,
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Fig. 3     Overall framework of random fern
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1◦−360◦

which are used as the elements of the training sample set.

In the training process, the rotation factor is taken as the

key  point,  each  stable  point  is  regarded  as  a  class,  and

10 800 affine  deformations  are  taken for  each class.  Tak-

ing the rotation factor as a loop variable, affine paramet-

ers  are  randomly  selected  from ,  30  training

samples are got in per degree. In addition, to improve the

robustness  of  the  classifier  to  noise  and  complex  scenes,

Gaussian noise is added to each sample image.

P (Fk |C = ci ) Fk ci

Fk

After  selecting  the  stable  feature  points  and  forming

the training sample sets, the class conditional probabilit-

ies  for each fern  and class  will be es-

timated by counting the frequency that ferns of each class

occur in the training set. For each fern , we write these

terms as

P (Fk |C = ci )=
nk,i + u∑
k (nk,i + u)

(9)

nk,i

ci
ci u

u = 1

where  is the number of training samples of the k-th

fern  in  the  class ,  the  denominator  represents  the

number of all training samples in the class ,  is a non-

zero coefficient and .
3.1.3   Online feature recognition and matching

During  the  online  feature  recognition  stage,  multi-

scale feature points of the input image are extracted, the

patch surrounding a feature point as item to be classified,

then its binary feature set is obtained by (5) for the cal-

culation of conditional probability. Applying the patch to

be  classified  to  trained  classifier,  and  the  conditional

probabilities that binary features belong to each class are

counted.  Finally,  the  class  with  the  largest  conditional

probability  is  the  one  which  the  patch  belongs  to,  and

template  feature  points  and  input  image  feature  points

are  identified  and  matched.  Furthermore,  the  random

fern feature matching algorithm can be used for object re-

cognition, and the recognition results in the different con-

ditions are shown in Fig. 4.

Fig. 5 shows  the  trend  of  the  recognition  rate  under

different parameters  after  the  rough  matching  and  ran-

dom sample consensus (RANSAC).

According to the change trend of the recognition rate

obtained  in Fig. 5,  it  can  be  known that  the  parameters

that affect the performance of the classifier are the num-

ber  of  classes,  the  number  of  ferns,  and  the  number  of

randomly selected test point pairs.  If  the number of test

points and  ferns  increases,  the  recognition  rate  will  in-

crease. If the number of classes increases, the recognition

rate will decrease.

K ∈ (20, 50)

Fig. 6 shows the average online matching time of each

corner.  The  online  matching  time  is  proportional  to  the

number  of  ferns.  To  ensure  recognition  rate  and  correct

rate,  the  number  of  ferns  is  controlled,  whose  range  is

. In  order  to  achieve  a  stable  recognition  ef-

fect, the parameters selected in the training classifier are

set: the number of classes is 100, the number of test point

pairs is 7, and the number of ferns is 30.

3.2   The center matching

The center points of the standard object rectangle re-

gions  in  the  left  and  right  images  are  a  pair  of  natural

matching  points,  but  the  two  rectangle  regions  acquired

in the object recognition stage are not exactly the same.

Therefore, the center matching is just a coarse matching

result, which is an estimated value for setting the search

range of  the  region  matching  in  the  right  image.  Know-

ing the object rectangular regions in the left and right im-

ages, the left and right center points can be calculated as

u =
1

4

4∑
i=1

ui (10)

v =
1

4

4∑
i=1

vi (11)

(ui, vi)

Cl(ul, vl) Cr(ur, vr)

where  are  four  vertices  of  the object  rectangle  in

the  image.  The  pixel  coordinates  of  the  left  and  right

center points are  and , respectively.

4   The region matching based on NCC

The region  matching  is  based  on  the  local  gray  in-

formation of the image, and the matching is performed by

using the gray value of the image point. In order to find

the  best  matched  point  of  the  left  center  point  in  the

right image, the region matching is further adopted based

on the center matching. The specific implementation idea
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is  to  define  a  rectangular  window  centering  on  the  left

center  point,  and  search  for  a  window  with  the  highest

similarity in the right image, the center of the window is

the  best  matched  point  of  the  left  center  point.  Among

them,  the  similarity  measure  method  is  the  key,  which

directly affects the accuracy and time of the matching al-

gorithm.  The  normalized  cross-correlation  algorithm[16]

has strong anti-noise interference ability, and its value is

not affected by the linear transformation of gray scale. It

has good accuracy and adaptability in image matching, as

is shown in (12)

RNCC = ∑
2n+1

∑
2n+1 (T (i,j)−T )(T ′(i,j)−T ′)√∑

2n+1

∑
2n+1 (T (i,j)−T )

2
√∑

2n+1

∑
2n+1 (T ′(i,j)−T ′)

2

(12)

T (i, j)

T ′(i, j)

T T ′

2n+ 1

where  is  the  pixel  value  of  a  point  in  the

rectangular  window  centering  on  the  left  center  point,

 is  the  pixel  value  of  a  point  in  the  rectangular

window  centering  on  a  candidate  matching  point  in  the

right image.  and  are the mean pixel values of their

window, the length of window is .

ε

R

R = {p(x, y) |x ∈ (ur −m,ur +m), y

∈ (vl − ε, vl + ε)} m

R

The pixel search range is the parameter to be determ-

ined  before  the  region  matching.  The  right  center  point

obtained in the center matching stage can be used as the

estimated  value  to  reflect  the  approximate  range  of  the

best  matched  point  of  the  left  center  point.  Taking  the

right center point as center, a narrower pixel range is set

for the region matching. In this way, the matching calcu-

lation  amount  is  reduced  compared  with  the  traditional

region matching,  and  a  large  amount  of  time  consump-

tion is saved. At the same time, the matching accuracy is

improved compared with the single center matching, and

the  probability  of  mismatching  is  reduced.  In  addition,

the  values  in  the Y-axis  of  the  matching  point  pair  are

same according to the polar line constraint, but the ideal

parallel binocular vision model can not be realized. After

stereoscopic  correction,  two  image  points  of  a  spatial

point in the left and right images are on the same polar

line as much as possible. In order to further improve the

accuracy of matching,  is set as a small error of the two

values in the Y-axis between the left center point and the

right matched point, the value in the X-axis of the right

center point is considered,  is the final search range of

the region matching, 

, where  is the maximum absolute dif-

ference of the values in the X-axis between the right cen-

ter point and the matched point of the left center point.

Traversing the pixel point of the , the pixel point hav-

ing the largest NCC value with the left center point will

be the matched point of the left center point.

5   The mathematical model of the
binocular stereo vision

The mathematical model of the parallel binocular ste-
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Fig. 5     Recognition rate under different parameters
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Fig. 6     Matching time of each corner
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reo  vision  is  shown  in Fig. 7.  In  the  camera  model,  four

coordinate systems are involved, which are the world co-

ordinate system, the camera coordinate system, the pixel

coordinate system and the image coordinate system. The

world coordinate system is the three-dimensional coordin-

ate system of scene space, in which the object is located.

It is a hypothetical fixed coordinate system, generally se-

lecting a  three-dimensional  rectangular  coordinate  sys-

tem.  The  camera  coordinate  system  is  a  space  three-di-

mensional  coordinate  system  with  the  camera  plane  as

the X-Y plane and the camera optical axis as the Z-axis.

The  pixel  coordinate  system is  the  coordinate  system of

the camera′s photosensitive plane, pixel usually is the ba-

sic unit. The image coordinate system is a two-dimension-

al coordinate system, which is fixed on the digital image,

its origin is in the optical center.

P (X,Y, Z)

pl(xl, yl) pr(xr, yr)

Let  be  a  spatial  point,  its  corresponding

points in the left and right image coordinate systems are

 and ,  respectively.  According  to  the

similar  triangle  principle[17],  the  correspondence  between

image points and depth value of a certain spatial point is

established, i.e.,

ZC =
Bf

xi − xr
. (13)

At the same time, the conversion relationship between

the pixel coordinate system and the image coordinate sys-

tem is

u = u0 +
x

dx (14)

v = v0 +
y

dy . (15)

Then, equation (13) can be converted to

ZC =
Bf

(ul − ur)dx
=

Bfx
ul − ur

. (16)

Finally,  according  to  the  conversion  relationship

between the  image  coordinate  system and  the  world  co-

ordinate  system  (the  left  camera  coordinate  system),

there is

XC =
xl

f
ZC =

(ul − u0)

fx
ZC (17)

YC =
yl
f
ZC =

(vl − v0)

fy
ZC (18)

(fx, fy) (ul, vl)

(ur, vr)

P (u0, v0)

B

where  is  calibrated  camera  focal  length, 

and  are corresponding points of the spatial point

 in the left  and right pixel  coordinate systems, 

is the pixel coordinate of the left camera center,  is the

baseline length between the left and right cameras.

6   Experiment and analysis

6.1   Camera calibration

After  knowing  the  coordinates  of  a  point  in  the  left

and right image coordinate systems, according to the pin-

hole  imaging  model  and  the  conversion  relationship

between the  image  coordinate  system and  the  world  co-

ordinate system, it is necessary to calibrate the camera′s
internal parameter and the external parameter in order to

convert the point of image coordinate system to the point

in  the  camera  coordinate  system.  The  paper  uses  the

KS861 parallel binocular camera to capture images with a

focal  length  of  3.6 mm,  a  resolution  of  640 × 480,  and  a

baseline  length  of  170 mm between  two  cameras.  Run-

ning the calibration program in VS2013 to get the para-

meters of the binocular camera, the calibration results are

shown in Table 1.

(327, 248)

After obtaining  the  parameters  of  the  stereo  calibra-

tion, the stereo correction of the parallel binocular stereo

vision is performed by using the Bouguet algorithm. The

elements  in  the  obtained  re-projection  matrix  including:

 is the pixel coordinates of camera center, cam-

era focal length is 468 pixels, baseline is 169.61 mm. After

stereo correction,  corresponding points  of  a  spatial  point

in the two images are basically on the same polar line.

 

Table 1    Camera calibration

Left camera Right camera

Internal parameter
matrix

 462 0 319

0 464 241

0 0 1


 463 0 320

0 464 242

0 0 1



Rotation matrix

 1.0000 −0.0036 0.0021

0.0036 0.9999 0.0032

−0.0020 −0.0031 1.0000


Translation matrix

[
−169.63 0.9453 −1.8956

]T
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Fig. 7     Parallel binocular stereo vision model
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6.2   Object positioning based on coarse-fine
matching

The object is placed at six different positions, and the

proposed matching method is used to perform the stereo

matching and the positioning of object center point.

Fig. 8 shows the results of object recognition and cen-

ter points matching in the left and right images when ob-

ject is placed at the first position, Figs. 8 (a) and 8(b) are

the left and right images after stereo correction. Figs. 8 (c)
and 8 (d) are  object  recognition  results  of  the  left  and

right  images.  The  centers  of  the  circles  shown  in

Figs. 8 (e)–8 (g) are the left center point,  the right center

point and the matched point of the left center point, re-

spectively.  In  order  to  show  the  matching  result  more

clearly,  only  part  of  the  image  in Figs. 8 (e) and 8 (g) is

taken. The positioning results of the object center point,

that object is  placed at six different positions are shown

in Table  2,  including  the  pixel  coordinates  of  the  center

point in two images, the calculated 3D coordinates of the

center point and the measured 3D coordinates of the cen-

ε

ter point. In the experiment, the window length of the re-

gion matching is 35,  is equal to 5, both m and n have a

value of 10.

In order to characterize the measurement accuracy of

the system and quantitatively analyze the error, the aver-

age  absolute  error[18] is  introduced.  At  the  same  time,

considering the difference of  the positioning error caused

by the different distances of object from the camera, the

average relative error is introduced to eliminate the influ-

ence  of  distance  on  the  positioning  results,  they  are

defined as

Ea =

N∑
i=1

√
(Xi −X)2 + (Yi − Y )2 + (Zi − Z)2

N
(19)

Er =

N∑
i=1

√
(Xi −X)2 + (Yi − Y )2 + (Zi − Z)2

X2 + Y 2 + Z2

N
. (20)

According  to  the  data  in Table  2, the  average  abso-

lute positioning error is 8.22 mm, the average relative pos-

 

(a) Left image after stereo correction (b) Right image after stereo correction

(c) Object recognition of the left image (d) Object recognition of the right image

(e) Left center point (f) Right center point (g) Matched point of the left center point

Left center point Right center point
The matched point of the left

center point

Fig. 8     Objects recognition and center points matching in the left and right images
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itioning error  is  1.96%,  and  the  positioning  error  in-

creases with the object distance increasing. Analyzing the

error of each coordinate axis, it can be found that the er-

ror  mainly  comes from the Z-axis,  because  of  the  object

depth information error collected by the vision system.

To further verify the positioning accuracy of the pro-

posed  method,  three  methods  including  the  proposed

method,  the  coarse  matching  and  the  fine  matching  are

used for the object positioning respectively, and the posi-

tioning results are shown in Table 3. Since the error is de-

rived from the object depth information, only the Z-axis

positioning values of each method are compared.

According to the object distance measurement results

in Table 3, the proposed method has obvious advantages

in  positioning  accuracy  compared  with  the  other  two

methods.  Because  the  identified  left  and  right  object

areas  of  the  coarse  matching  method  are  not  identical,

the extracted left and right center points may not match

or even  differ  greatly,  so  the  positioning  accuracy  de-

pends entirely on the degree of coincidence of the left and

right object center points. In the case of no mismatching,

the positioning result of the fine matching is the same as

the  positioning  result  of  the  proposed  method.  However,

due  to  the  lack  of  the  coarse  matching,  the  pixel  search

range of  the fine  matching is  larger,  and the probability

of  mismatching  increases  (′–′ indicates  mismatch  in Ta-

ble 3), resulting in the occurrence of incorrect positioning

results.  The  causes  of  binocular  visual  positioning  errors

mainly include: 1) Camera calibration has errors; 2) Ste-

reo matching has matching error; 3) Camera pixel resolu-

tion  is  limited,  and  the  acquired  image  quality  is  not

good, which will result in positioning error; 4) The meas-

urement  values  of  object  center  point  are  inaccurate.  In

the specific  robot  grasping  task,  the  value  of  each  co-

ordinate axis is compensated according to the positioning

error of the proposed method, which can make the grasp-

ing success rate of the robot arm system higher.

6.3   Real-time analysis of the coarse-fine
matching

640× (2ε+ 1)

(m+ n+ 1)× (2ε+ 1)

In  order  to  verify  the  real-time  performance  of  the

proposed  method,  the  average  positioning  time  of  three

methods in Table 3 is counted. The time consumption of

the coarse matching is the smallest with 0.746 s,  because

it only uses the efficient random fern algorithm to identi-

fy the object, and the obtained left and right object cen-

ter points  are  regarded  as  a  matching  result.  The  pro-

posed  method  performs  the  region  matching  in  a  small

range  on  the  basis  of  the  coarse  matching,  so  the  time

consumption  increases,  which  is  about  1.029 s.  The  time

consumption of the fine matching is about 1.984 s, which

is  larger  than  the  coarse  matching  and  the  proposed

method. The  main  reason  is  that  the  number  of  match-

ing pixels of the fine matching is , the num-

ber  of  matching  pixels  of  the  proposed  method  is

, the difference of candidate match-

ing points between two methods is 6 809 according to the

experimental  parameters  setting.  It  is  clear  that  the

matching pixel number of the fine matching is much more

than  that  of  the  proposed  method,  so  the  calculation

amount  is  greatly  increased,  and  its  running  time  is

lengthened accordingly.

7   Conclusions

Starting from the object positioning problem of the ro-

bot binocular vision system, a binocular vision object pos-

itioning  method  based  on  coarse-fine  stereo  matching  is

proposed.  Firstly,  the  method  adopts  the  random  fern,

which can quickly and accurately identify the object area

in complex  object  scenes,  and  obtain  the  pixel  coordin-

ates of  the object center points in the left  and right im-

ages. On this basis, the region matching based on NCC is

used to obtain the best  matched point  of  the left  center

point,  and  then  the  3D  coordinates  of  the  object  center

point are  calculated,  the  positioning  result  can  be  ap-

plied  to  the  grasping  task  in  the  robot  platform.  The

matched center points obtained by the coarse-fine match-

ing method are highly consistent in position, and the pro-

posed matching method has short time consumption and

small  positioning  error  when  it  is  used  in  the  binocular

vision  system,  and  can  meet  the  real-time  and  accuracy

requirements of the binocular vision positioning system.
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Table 2    Object positioning results

Left center
point
(pixel)

Matched
point
 (pixel)

Calculated 3D
coordinates of the
center point (mm)

Measured 3D
coordinates of the
center point (mm)

(530, 311) (132, 312) (86.5, 26.9, 195.2) (84, 25, 190)

(523, 274) (273, 275) (133, 17.6, 310.7) (130, 15, 308)

(483, 269) (285, 269) (133.6, 18, 392.3) (130, 15, 388)

(462, 163) (293, 165) (135.5, –85.3, 459.7) (130, –81, 453)

(440, 177) (297, 178) (134, –84.2, 543.2) (130, –81, 536)

(413, 213) (286, 215) (114.9, –46.7, 611.7) (110, –42, 600)
 

 

Table 3    Object positioning results of three methods

Measured
distances (mm)

Coarse
matching (mm)

Proposed
matching (mm)

Fine matching
(mm)

190 195.7 195.2 195.2

308 314.5 310.7 310.7

388 398.4 392.3 392.3

453 462.4 459.7 –

536 558.9 543.2 543.2

600 611.7 611.7 –
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