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Abstract

An informative and discriminative graph plays an im-
portant role in the graph-based semi-supervised learning
methods. This paper introduces a nonnegative sparse al-
gorithm and its approximated algorithm based on the l0-
l1 equivalence theory to compute the nonnegative sparse
weights of a graph. Hence, the sparse probability graph
(SPG) is termed for representing the proposed method. The
nonnegative sparse weights in the graph naturally serve as
clustering indicators, benefiting for semi-supervised learn-
ing. More important, our approximation algorithm speeds
up the computation of the nonnegative sparse coding, which
is still a bottle-neck for any previous attempts of sparse non-
negative graph learning. And it is much more efficient than
using l1-norm sparsity technique for learning large scale
sparse graph. Finally, for discriminative semi-supervised
learning, an adaptive label propagation algorithm is also
proposed to iteratively predict the labels of data on the SPG.
Promising experimental results show that the nonnegative
sparse coding is efficient and effective for discriminative
semi-supervised learning.

1. Introduction

Graph-based discriminative semi-supervised learning
[21] typically relies on a graph G = (V ,E ) to represent the
whole data set, where the V is the vertex set with respect to
the data set and the E is the edge set associated with a set
of non-negative weights. A graph represents the pairwise
relationship between data. From a machine learning per-
spective, three characteristics of an informative graph are
often desirable [22]: high discriminating power, sparsity,
and adaptive neighborhood.

Though millions of such a kind of relationship can be ex-
plored from data, recent studies on sparse signal represen-

tation [6, 23, 22] have suggested that performing selection
of pairwise relationship is critical for pattern analysis, and
therefore the l1-graph model [24, 9, 5] whose weights are
computed via sparse data coding has been widely studied.

This paper presents a novel graph model, named sparse
probability graph (SPG), to address the above three basic
characteristics of graph models. SPG assumes that each
sample can be linearly reconstructed by a sparse probabil-
ity representation of the training data. Though the non-
negativity constraint has not been considered for sparse
graph learning, it has been widely considered in many as-
pects in other machine learning, pattern recognition and
computer vision models [14, 20, 10, 11]. Incorporating the
non-negativity constraint into sparse graph learning benefits
for learning the probabilistic latent clustering relationship
between data. Moreover, as we will discuss later, the non-
negativity based sparse graph learning is also helpful for
sparse data such as document database in text classification.

To compute the nonnegative sparse weights of SPG, we
develop efficient nonnegative sparse algorithms based on
the l0-l1 equivalence theory. Our algorithms result in a
speedup for nonnegative sparse coding, allowing us to learn
larger sparse codes than l1 graph. Then an adaptive la-
bel propagation algorithm is proposed to iteratively pre-
dict the labels of data on the SPG for discriminative semi-
supervised learning. Extensive experimental results demon-
strate that nonnegative sparse coding is also efficient and ef-
fective for graph-based semi-supervised learning, and SPG
is more sparse and informative than the l1 graph.

The remainder of this paper is organized as following: in
Section 2, we begin with a brief review of sparse code al-
gorithms and nonnegative sparse code algorithms. Then we
propose an l1 regularized nonnegative sparse coding algo-
rithm and an efficient nonnegative sparse coding algorithm
in Section 3. Based on nonnegative sparse coding, we pro-
posed our sparse probability graph algorithm for discrimi-
native semi-supervised learning in Section 4. In Section 5,

2849



we compared the SPG with the state-of-the-art graph based
algorithms w.r.t. classification rate, sparsity, and computa-
tional cost. Finally, we draw the conclusions in Section 6.

2. Sparse Coding Algorithms
Let X

.= [x1, x2, . . . , xn] ∈ Rd×n be a matrix whose
columns are n training samples, and xik be the k-th entry
of xi. Let Xî be the matrix obtained from X by removing
its i-th column xi.

2.1. Sparse Coding Algorithms

In machine learning and computer vision, one aims to
seek the a suitable sparse solution from the whole training
set X , i.e.,

min ||β||0 s.t. y = Xβ (1)
where ||.||0 denotes the l0-norm, which counts the number
of nonzero entries in a vector, and y ∈ Rd×1 is an input
sample. However, the problem of finding the sparse solution
of Eq.(1) is NP-hard, and difficult to solve.

The theory of compressive sensing [4, 6] reveals that if
the solution β is sparse enough, we can solve the following
convex relaxed optimization problem to obtain approximate
solution

min ||β||1 s.t. y = Xβ (2)
where ||.||1 denotes the l1-norm. Here, we denote the algo-
rithm using Eq.(2) to construct a graph by l1-graph0.

To deal with occlusions and corruptions, [23] further
proposed a robust linear model as y = Xβ+e where e ∈ Rd

is a noise item of errors. Assuming that the noise item e has
also a sparse representation, the l1-graph can compute a ro-
bust weight vector wi as following:

min ||β||1 + ||e||1 s.t. ||y − (Xβ + e)||2 ≤ ε (3)

We denote the algorithm using Eq.(3) to construct a graph
by l1-graph1.

However, in many applications the noise level ε is un-
known beforehand [9]. In such cases the Lasso optimization
algorithm [19] can be used to recover the sparse solution
from

min ||y − (Xβ + e)||22 + λ(||β||1 + ||e||1) (4)

where λ can be viewed as an inverse of the Lagrange multi-
plier in Eq.(3). Note that the model in Eq.(3) and model in
Eq.(4) are different when there is noise [23]. The ε can be
interpreted as a pixel noise level, whereas λ cannot [23]. Al-
though (3) and (4) try to solve the same optimization prob-
lem, their performance is different for real-world problems
[25]. We denote the algorithm using Eq.(4) to construct a
graph by l1-graph2.

Although l1-graph indeed improves the classification
rate of discriminative semi-supervised learning against tra-
ditional methods in most cases[24, 22, 5], it becomes less
informative when data is sparse.

2.2. Nonnegative Sparse Coding Algorithms

In machine learning and computer vision, one also aims
to seek a nonnegative sparsest solution from the whole train-
ing set X 1, i.e.,

min ||β||0 s.t. y = Xβ and β ≥ 0 (5)

The problem of finding the sparse solution of Eq.(5) is NP-
hard [7, 3], and very hard to solve in general. Fortunately,
we could replace the l0-norm by an l1-norm [7, 3] if the
solution β is sparse enough. Then we can solve the follow-
ing linear programming problem to obtain an approximate
solution

min ||β||1 s.t. y = Xβ and β ≥ 0 (6)

The orthogonal matching pursuit algorithm [3], second-
order cone programming [14] and nonnegative least squares
[20][10] were proposed to solve Eq.(6). [11] combines
nonnegative sparse coding and maximum correntropy cri-
terion [16] to deal with occlusion and corruption for robust
face recognition. Although extensive experimental observa-
tions [20][10][11] show that without harnessing the l1-norm
technique the non-negative least squares technique can also
learn a sparse representation for image-based object recog-
nition, a theoretical investigation still needs to be further
done to support the sparse idea and discuss its relationship
with the l1 minimization technique [20][10]. Moreover,
finding sparse codings and nonnegative sparse codings re-
main difficult computational problems, which is a widely
open topic [22][8].

3. Nonnegative Sparse Coding Algorithms
In this section, we firstly propose an l1 regularized non-

negative sparse coding algorithm based on the l0-l1 equiv-
alence theory [7, 3]. Then an efficient nonnegative sparse
coding algorithm is proposed based on the analysis of the
effectiveness of the l1 regularized item.

3.1. l1 Regularized Nonnegative Sparse Coding Al-
gorithm

The nonnegative sparse coding algorithm aims to find
the sparsest solution of an underdetermined and nonnega-
tive linear system. Based on the l0-l1 equivalence theory
and Lagrange multiplier method, we can rewrite Eq.(6) as

min
β
||y −Xβ||22 + λ||β||1 s.t. β ≥ 0 (7)

The optimal problem in Eq.(7) can be re-formulated as the
following quadratic program:

min
β

(λ
2 −XT y)T β + 1

2βT XT Xβ s.t. β ≥ 0 (8)

1Different from learning the nonnegative sparse coding of unknown
components [12][13], this work assumes that the components X are known
and only focuses on nonnegative sparse representation.
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Since XT X is a positive semidefinite matrix, this quadratic
program in (8) is convex. Based on the Karush-Kuhn-
Tucker optimal conditions, the following monotone linear
complementary problem (LCP) is derived [18] 2:

α = XT Xβ −XT y + λ
2 , α ≥ 0, β ≥ 0, βT α = 0 (9)

Algorithm 1 l1 Regularized Nonnegative Sparse Coding
Algorithm

1: Input: Data matrix X , test sample y, F = φ, G =
{1, . . . , n}, β = 0, and α = −XT y.

2: Output: sparse code β.
3: Normalize the columns of X and y to have unit l2-

norm.
4: Compute r = arg min{αi : i ∈ G}. If αr < 0, set

F = F ∪ r, G = G− r.
Otherwise stop: β∗ = β is the optimal solution.

5: Compute β̄F by solving (10). If β̄F ≥ 0, set βt =
(β̄F , 0) and go to step 4.
Otherwise let r be such that:

θ =
−βr

β̄r − βr
= min{ −βi

β̄i − βi
: i ∈ F and β̄i < 0}

and set βt = ((1− θ)βF + θβ̄F , 0), F = F − r,
G = G ∪ r. Return to step 2.

6: Compute α according to (11) and return to step 1.

If the matrix X has full column rank (rank(X) = n),
the convex program in (8) and the LCP in (9) have unique
solutions for each vector y .

Let F and G be two subsets of {1, . . . , n} such that
F ∪ G = {1, . . . , n} and F ∩ G = φ. And let F and G
be the working set and inactive set in the active set algo-
rithm respectively. Considering the following column par-
tition of the matrix X = [XF , XG] where XF ∈ Rm×|F |,
XG ∈ Rm×|G|, and |F |, |G| are the number of F and G
respectively, we can rewrite (9) as:
[

αF

αG

]
=

[
XT

F XF XT
F XG

XT
GXF XT

GXG

] [
βF

βG

]
−

[
XT

F y
XT

Gy

]
+λ

2

where βF , αF ∈ R|F |, βG, αG ∈ R|G|, β = (βF , βG)
and α = (αF , αG). Then we can compute values of the
variables βF and αG by the following iterative procedure:

min
βF∈R|F |

||XF βF − y||22 + λ
∑
i∈F

βi (10)

αG = XT
G(XF βF − y) + λ

2 (11)

And the optimal solution is given by β = (βF , 0) and
α = (0, αG). Algorithm 1 summarizes the optimal proce-
dure. As suggested in sparse code algorithms for computer

2Since the solution β is assumed to be sparse, we can use LCP to effi-
ciently find a sparse active set.

vision and pattern recognition [23], we also normalize each
column of the dataset X to have unit l2-norm. One merit of
this normalization step is to easily tune the l1 regularization
item λ.

3.2. Efficient Nonnegative Sparse Coding Algo-
rithm

In Algorithm 1, αi controls the working set F . In each
iteration, the index r corresponding to the minimum ar is
added to the working set F . Looking at Eq.(11), there are
three parts in αi. The first two parts of αi are xT

i XF βF

and xT
i y respectively. Here, we denote XF βF by ŷ. Propo-

sition 1 shows the relationship between the value of xT
i y

and the value of the l2 distance ||xi − y||2. If ||xi||22 = 1,
||xj ||22 = 1, and xT

i y ≥ xT
j y, xj will be far away from y

than xi. Based on Proposition 1, we categorize the relation-
ship between the value of αi and the distance from xi to y
into four cases in Table 1.

Proposition 1 For ∀ xi, xj , and y, if ||xi||22 = 1, ||xj ||22 =
1, and xT

i y ≥ xT
j y, then the inequality ||xi − y||2 ≤ ||xj −

y||2 holds true.
Proof sketch. Given that ||xi||22 = 1, ||xj ||22 = 1 , and
xT

i y ≥ xT
j y, we have (xT

i xi − 2xT
i y + yT y) ≤ (xT

j xj −
2xT

j y + yT y). Hence, ||xi − y||22 ≤ ||xj − y||22.

For the case 1 and case 4 in Table 1, the λ in Algorithm 1
plays a role of a truncation function. Considering the in-
equality ar < 0 in the step 4 of Algorithm and λ > 0,
the inequality xT

r (XF βF − y) + λ
2 < 0 can be written as

xT
r (XF βF −y) < −λ

2 . This means that although there may
be a sample xi corresponding large αi value (αi < 0) to fur-
ther reduce the objective, the regularization item λ restricts
this sample from the working set F . In the case 1 and case
4, we learn if xi is nearer to y than xj , the αi will be smaller
than αj . Hence the λ plays a role of a truncation function
and always removes faraway samples (−λ

2 ≤ αi < 0).
For the case 2 and case 3 in Table 1, the λ in Algo-

rithm 1 plays a role of a discrimination function. Looking at
Eq.(11), there are two items to decide the value of αi. The
sample xi that is close to the test sample y may have a large
value αi so that it does not satisfy the inequality in step 4.
However, the αj with respect to a faraway sample xj can
also have a small value. If a sample is redundant in the data
set X , it will be potentially restricted from the working set
F . Hence the λ potentially makes Algorithm 1 compute a
discriminate code.

Combining the four cases, we propose an efficient non-
negative sparse coding algorithm in Algorithm 2 based on
the cluster assumption which states that two samples are
likely to have the same class label if they are connected by
a path. Under the cluster assumption, the nonnegative co-
efficient βi with respect to xi actually plays as a clustering
indicator. In Algorithm 1, we firstly consider the case 1
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Table 1. The relationship between the value of αi and the distance from xi to y

−xiy xT
i ŷ (ŷ .= XF βF ) αi = xT

i ŷ − xT
i y

Case 1 ||xi − y||2 ≤ ||xj − y||2 ||xi − ŷ||2 ≥ ||xj − ŷ||2 αi ≤ αj

Case 2 ||xi − y||2 ≤ ||xj − y||2 ||xi − ŷ||2 ≤ ||xj − ŷ||2 αi ≤ αj or αi ≥ αj

Case 3 ||xi − y||2 ≥ ||xj − y||2 ||xi − ŷ||2 ≥ ||xj − ŷ||2 αi ≤ αj or αi ≥ αj

Case 4 ||xi − y||2 ≥ ||xj − y||2 ||xi − ŷ||2 ≤ ||xj − ŷ||2 αi ≥ αj

and case 2 and compute a nonnegative sparse code from the
nearest data set in step 5. We make use of the nearest neigh-
bor parameter nknn instead of the regularization λ. Sec-
ondly, based on the clustering assumption, we assume that
a test sample can only be expressed by its relative cluster-
ings. Hence we compute an informative and discriminate
sparse code only from its relative clusterings in step 6.

Algorithm 2 Efficient Nonnegative Sparse Coding Algo-
rithm

1: Input: data matrix X = [X1, X2, ..., Xc] ∈ Rm×n

for c classes, a test sample y ∈ Rm×1, the number of
nearest neighbor nknn (nknn ≤ min(n, d)).

2: Output: sparse code β.
3: Normalize the columns of X and y to have unit l2-

norm.
4: Compute a nearest subset I1 in X to y according to the

nearest neighbor criterion, and set X1 = {xi|i ∈ I1}.
5: Solve the nonnegative least squares problem:

β∗ = arg min
β

||X1β − y||22 s.t. β ≥ 0 (12)

6: Set I2 = {i|βi > 0 and i ∈ I1} and X2 = {Xc| xi ∈
Xc and i ∈ I2}, solve the l1 regularized nonnegative
least squares problem:

β∗ = arg min
β

||X2β − y||22 + λ||β||1 s.t. β ≥ 0 (13)

7: Set β = 0 ∈ Rn×1 and then set βI2 = β∗.

4. Sparse Probability Graph for Discriminative
Semi-supervised Learning

The basic assumption behind the graph-based machine
learning methods is the cluster assumption [21]. Under the
cluster assumption, positive weights of the graph G with re-
spect to xi actually play as a clustering indicator. Based on
the l1-graph [22], we further consider the following sparse
probability model on the dataset Xî:

min ||wi||0 s.t. Xîwi = xi and wij ≥ 0 (14)

where wi ∈ R(n−1)×1 and Xîwi = xi is an underdeter-
mined linear system. The optimization problem in Eq.(14)

is NP-hard [7, 3]. Fortunately, if the solution wi is sparse
enough, it is unique and global [3]. We can find this solu-
tion by replacing the l0-norm by an l1-norm [7, 3]. Then we
have

min ||xi −Xîwi||22 + λ||wi||1 s.t. wij ≥ 0 (15)

The non-negative sparse vector wi with respect to xi de-
duced in Eq.(15) characterizes how the rest samples con-
tribute to the sparse representation of xi so that it can essen-
tially recover the clustering relation among samples. More-
over, the non-negative sparse representation in Eq.(15) nat-
urally indicates the adjacency structure of the data. Conse-
quently the adjacency structure and weights are determined
simultaneously.

After all of the non-negative sparse weights are com-
puted, we can construct a sparse matrix W by

W (i, j) =





wij/
n−1∑
j′=1

wij′ j < i

wi(j−i)/
n−1∑
j′=1

wij′ j > i

(16)

Since we expect that the values of the weights only re-
flect the relationship of the data, we normalize the weights
in Eq.(16) to make them represent the probability. Intu-
itively, this W can be treated as the weight matrix of the
graph G . The W (i, j) directly reflects how similar datum
xi is to datum xj . Since

∑n
j=1 W (i, j) = 1, the W (i, j)

can also be explained as the probability that the xj and xi

belong to the same cluster. Hence we denoted the graph G
based on Eq.(16) by sparse probability graph (SPG).

A key step in SPG is to compute the nonnegative sparse
code in Eq.(15). Algorithm 2 is used to compute the sparse
code. Considering that W is a sparse matrix, we can make
use of the label propagation algorithm [21] to propagate
the labels of unlabeled samples. For discriminative semi-
supervised learning, the first l samples XL = {xi}l

i=1 are
labeled and the remaining samples XU = {xu}n

i=l+1 are
unlabeled in the c-class dataset X . Let M be a set of n× c
matrices with nonnegative real-valued entries. Any matrix
F ∈ M corresponds to a specific classification on X that
labels xi as arg maxj≤c Fij . Let T be a n× c matrix where
Tij = 1 if xi is labeled as the j-th class, and Tij = 0 other-
wise, and for unlabeled samples, Tuj=0(1 ≤ j ≤ c).

2852



Algorithm 3 Sparse Probability Graph for Discriminative
Semi-supervised Learning

1: Input: X = {x1, . . . , xl, xl+1, . . . , xn}, {xi}l
i=1 are la-

beled and {xu}n
i=l+1 are unlabeled, the initial label matrix T ,

the number of the nearest neighbors nknn, and the constant λ.
2: Normalize the columns of X to have unit l2-norm.
3: for i = 1 to n do
4: Compute a nearest subset I1 in Xî to y according to the

nearest neighbor criterion, and set X1 = {xj |j ∈ I1}.
5: Solve the nonnegative least squares problem:

w∗i = arg min
wi

||X1wi − y||22 s.t. wi ≥ 0 (17)

6: Set wi = 0 ∈ R(n−1)×1 and then set wiI1 = w∗i .
7: end for
8: Construct the probability matrix W according to Eq.(16) and

set F0 = T . And iterate Ft+1 = p1WFt + (1 − p1)T until
convergence.

9: According to the label Ft+1, divide X into [X1, X2, . . . , Xc].
10: for i = 1 to n do
11: Set I2 = {j|wij > 0} and X2 = {Xc|xj ∈ Xc and j ∈

I2and j 6= i}, solve the following l1 regularized nonnega-
tive least squares problem:

w∗i = arg min
wi

||X2β−y||22 +λ||β||1 s.t. wi ≥ 0 (18)

12: Set wi = 0 ∈ R(n−1)×1 and then set wiI2 = w∗i .
13: end for
14: Construct the probability matrix W according to Eq.(16) and

set F0 = T . And iterate Ft+1 = p1WFt + (1 − p1)T until
convergence.

15: Output: F ∗ = Ft+1.

Algorithm 3 summarizes the algorithm procedure of
sparse probability graph for discriminative semi-supervised
learning. First, we solve a nonnegative least squares prob-
lem for each sample on its nearest neighbor subset. Sec-
ond, we construct a coarse SPG and make use of the la-
bel propagation algorithm to predict the labels. Since∑n

j=1 W (i, j) = 1 and 0 < p1 < 1, the sequence
{Ft+1} in the label propagation algorithm will converge to
(1− p1)(I − p1W )−1Y [21]. Third, based on the coarsely
predicted labels, we compute informative and discriminate
nonnegative sparse codes to construct a fine SPG. Last, the
labels of unlabeled samples are propagated on the fine SPG.

The computation cost of Algorithm 3 mainly involves
three parts: the nearest neighbor sorting, sparse code and
label propagation. The computation complexity of the near-
est neighbors sorting is O(nlog(n)) 3. The computation
costs of computing sparse codes are only relative to nknn

and |I2| (the number of I2). Suppose that nknn << n

3If we make use of C++ Language to implement the sorting operation,
we can sort one million 3000-dimension data samples per second on one
personal computer.

and |I2| << n, the computation costs of computing sparse
codes can be neglected. The label propagation step requires
O(n2) to compute matrix multiplication. As a result, the
computation cost of Algorithm 3 is O(nlog(n) + n2).

5. Experimental Verification
To evaluate the proposed sparse probability graph algo-

rithm, we compare it with the knn-graph algorithm, the lin-
ear label propagation algorithm and the l1-graph algorithm
on non-negative data, real data and sparse data. All algo-
rithms are implemented in MATLAB on an AMD Quad-
Core 2.30GHz Windows XP machines with 2GB memory.

5.1. Experimental setting

Database. To fairly compare different methods, we se-
lect four different data sets which are from different ma-
chine learning applications and consist of different formats
of features. As suggested by [23], we normalize the sam-
ples to have unit norm. Descriptions of the four data sets
are as follows.

ORL Database4: The ORL Database contains ten differ-
ent images each of 40 distinct subjects. The images were
taken at different times, varying the lighting, facial expres-
sions and facial details. Each image is manually cropped
and normalized to the size of 32× 32 pixels.

UCI ISOLET Dataset5: The ISOLET data set is used to
predict which letter-name was spoken. The features include
spectral coefficients, contour features, sonorant features,
pre-sonorant features, and post-sonorant features. The di-
mension of feature is 617 and the number of samples is
1559.

TDT2 Document Database6: The TDT2 corpus consists
of 11,201 on-topic documents which are classified into 96
semantic categories. We use the top 9 categories for our ex-
perimental evaluation. Each document is represented as a
normalized term-frequency vector, with top 500 words se-
lected according to mutual information. For each category,
60 documents are randomly selected for training. Note that
the feature vector in this dataset is sparse.

COIL Database [17]: The Columbia Object Image Li-
brary (COIL-100) is a database of 7,200 color images of
100 objects (72 images per object). All images are resized
to 32× 32. For each object, the odd images are selected for
training. Hence, there are 3200 images in training set.

Algorithm Setting. The details of compared techniques
are:

1) knn-graph: The knn-graph is conducted with two
configurations as far as classification error rates. In knn-
graph0, the number of the nearest neighbor is set to 4; and

4http://www.face-rec.org/databases/
5http://www.ics.uci.edu/mlearn/MLRepository.html
6http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

2853



Table 2. Comparison classification error rates for semi-supervised algorithms: classification error rate (%) ± standard deviation. The bold
numbers are the lowest error rates for each configuration and the percentage number after the data set name is the percentage of the labeled
samples [24].

Dataset knn Graph1 knn Graph2 LLP SPG1 SPG2 l1-graph0 l1-graph1 l1-graph2
ORL(50%) 15.7±3.5 22.7±3.2 9.6±2.7 7.9 ± 2.6 7.7 ± 2.6 9.6 ± 2.6 7.8 ± 2.4 8.6 ± 2.7
ORL(60%) 13.2±3.1 20.6±4.1 7.6±2.2 5.8 ± 2.2 5.6 ± 2.3 6.5 ± 2.0 5.7 ± 2.6 5.8 ± 2.3
ORL(80%) 9.4±3.1 16.4±4.7 4.3±2.1 3.0 ± 1.9 2.9 ± 2.0 4.1 ± 2.3 3.1 ± 1.7 3.4 ± 2.2

ISOLET(50%) 20.1±1.3 18.3±1.9 14.0±1.0 13.9±1.2 14.1±1.3 21.5 ± 1.9 15.4 ± 1.4 15.1 ± 1.3
ISOLET(60%) 19.0±1.7 16.3±1.5 11.8±1.6 11.2±1.5 11.0±1.6 17.3 ± 1.7 12.2 ± 1.5 11.9 ± 1.3
ISOLET(80%) 15.0±2.3 13.8±2.1 8.4±1.7 7.5±1.4 7.6±1.8 10.9 ± 2.1 7.8 ± 1.6 7.9 ± 1.7
TDT2(50%) 21.3±2.5 16.8±2.3 15.3±1.7 13.8±2.3 13.5±1.9 41.7 ± 6.1 34.6 ± 3.1 -
TDT2(60%) 20.3±2.2 15.6±2.4 13.7±2.2 12.1±1.9 11.9±1.8 35.5 ± 4.2 32.9 ± 3.1 -
TDT2(80%) 19.3±2.7 14.6±3.7 12.1±2.5 10.2±3.2 10.2±2.7 26.8 ± 4.0 28.9 ± 3.8 -
COIL(50%) 16.8±0.8 24.3±1.0 12.1±0.7 10.9±0.7 10.7±1.1 16.6±0.9 - -
COIL(60%) 15.3±1.0 22.1±1.1 10.0±0.9 9.6±0.8 9.4±0.8 14.8±0.9 - -
COIL(80%) 13.2±1.3 19.0±1.6 8.2±0.9 7.9±1.0 7.7±1.0 11.9±1.3 - -

in knn-graph1, the number of the nearest neighbor is set
to 10. The heat kernel parameter in heat kernel [1] is well
tuned on each dataset to achieve the best results.

2) LLP: we follow the lines of linear label propagation
[21] to construct a graph. The neighborhood size in LLP is
set to 40 to achieve the best results.

3) l1-graph: we compare its three models, which are dif-
ferent in the aspects of robustness and computational strat-
egy [23]. l1-graph0: The graph weights are computed by
Eq.(2) via an active set algorithm based on [15]. 7 The l1

regularized item λ is empirically set to 0.005 to achieve the
best results. l1-graph1: The graph weights are computed by
Eq.(3) via a primal-dual algorithm for linear programming
based on [2, 4].8 The setting of the algorithm is the same
as the one in [23]. l1-graph2: The graph weights are com-
puted by Eq.(4) via an active set algorithm based on [15].9

The λ is empirically set to 0.005 to achieve the best results.
4) SPG: we implement its two models. In SPG1, the

graph weights in (15) are computed by Algorithm 1 . The
l1 regularized item λ is empirically set to 0.001. We denote
the Algorithm 3 by SPG2. The nknn is set to one-quarter of
the size of the training set and the λ is set to 0.001.

5.2. Numerical Results

We follow the approaches in [24][22][5] to quantita-
tively evaluate different graph based semi-supervised learn-
ing methods. All the experiments were repeated 50 times;
the means and standard deviations of these 50 runs are re-
ported. In each run, a number of data samples are randomly
labeled.

7http://redwood.berkeley.edu/ bruno/sparsenet/
8http://www.acm.caltech.edu/l1magic/
9http://redwood.berkeley.edu/bruno/sparsenet/

Table 2 tabulates the classification error rates for semi-
supervised algorithms. We observe from the numerical re-
sults that:

1) in most cases, the SPG1 or SPG2 based semi-
supervised learning algorithm achieves the lowest er-
ror rates as compared to semi-supervised algorithms.
Since the SPG algorithms can determine the adjacent
structure of the data and graph probability weights au-
tomatically and simultaneously, they can predict the la-
bels of unlabeled samples more accurately. Although
two SPG algorithms compute the same objective func-
tion, their classification error rates are different due
to different optimization strategies. Experimental re-
sults demonstrate that the approximate strategy in Al-
gorithm 3 is good enough for discriminative semi-
supervised learning.

2) l1-graph1 based semi-supervised learning algorithm
consistently outperforms semi-supervised algorithms
based on l1-graph0 and l1-graph2. Although three l1

methods are based on the same objective, they make
use of different strategies to optimize it. As a result,
their accuracy is different. We consider that those re-
sults are coincident with the results reported in [25].
Since the features in TDT2 data set are also sparse,
the l1 optimization models used in the l1-graph fail to
yield a correct sparse code. Hence the l1-graph based
semi-supervised learning algorithms obtain high clas-
sification error rates.

3) For the ORL dataset and the COIL dataset, the knn
Graph can achieve classification error rates under a
small value of the number of the nearest neighbor. But
for the ISOLET dataset and the TDT2 dataset, the knn
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Figure 1. (a) A data sample in TDT2 data set. (b) Sparse coefficient β computed by model (3). (c) Noise item e computed by model (3)
corresponding to (b). (d) Sparse code β computed by model (7).

Graph can achieve classification error rates under a
large value of the number of the nearest neighbor. It
seems that the number of the nearest neighbor of knn-
graph depends on the dataset. As illustrated in Fig. 2,
all sparse codes based methods can select an adaptive
neighborhood, which potentially make them outper-
form knn-graph.

5.3. Sparsity

Both sparse code and nonnegative sparse code can yield
a sparse representation for machine learning tasks. How-
ever, to our best knowledge, there still have no works to
discuss the sparse characteristics of the two methods and to
investigate how sparse is enough for machine learning tasks.
Fig. 2 shows the sparsity of different methods measured by
the number of nonzeros in the coefficient β. We learn that
the number of nonzeros of the two SPGs are smaller than
those of the two l1-graphs. It seems that the nonnegative
sparse code based algorithms can learn a more sparse code
than sparse code based algorithms. As illustrated in Table
2, this nonnegative sparse code is informative and discrimi-
native enough for machine learning tasks. Fig. 2 also vali-
dates that the proposed SPG can learn a sparse and adaptive
neighborhood graph for graph-based discriminative semi-
supervised learning.
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Figure 2. Number of the nonzeros (Sparsity) of different methods.
The x-axis indicates the indices of the four data sets.

Since the neighborhood size of LLP is set to 40, LLP
learns the most sparsest solution. However, this sparse so-
lution is computed on the nearest neighborhood dataset so

that it may lose global information of the whole dataset. As
a result, LPP cannot achieve the lowest error rate as com-
pared with the sparse representation based methods.

Fig. 1 (a) shows an interesting observation in TDT2 data
set. We see that the feature of TDT2 data is sparse. Fig. 1
(b) and (c) show the values of coefficient β and noise item
e computed by model (3) respectively. Since the l1 opti-
mization model in Eq.(3) treats the coefficient and noise
item equally in the l1 objective, the l1 optimization algo-
rithm estimates all entries of the sparse data as noise. The
sparse coefficient contains no information. As a result, l1-
graph based semi-supervised algorithm fails. Fig. 1 (d) fur-
ther shows the values of coefficient β computed by model
(7). The non-negative sparse representation algorithm can
still yield a sparse representation such that SPG based semi-
supervised algorithms achieve small error rate.
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Figure 3. Computational costs of different methods. The x-axis
indicates the indices of the four data sets.

5.4. Computational Cost

Computation complexity of construction of a graph is
an important issue for semi-supervised learning. Fig. 3
shows the overall CPU time of different methods on all four
data sets. Although l1-graph1 is more informative than l1-
graph2, the computational costs of l1-graph1 are extremely
large, especially when the number of samples is large or the
dimension is high. Compared with the l1-graphs, the com-
putational costs of the SPGs are very slim. On the ISOLET
dataset, the CPU time of SPG1 is 874s whereas the CPU
time of SGP2 is only 372s. On the COIL dataset, the CPU
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time of SPG1 is 5140s whereas the CPU time of SPG2 is
2575s. Since SPG2 compute the nonnegative sparse code
on a small dataset so that it can save half of the CPU time
as compared to SPG1.

6. Conclusion
This paper proposes a new graph model, named sparse

probability graph (SPG), for graph-based machine learning
methods. The weights of the SPG are derived by nonnega-
tive sparse codes which naturally play as clustering indica-
tors and reflect the importance of a sample for reconstruct-
ing a given pattern. To compute the nonnegative sparse
weights of SPG, efficient nonnegative sparse algorithms are
proposed based on the l0-l1 equivalence theory. The new al-
gorithms result in a speedup for nonnegative sparse coding,
allowing us to learn larger sparse codes against l1 graph.
Extensive experimental results demonstrate that the non-
negative sparse codings are informative and discriminative
for graph based semi-supervised learning.
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