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Abstract: The goal of this paper is to design a model-free optimal controller for the multirate system based on reinforcement learning.
Sampled-data control systems are widely used in the industrial production process and multirate sampling has attracted much attention
in the study of the sampled-data control theory. In this paper, we assume the sampling periods for state variables are different from peri-
ods for system inputs. Under this condition, we can obtain an equivalent discrete-time system using the lifting technique. Then, we
provide an algorithm to solve the linear quadratic regulator (LQR) control problem of multirate systems with the utilization of matrix
substitutions. Based on a reinforcement learning method, we use online policy iteration and off-policy algorithms to optimize the con-
troller for multirate systems. By using the least squares method, we convert the off-policy algorithm into a model-free reinforcement
learning algorithm, which only requires the input and output data of the system. Finally, we use an example to illustrate the applicabil-

ity and efficiency of the model-free algorithm above mentioned.
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1 Introduction

It is well known that nearly all modern control sys-
tems are implemented digitally, which results in the re-
search significance of sampled-data systems[! 9. In indus-
trial process control, there commonly exist conditions
where the periods for the practical plant inputs are differ-
ent. Then traditional and advanced control methods for
sampled-data systems will not adapt to such multirate
systems. Researchers noticed this problem in the 1950s
and Kranc first used the switch decomposition method to
solve this problem in [6]. Kalman and Bertramlf, Fried-
landl”l, and Meyerl8l also made contribution to the devel-
opment of multirate systems. In 1990, the lifting tech-
nique was brought out to simplify the multirate prob-
lems by converting these systems to the equivalent dis-
crete systems. The topic became active ever since.

Based on the lifting method, standard control meth-
ods can be applied to solve the multirate problems. With
the development of the advanced control theory, more
and more research has been reported so far. In [9], an Hoo
controller is designed for the multirate system with the
nest operator method by Chen and Qiu. Séagfors and
Toivonenl! utilized the Riccati equation to address simil-
ar Ho, multirate sampling problems. Also H> problems
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are solved by Qiu and Tan['!l and linear quadratic Gaus-
sian (LQG) problem are addressed by Colaneri and Nicol-
aol'2l. Recently the control difficulties of the networked
systems with multirate sampling were solved by Xiao et
al.l3l Chen and Qiulll. Xue et al.l'5l and Zhong et al.l16]
utilized different methods to deal with the fault detec-
tion problems. Gao et al.ll7l designed an output feedback
controller for a general multirate system with finite fre-
quency specification. However, all controllers mentioned
above are designed according to the system dynamics
model. When system structure is unknown or system
parameters are uncertain, these controllers will not satis-
fy our demands. The authors in this paper aim to design
a controller that can make use of the input and output
data to optimize itself and we denote this kind of control-
ler as a model-free controller.

Reinforcement learning (RL) is an important branch
of machine learning. Famous research groups utilize RL
to solve artificial intelligence problems and teach robots
to play gamesl!8: 19, Through the interactions with envir-
onment, the cognitive agents can obtain the rewards of
their actions. With the utilization of the value function,
which is calculated by rewards, agents use the RL al-
gorithm to optimize the policy. A similar idea was
brought from control theory by Bertsekas and Tsitsiklis
in 199520 which is adaptive dynamic programming
(ADP). And a detailed introduction about ADP can be
found in [21]. And in past decades, this method was util-
ized to deal with output regulation problemsl2?, switch
systems(?3, nonlinear systems[?4, sliding mode control(25 26l
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and so onl2729. Both ADP and RL are studied based on
the Bellman equation and researchers combine these two
algorithms and apply it for solving control problems. RL
algorithms have been used to deal with H controller
design problemsB?l. Also the optimal regulation problem
was solved by Kamalapurkar et al.3ll The RL algorithm
can optimize the policy only with the use of the input
and output data, which discards the requirements of sys-
tem dynamics. Such model-free algorithms were applied
for solving discrete systemsB2 and heterogeneous
systems[33l. Controller design methods based on reinforce-
ment learning have many directions. Madady et al.l34, Li
et al.135] proposed a RL based control structure to train
neuro-network controllers for a helicopter. Similar meth-
ods can also be applied in unmanned aerial vehicle
(UAV)Bl. Some other learning-based control methods can
also be used in the servo control systemsB” and traffic
systemsl38]l. In this paper, authors aim to design a model-
free optimal controller for multirate systems through sim-
ilar schemes.

In this paper, a model-free algorithm based on RL is
developed to help us to design an optimal controller for
multirate systems. We assume that the sampling periods
for the state variables are different from the periods of
the system inputs. Instead of the lifting method, a differ-
ent technique was used to convert the multirate systems
into an equivalent discrete system. With matrix trans-
formations, we put forward an algorithm to design a lin-
ear quadratic regulator (LQR) controller for multirate
systems. Later, we propose the definition of the behavior
policy and target policy, and then an off-policy algorithm
based on RL was provided. With the utilization of the
least squares (LS) methodP$40l we reformulate the off-
policy algorithm into a model-free RL algorithm, which
can help us to optimize the controller in an uncertain en-
vironment. Finally, an example is presented to illustrate
the applicability and efficiency of the proposed methods.

The paper is organized as follows. A multirate system
model with a state feedback controller is provided in Sec-
tion 2. Section 3 proposes a controller design method and
three controller optimization methods. Finally, Section 4
gives an industrial example to illustrate the applicability
of the methods above mentioned.

Notation. This paper standardly use notation as fol-
lows. R™ denote the m-dimensional Euclidean space. T
and —1 mean matrix transposition and inverse. ® stands
for the Kronecker product and vec(A) denotes the vector-
ization of the matrix A.

2 Problem formulation

The multirate system we considered in this paper is a
system that has multirate periods for system states and
inputs, which means the sampling periods for state x(t)
are psh. Also we assume the periods for the holds of the
u(t) are all p,h. Here h denotes a real positive integer re-
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ferred to the basic period. Then we define this multirate
system G with assumptions as

(t) = Aex(t) + Beu(t). (1)

Assumption 1. The periods of samplers for z(t) are
all psh. The periods for the holds of the u(t) are all p,h.

Here z(t) is the state vector and z € R™. u(t) is the
system input and v € R™. A, and B. are the system
matrices with appropriate dimension. We first convert
the multirate system G to the equivalent linear discrete
system (G4 with the discrete time period h as

z(k+1) = Az(k) + Bu(k) (2)

where A = e?c" B = foh eeTdrB..

Researchers traditionally solve the multirate prob-
lems through utilization of the lifting method in [10]. Ac-
cording to this traditional method, a dynamic output
feedback controller can be designed8l. It is difficult to
directly use reinforcement learning based method for a
dynamic output feedback controller. In this paper, we ad-
dress this difficulty through another lifted method. We
can design a state-feedback controller under this lifting
technology. Define N = ps; X p,. In the time period Nh,
we have

z(N +1) = Az(N) + Bu(N).

Here we define the new state vector Z and new sys-
tem input « in the following lines:

(kN — N + s) u(kN)
(kN — N + 25) u(kN + p)
z(k) = : , u(k) = :
xz(kN) u(kN%N—p)

2(0)"]".

With the utilization of the above vectors, we have the

where p=p., s=ps and the initial state Z(0) = [O .-

discrete-time system G, which is equivalent to Gg.

Z(k + 1) = Az(k) + Bu(k) (4)
where
0 --- 0 A° _le -_882 _31%
B 0 --- 0 A2 - Bas1 Basa By~
A= , B= ,"
0 -~ 0 AN Bni Bne BN%
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P Ai*jPJrk*lB
b

b1 ifi>gjp+p

Bij =4 0, ifi <jp
i—jp+k—1 .
Z:H_]-p_i AP B, otherwise.

In this article, we design a state feedback controller as
u(k) = —Kz(k). (5)

From (5) and system G, one can see that the control-
ler (5) utilizes the data collected in the time interval
[(kN — N + 1)h, kNh]. The system inputs obtained by
control law are used in [kNh, (kN + N — p)h].

Remark 1. In this paper, we use our lifting method
to deal with a kind of multirate system, whose sampling
periods for inputs or outputs are the same. As for the
general multirate sampled-data systems, whose input and
output both have different sampling periods, we can find
such systems in [10-13, 16, 18]. In these papers, authors
utilize the lifting technique to deal with the multirate
problems. The lifting method in [16] combines the N state
vectors for the new system state vector and system input
in such a form:

z1(kN) u1(kN)

z1(EN+ N —1) ui (kN + N —1)

20 (kN) un (5N

L un (kN + N—-1)]
(6)

[ zn (kN + N — 1)

Obviously, & and @ are different from Z and @. The
equivalent system with the vectors & and 4 will result in
the causal constraints problem, which denotes that the
control output u(k +t) cannot be controlled by state
z(k + s). t and s are positive integers and ¢ > s. The con-
troller K(5) in this article provides the system G with the
data in [(kN — N +1)h, kNh] by utilizing the data in
[kNh, (kN + N —p)h]. In other words, the method in
this paper used to deal with the multirate difficulties can
avoid causal constraints.

Define the cost function of the system G4 with the dis-
counting factor v as

T =3 7@ (k)Qa(k) + u" (k)Ru(k)) =

From the above description, we can obtain that the
systems G, Ggq and G are approximately equivalent.

Thus, our purpose in this paper can be described as
designing a model-free controller for the multirate sys-
tem G to minimize the cost function J based on the rein-
forcement learning method.

3 Main results

In this section, we propose several methods to design
optimal controllers for multirate system based on rein-
forcement learning. Based on the cost function J, the
value function given in this article can be described as

which yields the Bellman equation
V(z(k)) = r(z(k),u(k)) +yV(Z(k +1)). 9)

Also for the system G, the value function can be de-
scribed in a quadratic form as

V(z(k)) = z" (k)Pz(k).

With the above quadratic form, the Bellman equation
(9) becomes

T (k)Pz(k) = r(@(k), a(k)) + 72~ (k + 1) Pz(k + 1).

We define the
H(z(k),u(k), A\(k)) as

Hamiltonian function

H = r(2(k), a(k)) + A(k)" (YV (@ (k + 1)) = V(2(k))). (10)
Then we can obtain the optimal control policy after

we solve this Hamiltonian function. Moreover, the optim-
al feedback matrix for the system G is given as

K*=(R+~B"PB) 'vyBTPA (11)

where P is the solution for the algebratic Riccati equation
(ARE):

yATPA— P - +*A"PB(R+~vB"PB)"'B"PA+Q = 0.
(12)

3.1 LQR controller design

When v =1, one can see that the controller designed
through (11) and (12) is equivalent to a LQR controller.
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From the structure of the matrix A, we can find that A is
singular and it is difficult to solve the Riccati equation
(12). We give the following matrix transformations

A=[o F], F' =[AT A7,
B" =[BT BY], A= AN, No =N -1,

le B52

B.x
— — _ p s
_ B2sl 3232 Tt Bgsﬂ _ A
B1 = P 3 Al = . )
IS S AN
Bnot Bng2 o+ Byyn
P
BQ: |:BN1 BNQ B]\]ﬂ] s
P
pP= [P“ P”} , U=PB(R+~B"PB)"'B"P
P21 P22

where B;; can be found in (4). Set Q = diag{Q1,Q2} and
Q2 € RY*N  Q, has appropriate dimension. Then, with
utilizing the above matrix transformations and v = 1, the
ARE can be converted to the following equations:

{FOT} Plo Fl-P- {FOT} Ul F]+ {%1 52} = 0.
(13)

From (13), we have that Pis= Ph =0 and
Py = P = Q1. Also one can see that when (13) holds,
we have the following equation:

FTPF = Py +FTUF+Q2 = A?Q1A1 —‘y—A;FPQzAQ. (14)
Let

P =Py, S=ATQ1B1, A=A,, B=B,,
Q=Q:+ATQiA;, R=R+~B"Q:B.

Then we can obtain (15), which can solve for the solu-
tion of Psa.

+ BYPB) N(BYPA+ST). (15)

According to the Ps2 from (15) and P11 = Q1, we can
obtain the optimal controller with K=(R+B"PB) 'BTPA.

We conclude the Algorithm 1 to solve the LQR con-
troller design problem for the multirate system G.

The optimal control is to find a control law under the
given constraints to maximize or minimize the given cost
function. The optimization algorithm is the algorithm
that helps agent maximize or minimize the given cost
function. We think these two optimization problems have
the same target. In this paper, the main target is to ob-
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tain a data-driven parameters optimization method for
multirate systems. Here Algorithm 1 is the optimal con-
trol problem and the optimization algorithm will be giv-
en in the following parts of the article.

Algorithm 1. LQR controller for multirate systems

1) Solve the (4) to get the equivalent discrete system
G.

2) Get P»2 by utilizing the matrix transformations to
solve ARE (15).

3) Obtain the LQR controller K =(R+BTPB)"'BTPA.

Algorithm 2. Online PI algorithm for multirate sys-
tems

1) Initialization: Set the iteration number j =0 and
start with a stabilizing control law @°(k) = Koz (k).

2) Solve pi+! by following equation with Pj;"' = Q,
TV (k)P E(k) = r(2(k), @ (k) + 2" (k 4+ 1) Pz,

3) Update the control policy K7+! with KI+! =
(R+~BTPI*1B) 1y BT PIt1 A,

4) Stop if || K7™ — K7|| < ¢ for a small positive value
€, otherwise set j = j + 1 and return to Step 2).

Remark 2. From the structure of the controller, we
can find that the structure of A results in K = [0 Kp,]. It
means that the valid part of the controller K is K,, and
the system input @(k) is decided by z(kN). When using
Algorithm 1, we can directly solve (15) to obtain the con-
troller gain K,,. Also, according to the structure of u(k),
one can see that the controller calculates the control out-
puts each long period from kNh to (kN + N — p)h.

3.2 Model-based PI algorithm

In this subsection, we aim to solve the optimal con-
troller design problem based on reinforcement learning
under the condition that the model dynamic is known.
The main difficulty is to solve the ARE (12) for matrix
P. In Algorithm 1, we utilize the matrix transformations
to reformulate a new ARE (15), and we can solve this
function directly.

According to [32, 33|, another popular algorithm for
solving the ARE is the policy iteration (PI) algorithm, an
online algorithm. In tradition, the controller updates with
the optimization of the matrix P. Based on Section 3.1,
we can obtain the matrix P which has such structure,
Pis = P211 =0 and P = P1T1 = Q1. Motivated by this
condition, the online PI algorithm for multirate sampling
systems has been converted into Algorithm 2.

The Algorithm 2 is an online algorithm, which means
the policy updates each step according to @ (k). Our pur-
pose is to design a model-free controller, which can up-
date itself with the use of the control output. Therefore,
it is inevitable for us to design an off-policy algorithm.
Rewriting the system G in (4) as

#(k+1) = A& (k) + Bla(k) + K'z(k)  (16)

where A, = A — BK?. Here in (16), @(k) denotes the
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behavior policy which is applied in the practical system
and we collect data for the algorithm through this policy.
@ (k) = —K’Z(k) is the target policy that are updated by
the PI algorithm. With @ (k) = —K?Z(k), the system in
Algorithm 2 is shown as Z(k + 1) = (A — BK?)Z(k). Then
the Step 2 in Algorithm 2 is equal to the following

equation:
T (k)Qz(k) + " (k)(K))"RK Z(k) =
T (k)P z (k) —~yz " (k) (A— BK))T PPYY (A— BK?)z (k).
(17)

Then we can obtain the following equation according
to the above statements:

g:«T(k)PJ’“z(k) —~z" (k) AT P Az(k) =
z' (k)Qz(k) + 2" (k)(BK’)" P"" BK'z(k)+
;rT(k:)( K)TRK’z (k)—2fyi*T(k)(BKj)TPj+1A;f(l(<:l)é)

For the off-policy algorithm, the state signals are ob-
tained according to (16). Then we add polynomials into
both sides of (18), an equivalent equation is given as

(k)P (k) — vz (k+ )P T 2k + 1) =
2" (k)Qz(k) + " (k)(K")" RK'2(k)—
2y (u(

k) + K'z(k))" BT P Az (k )+
(a(k) + K'z(k))" B"P"* B(a(k) — K'z(k)). (19)
It should be noted that z in (18) and (19) are differ-
ent. But (19) is equal to (18). From the above state-
ments, we can conclude the off-policy RL algorithm as
Algorithm 3.
Algorithm 3. Off-policy algorithm for multirate sys-

2

tems

1) Initialization: Set the iteration number j =0 and
Kz (k).
(1 by using data

start with a stabilizing control law @ (k) =

2) Solve pi+l in (18) with P/;' =
z(k), z(k + 1), u(k), K.

3) Update the target policy KJ/t!  with
Kit' = (R4 ~BTP*'B)"'yBTPIt1 A,

4) Stop if ||K7T! —
€, otherwise set j = j + 1 and return to Step 2).

K7||2 < ¢ for a small positive value

Remark 3. It is obvious that the difference between
Algorithms 2 and 3 is that the policy system utilized is
changed each step in Algorithm 2 and fixed in Algorithm
3. In Algorithm 3, the state vector Z(k + 1) is decided by
the behavior policy, which means Z(k+ 1) = Az(k)+
Bi(k) # Az(k) 4+ B@’ (k). Algorithm 3 provides a optim-
ization method under such a condition that system dy-
namic process and optimize process are uncoupled. We
can later obtain the model-free algorithm based on this
off-policy algorithm.

Remark 4. In the reinforcement learning field, the
main difference between model-based and model-free al-

gorithms is whether the algorithm uses the neuro-net-
work to estimate the next state or not. The model-free al-
gorithm directly optimizes the policy network through in-
put and output data. The model-based algorithm will
first use the input and output data to optimize a neuro-
network, which can correctly predict the next state ac-
cording to the present. In conclusion, model-based al-
gorithms need the agent to have a physical dynamic
plant. Both model-free and model-based algorithms are
data-driven methods. However, in the control field, this
will be different. There are no specific explanations for
model-based and model-free control methods. In this pa-
per, we think model-based methods rely on the system
dynamics, including system structures and system para-
meters. Model-free methods only use input and output
data to optimize controller parameters. Both these meth-
ods are data-driven but model-based methods use inputs,
outputs and system dynamics. In this paper, we aim to
propose a method that only uses input and output data
to optimize controllers.

3.3 Model-free RL algorithm

The algorithms mentioned above require system dy-
namics to optimize the controller. In this subsection, we
propose a method to design a model-free optimal control-
ler. Tt is well known that vec(a™Wb) = (bT @ o )vec(W).
Set that

=[5 ]

We can obtain (20) through (18) with P11 = Q1.

T (k)Qz(k) + " (k) (K)"RK z(k) =
z1 (k)Q1Z1(k) — vZ1 (k + 1)Q1Z1(k + 1)+
Ty (k) Py ' Za(k) — 45 (k + 1) Py ' Za(k + 1)+
2y(a(k) + K7 2(k)) " (BT Q1 A1 + BaPgy " Az)7a(k)+
y(u(k) + K’ z(k))" B* P B(u(k) — K’z (k)).
(20)
Define 7(Z(k)) as
r(@(k)) = z" (k)Qz(k) + 2" (k)(K’)" RK’z(k)—

71 (k)Q171(k) + &1 (k+ 1)Q1Z1(k + 1).

With the utilization of the Kronecker product, (16)
can be rewritten as

r(z(k)) =
(@2 (k) ® 72 (k) — T3 (k+ 1) ® 23 (k + 1) vec(Pg, )+
2y(z3 (k) @ (a(k) + K’z (k))"vec(BY Q1 A1)+
29(z; (k) @ (a(k) + K'2(k)) " Jvee(Bz Pjy " Az)+
Y((a(k)~ Kz (k)" @ (a(k)+ K’z (k)" Jvec(B* P’ B).

(21)
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From the Bellman equation (20), one can see that this
equation has n?+ N?m?/p? + Nmn/p + (N — 1)(N — p)
mn/p unknown parameters. Therefore, at least n® + N2m?/
p> + Nmn/p+ (N — 1)(N —p)mn/p datasets are re-
quired to update the control policy. It also means that in
each iteration, we will collect s groups of data to calcu-
late the policy. We set a positive integer s > n? + N*m?/
p?> + Nmn/p+ (N — 1)(N — p)mn/p, and it also means
that in each iteration, we will collect s groups of data to
calculate the policy. Then define the parameter matrices

as
o = [r(z(k)" F@E+1)T - F@k+s—1)T]"
M(zz)l M(zu)l M(uu)l
M(zx)2 M(acu)Z M(uu)2
V=
M(a:ac)s M(;Lu)s M(uu)s
(22)
where
Mgy =Za (k+i—1) @73 (k+i—1)—
T3 (k +i) ® 73 (k +19)
K'z(k+i—1)")
My = Y((ak +i—1) = K'z(k +i—1))"a®
(a(k+i—1)+ K'z(k+i-1)").
Define the unknown variables as
Wit =PIt Wit = BIQuAy + By Py ' As,
witt = BTpPItB, (23)

With the utilization of (20)—(22), we can obtain that
/g [vec(W{™)T  vec(WitHT vec(Wf‘Jrl)T}T =
(24)

The above equation (20) can be solved by the LS
method as

[vec(WiTHT  vec(WithHT Uec(leJrl)T]T =

(w) ")~ w)) e (25)

With the solution for W{*", WJ™' and Wg'“, we can
have the controller gain as

K=(R+W{™H) [0 wit]. (26)

Conclude above statements, we can have the model-
free algorithm as Algorithm 4.
Algorithm 4. Model-free controller optimization al-
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gorithm for multirate systems

1) Initialization: Set the iteration number j =0 and
start with a stabilizing control law @(k) = —KZ(k) + e(k),
where e(k) is the probing noise. Set j = 0.

2) Run the system with controller s step to collect in-
puts and outputs data.

3) Reformulate data to &/ and ¥ according to (22).

4) With the LS method and (24), we can obtain the
matrices W7 Wit with

5) Update the
K7 = (R wf™ o Wit

6) Stop if ||[K’t" — K7||2 < € for a small positive value
€, otherwise set j = j + 1 and return to 2).

control policy KJ/t!  with

Remark 5. The main technology we used in this sub-
section is the LS method and an important point when
using LS is persistent excitation condition (PE). In the
reinforcement learning such as deep Q-network (DQN)
and deep deterministic policy gradient (DDPG), the re-
searchers always added noise signals in the learning pro-
cess to ensure the agents explore more information about
the environment, and respectively PE in the policy itera-
tion method can guarantee the sufficient exploration of
the state space. It should be noted that when the state
converges to the desired value, PE will not be satisfied.
In [32, 33, 41, 42], authors always utilized probing noise
as PE, which consists of sinusoids of varying frequencies
to ensure PE qualitatively. The amplitude for the prob-
ing noise will affect the algorithm results. The algorithm
will not converge if the amplitude is too large and the
probing noise will be useless if the amplitude is too little.
We usually decide the parameters according to our exper-
ience in the simulation.

Remark 6. In past decades, research about multir-
ate system paid more attention in the traditional control
theory field. Ho problems, H» problems, time-delay prob-
lems and LQG problems have been solved in the existing
related literatures. In recent years, papers have reported
slide mode controller design, nonlinear multirate systems
and multirate systems under switch condition. The above
algorithms are all model-based and in this paper we pro-
pose a model-free LQR controller for multirate systems.
When we are not sure about system structure or system
parameters, our algorithm can efficiently help users
design a LQR controller only with input and output data.
Also when the parameters of the system are uncertain,
the controller designed by our algorithm will have better
performance.

The main results of this paper are 4 algorithms for
multirate systems. Algorithms 2 and 3 are preliminary for
Algorithm 4. So the main contribution can be concluded
as two control system schemes. One is optimal controller
design for the new multirate system. The other is model-
free controller optimization for the new multirate system.
Consider the multirate system described as (1). Its equi-
valent discrete system is (4) and its state-feedback con-



Z. Li et al. / Controller Optimization for Multirate Systems Based on Reinforcement Learning 423

troller is in the form of (5). Then the closed-loop equival-
ent multirate control system can be described as

#(k+1) = (A - BK)z(k). (27)

For the optimal controller design of the new multir-
ate system, system dynamics and system parameters are
known. We can use Algorithm 1 to obtain an optimal
controller with K = (R+ B*PB)"'BTPA. For the mat-
rix P, we can obtain P;; = Q1 and P2 from the ARE
(15).

For the model-free controller optimization for new
multirate systems, system dynamics and system paramet-
ers are unknown. We first initialize with a stabilized con-
troller and then use Algorithm 4 to optimize controller
parameters. Run the closed-loop system, collect data and
reformulate data according to (22)—(24). Finally, use (25)
to update the controller.

The main contribution of this paper is to propose a
model-free controller optimization for a class of multirate
systems through a new lifting technique. For the multir-
ate systems, the optimal controller design method is com-
plicated[!!] and there is no data-driven method for multir-
ate systems. So the results of this article can make up for
the deficiency of the multirate systems. Also, for the con-
troller optimization, this paper presents a realization
method and we think our algorithms can improve the de-
velopment of the data-driven method, controller optimiz-
ation for multirate systems.

4 Simulation results

In this section, we provide a continuous-stirred tank
reactor (CSTR) to prove the applicability and efficiency
of the proposed algorithms. And the structure of the in-
dustrial CSTR is given in Fig.1. The main character
parameters of CSTR are reaction temperature 71" and cool-
ing medium temperature 7.. There are two main chemic-
al species A and B. The input of CSTR is pure A with its
concentration described as Ca;, the output is the mix-
ture of A and B with their concentration C4.

For this model, we define state vector and system in-
put as follows:

=[).0-12)

Based on [16], we can convert the sampled-data sys-
tem into an equivalent discrete system with frequency
2Hz:

0.9719  —0.0013
w41 = (2005 068 ) *BF
0.0839 0.0232

(00761 oarad) “® (28)

It is assumed in this example that the sampling peri-

Mixture of 4 and B with C,

Pure A with C;;  Motor
AW —————

Cooling |
medium
with
temperature
T‘ u—

c

Stirrer  Temperature T

Fig.1 Continuous-stirred tank reactor model

ods for C'4 and T are 2s, the periods for system inputs
are 3s. With the technique of this paper, we can obtain
the equivalent system G with the system matrices 4 and
B, which are 6 x 6 and 6 x 4 matrices.

With the matrix transformations, we can obtain the

matrices A,B,P,Q,R by (14). Set Q:diag{l,l},
R = diag {0.1,0.1}, and through Algorithm 1 and the

toolbox of Matlab, we can get the optimal controller K,

as
—2.1815 0.1652
_ ] 0.3455 0.706 4
Km = —0.8314 —0.0027| " (29)
0.1280 —0.1099

The target of our paper is to propose a model-free al-
gorithm as Algorithm 4. Algorithms 2 and 3 are the im-
portant conditions for Algorithm 4 and we first prove the
accuracy and efficiency of Algorithm 2, we set the dis-
counted factor v = 0.95 and initial controller K2, as

-1 0 -2 0.4]T

kS = |
0 1 01 1

When each iteration system runs, the controller up-
dates itself according to Algorithm 2. With using Al-
gorithm 2, we can obtain Fig.2. From that one can see
that after 5 iterations, the 2-norm of the error between
K7 and K* nearly converges to 0. And the final result of
Algorithm 2 is K, as follows:

—2.1823 0.1711
| 03435 07121

Km=1_08351 —0.0026|" (30)
0.1311 —0.1101

From (28), we can get that the controller results we
obtained from Algorithm 2 nearly equal to the results we
get from Algorithm 1, which denotes that Algorithm 2 is
also a useful way to optimize controllers. Except using
Algorithm 1 to find optimal controller, we can also use
Algorithm 2. Then we test the controller (27), the initial
controller of Algorithm 2 and the controller after 3 itera-
tions of Algorithm 2, and we can obtain Fig.3. Al-
gorithm 3 is another form of Algorithm 2, so we will not
test Algorithm 2 here.
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Fig. 2 Convergence of the controller in Algorithm 2
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Fig.3 System states in the Online PI Algorithm

To test the model-free Algorithm 4, we assume that
the system matrices we get are different from the practic-
al system and thus suppose

0.4819 —0.0013
v(k+1) = [70.034 0.562 8 ] w(k)+
~0.139 0.023
[ 0.096 0.214} u(k). (31)

Here the example means that there is difference
between the actual system and system parameters we get.
This also denotes that if the system has large uncertain-
ties, we cannot directly use Algorithms 1 and 2 and we
will prove the efficiency of Algorithm 4. The actual sys-
tem is (28), and the incorrect information we get is (31).

First we use Algorithm 1 to obtain the LQR control-
ler of the system we know as follows:

—0.3412 0.1612

_ | 0.0592 0.4502
Km = —-0.0121 —-0.0160 (32)

0.0112 —-0.0160.

Set the probing noise e(k) = sin(0.9k) + sin(1.009k) +
cos(100k) and run system (26) with Algorithm 4, similar
we have the 2-norm error between the controller of Al-
gorithm 4 and the controller of Algorithm 1 in Fig. 4.
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Fig.4 Convergence of the controller in Algorithm 4

And we can obtain the final controller as follows,
which nearly equals to (27).

—-2.1812 0.1701
0.3415 0.7132

Km = —0.8342 —0.0029 (33)
0.1309 —0.1097.

Also when running Algorithm 4, we have the system
states in Fig.5. Different from Fig.3 and Algorithm 2, Al-
gorithm 4 is the off-line algorithm, which means the con-
troller can be optimized when the system is running. In
Fig.5, Controller 1 response means that system runs with
the initial controller (31) and Controller 3 denotes the
system running with the final controller (32). Controller 2
response means the system runs with Algorithm 4. Here
probing noise ends after 20s.

3.0 T :
o \ - - = Controller 1
1A\ —— Controller 2 ||
—% 23 Controller 3
N\
; 20 r .
g 157 T<
o ~
= ~ L
5 10 S
: T~ ~
8 -~
g 05
=
154
E o)
@]
-0.5 - : : ’
0 5 10 15 20 25
Time (s)
Fig.5 System states in Algorithm 4

The above simulation results can illustrate that we
can only use the input and output data to design an op-
timal controller with an initial stabilizing control policy,
appropriate probing noise and Algorithm 4.

Remark 7. In the practical plants, the system model
we obtain is almost different from the actual one due to
the uncertainties. And in our opinion, we can first design
the LQR controller with the mathematical system model
and then utilize the model-free Algorithm 4 to get the
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true optimal controller. This optimal controller can actu-
ally satisfy our demand for system performance.

5 Conclusions

In this paper, an optimal controller design problem for
multirate systems with unknown dynamics is presented.
A novel lifting technique is utilized to deal with the mul-
tirate sampling problems and provide an equivalent dis-
crete-time system for authors to design algorithms. We
then use the Q-learning idea to design a model based off-
policy to optimize an algorithm for multirate systems.
The LS method can be applied to convert the off-policy
algorithm to the model-free algorithm and the utilization
of the probing noise is necessary. Finally, a CSTR ex-
ample is presented to illustrate the applicability of the
model-free RL based algorithm.

Future research efforts will focus on the controller
design with multiple targets. Due to the limitation of the
policy iteration methods, we aim to use the policy gradi-
ent methods to design better controllers.

Acknowledgements

This work was supported by National Key R&D Pro-
gram of China (No.2018YFB1308404).

References

1] P. Shi. Filtering on sampled-data systems with paramet-
ric uncertainty. IEEE Transactions on Automatic Control,
vol.43, no.7, pp.1022-1027, 1998. DOI: 10.1109/9.701119.

[2] X.J. Han, Y. C. Ma. Sampled-data robust H, control for
T-S fuzzy time-delay systems with state quantization. In-
ternational Journal of Control, Automation and Systems,
vol.17, no.1, pp.46-56, 2019. DOI: 10.1007/s12555-018-
0279-3.

(3] K. Abidi, Y. Yildiz, A. Annaswamy. Control of uncertain
sampled-data systems: An adaptive posicast control ap-
proach. IEEE Transactions on Automatic Control, vol. 62,
no.5, pp.2597-2602, 2017. DOI: 10.1109/TAC.2016.
2600627.

[4] T. Nguyen-Van. An observer based sampled-data control
for class of scalar nonlinear systems using continualized
discretization method. International Journal of Control,
Automation and Systems, vol. 16, no.2, pp.709-716, 2018.
DOI: 10.1007/s12555-016-0739-6.

5] R.J. Liu, J. F. Wu, D. Wang. Sampled-data fuzzy control
of two-wheel inverted pendulums based on passivity the-
ory. International Journal of Control, Automation and
Systems, vol.16, no.5, pp.2538-2648, 2018. DOI: 10.
1007/s12555-018-0063-4.

6] R. E. Kalman, J. E. Bertram. A unified approach to the
theory of sampling systems. Journal of the Franklin Insti-
tute, vol. 267, no.5, pp.405-436, 1959. DOI: 10.1016/0016-
0032(59)90093-6.

[7] B. Friedland. Sampled-data control systems containing
periodically varying members. In Proceedings of the 1st

[10]

11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

IFAC World Conference, Moscow, Russia, pp.361-367,
1961. DOI: 10.1016/s1474-6670(17)70078-X.

D. G. Meyer. A new class of shift-varying operators, their
shift-invariant equivalents, and multirate digital systems.
IEEE Transactions on Automatic Control, vol.35, no.4,
pp-429-433, 1990. DOI: 10.1109/9.52295.

T. W. Chen, L. Qiu. H, design of general multirate
sampled-data control systems. Automatica, vol.30, no.7,
pp-1139-1152, 1994. DOI: 10.1016,/0005-1098(94)90210-0.

M. F. Sagfors, H. T. Toivonen, B. Lennartson. H, control
of multirate sampled-data systems: A state-space ap-
proach. Automatica, vol.34, no.4, pp.415-428, 1998. DOI:
10.1016,/S0005-1098(97)00236-7.

L. Qiu, K. Tan. Direct state space solution of multirate
sampled-data Hy optimal control. Automatica, vol.34,
no.11, pp.1431-1437, 1998. DOI: 10.1016/S0005-1098(98)
00080-6.

P. Colaneri, G. D. Nicolao. Multirate LQG control of con-
tinuous-time stochastic systems. Automatica, vol.31,
no.4, pp.591-595, 1995. DOI: 10.1016/0005-1098(95)
98488-R.

N. Xiao, L. H. Xie, L. Qiu. Feedback stabilization of dis-
crete-time networked systems over fading channels. IEEE
Transactions on Automatic Control, vol.57, no.9,
pp.2167-2189, 2012. DOI: 10.1109/TAC.2012.2183450.

W. Chen, L. Qiu. Stabilization of networked control sys-
tems with multirate sampling. Automatica, vol.49, no.6,
pp.1528-1537, 2013. DOI: 10.1016/j.automatica.2013.
02.010.

S. R. Xue, X. B. Yang, Z. Li, H. J. Gao. An approach to
fault detection for multirate sampled-data systems with
frequency specifications. IEEE Transactions on Systems,
man, and cybernetics: Systems, vol.48, 1no.7,
pp.1155-1165, 2018. DOI: 10.1109/TSMC.2016.2645797.

M. Y. Zhong, H. Ye, S. X. Ding, G. Z. Wang. Observer-
based fast rate fault detection for a class of multirate
sampled-data systems. IEEE Transactions on Automatic
control, vol.52, no.3, pp.520-525, 2007. DOI: 10.1109/
TAC.2006.890488.

H. J. Gao, S. R. Xue, S. Yin, J. B. Qiu, C. H. Wang. Out-
put feedback control of multirate sampled-data systems
with frequency specifications. IEEE Transactions on Con-
trol Systems Technology, vol.25, no.5, pp.1599-1608,
2017. DOI: 10.1109/TCST.2016.2616379.

X. X. Guo, S. Singh, H. Lee, R. Lewis, X. S. Wang. Deep
learning for real-time Atari game play using offline monte-
carlo tree search planning. In Proceedings of the 27th In-
ternational Conference on Neural Information Processing
Systems, ACM, Montreal, Canada, pp. 3338-3346, 2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G.
Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.
Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.
Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Master-
ing the game of go with deep neural networks and tree
search. Nature, vol.529, no. 7587, pp.484-489, 2016. DOI:
10.1038 /nature16961.

D. P. Bertsekas, J. N. Tsitsiklis. Neuro-dynamic program-

@ Springer


http://dx.doi.org/10.1109/9.701119
http://dx.doi.org/10.1007/s12555-018-0279-3
http://dx.doi.org/10.1007/s12555-018-0279-3
http://dx.doi.org/10.1109/TAC.2016.2600627
http://dx.doi.org/10.1109/TAC.2016.2600627
http://dx.doi.org/10.1007/s12555-016-0739-6
http://dx.doi.org/10.1007/s12555-018-0063-4
http://dx.doi.org/10.1007/s12555-018-0063-4
http://dx.doi.org/10.1016/0016-0032(59)90093-6
http://dx.doi.org/10.1016/0016-0032(59)90093-6
http://dx.doi.org/10.1016/s1474-6670(17)70078-X
http://dx.doi.org/10.1109/9.52295
http://dx.doi.org/10.1016/0005-1098(94)90210-0
http://dx.doi.org/10.1016/S0005-1098(97)00236-7
http://dx.doi.org/10.1016/S0005-1098(98)00080-6
http://dx.doi.org/10.1016/S0005-1098(98)00080-6
http://dx.doi.org/10.1016/0005-1098(95)98488-R
http://dx.doi.org/10.1016/0005-1098(95)98488-R
http://dx.doi.org/10.1109/TAC.2012.2183450
http://dx.doi.org/10.1016/j.automatica.2013.02.010
http://dx.doi.org/10.1016/j.automatica.2013.02.010
http://dx.doi.org/10.1109/TSMC.2016.2645797
http://dx.doi.org/10.1109/TAC.2006.890488
http://dx.doi.org/10.1109/TAC.2006.890488
http://dx.doi.org/10.1109/TCST.2016.2616379
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/9.701119
http://dx.doi.org/10.1007/s12555-018-0279-3
http://dx.doi.org/10.1007/s12555-018-0279-3
http://dx.doi.org/10.1109/TAC.2016.2600627
http://dx.doi.org/10.1109/TAC.2016.2600627
http://dx.doi.org/10.1007/s12555-016-0739-6
http://dx.doi.org/10.1007/s12555-018-0063-4
http://dx.doi.org/10.1007/s12555-018-0063-4
http://dx.doi.org/10.1016/0016-0032(59)90093-6
http://dx.doi.org/10.1016/0016-0032(59)90093-6
http://dx.doi.org/10.1016/s1474-6670(17)70078-X
http://dx.doi.org/10.1109/9.52295
http://dx.doi.org/10.1016/0005-1098(94)90210-0
http://dx.doi.org/10.1016/S0005-1098(97)00236-7
http://dx.doi.org/10.1016/S0005-1098(98)00080-6
http://dx.doi.org/10.1016/S0005-1098(98)00080-6
http://dx.doi.org/10.1016/0005-1098(95)98488-R
http://dx.doi.org/10.1016/0005-1098(95)98488-R
http://dx.doi.org/10.1109/TAC.2012.2183450
http://dx.doi.org/10.1016/j.automatica.2013.02.010
http://dx.doi.org/10.1016/j.automatica.2013.02.010
http://dx.doi.org/10.1109/TSMC.2016.2645797
http://dx.doi.org/10.1109/TAC.2006.890488
http://dx.doi.org/10.1109/TAC.2006.890488
http://dx.doi.org/10.1109/TCST.2016.2616379
http://dx.doi.org/10.1038/nature16961

426

(21]

24]

25]

[26]

(27]

28]

29]

(30]

(31]

(33]

International Journal of Automation and Computing 17(3), June 2020

ming: An overview. In Proceedings of the 34th IEEE Con-
ference on Decision and Control, IEEE, New Orleans,
USA, pp. 560-564, 1995. DOI: 10.1109/CDC.1995.478953.

F. Y. Wang, H. G. Zhang, D. R. Liu. Adaptive dynamic
programming: An introduction. IEEE Computational In-
telligence Magazine, vol.4, no.2, pp.39-47, 2009. DOLI:
10.1109/MCI.2009.932261.

W. N. Gao, Z. P. Jiang. Adaptive dynamic programming
and adaptive optimal output regulation of linear systems.
IEEE Transactions on Automatic Control, vol.61, no.12,
pp.4164-4169, 2016. DOI: 10.1109/TAC.2016.2548662.

W. J. Lu, P. P. Zhu, S. Ferrari. A hybrid-adaptive dynam-
ic programming approach for the model-free control of
nonlinear switched systems. IEEE Transactions on Auto-
matic Control, vol.61, no.10, pp.3203-3208, 2016. DOI:
10.1109/TAC.2015.2509421.

Y. Yang, J. M. Lee. A switching robust model predictive
control approach for nonlinear systems. Journal of Process
Control, vol.23, no.6, pp.852-860, 2013. DOI: 10.1016/j.
jprocont.2013.03.011.

B. Luo, H. N. Wu, T. W. Huang. Off-policy reinforcement
learning for H, control design. IEEE Transactions on Cy-
bernetics, vol.45, no.1, pp.65-76, 2015. DOI: 10.1109/
TCYB.2014.2319577.

H. J. Yang, M. Tan. Sliding mode control for flexible-link
manipulators based on adaptive neural networks. Interna-
tional Journal of Automation and Computing, vol.15,
no. 2, pp.239-248, 2018. DOI: 10.1007/s11633-018-1122-2.

M. S. Tong, W. Y. Lin, X. Huo, Z. S. Jin, C. Z. Miao. A
model-free fuzzy adaptive trajectory tracking control al-
gorithm based on dynamic surface control. International
Journal of Advanced Robotic Systems, vol.17, no.l,
pp. 17-29, 2020. DOI: 10.1177/1729881419894417.

1. Zaidi, M. Chtourou, M. Djemel. Robust neural control of
discrete time uncertain nonlinear systems using sliding
mode backpropagation training algorithm. International
Journal of Automation and Computing, vol.16, no.2,
pp.213-225, 2019. DOI: 10.1007/s11633-017-1062-2.

M. Zhu, J. N. Bian, W. M. Wu. A novel collaborative
scheme of simulation and model checking for system prop-
erties verification. Computers in Industry, vol.57, no.8-9,
pp. 752-757, 2006. DOI: 10.1016/j.compind.2006.04.006.

Y. H. Zhu, D. B. Zhao, H. B. He, J. H. Ji. Event-triggered
optimal control for partially unknown constrained-input
systems via adaptive dynamic programming. IEEE Trans-
actions on Industrial Electronics, vol.64, no.5, pp.4101-
4109, 2017. DOI: 10.1109/TIE.2016.2597763.

R. Kamalapurkar, P. Walters, W. E. Dixon. Model-based
reinforcement learning for approximate optimal regula-
tion. Automatica, vol.64, pp.94-104, 2016. DOI: 10.1016/
j-automatica.2015.10.039.

B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, M.
B. Naghibi-Sistani. Reinforcement Q-learning for optimal
tracking control of linear discrete-time systems with un-
known dynamics. Automatica, vol.50, pp.1167-1175,
2014. DOI: 10.1016/j.automatica.2014.02.015.

H. Modares, S. P. Nageshrao, G. A. Delgado Lopes, R.
Babuska, F. L. Lewis. Optimal model-free output syn-

@ Springer

34]

(35]

(36]

37]

(38]

39]

[41]

[42]

chronization of heterogeneous systems using off-policy re-
inforcement learning. Automatica, vol.71, pp.334-341,
2016. DOI: 10.1016/j.automatica.2016.05.017.

A. Madady, H. R. Reza-Alikhani, S. Zamiri. Optimal N-
parametric type iterative learning control. International
Journal of Control, Automation and Systems, vol.16,
no. 5, pp.2187-2202, 2018. DOI: 10.1007/s12555-017-0259-

Z.

Z.Li, S. R. Xue, W. Y. Lin, M. S. Tong. Training a robust
reinforcement learning controller for the uncertain system
based on policy gradient method. Neurocomputing,
vol.316, pp.313-321, 2018. DOI: 10.1016/j.neucom.
2018.08.007.

S. R. Xue, Z. Li, L. Yang. Training a model-free reinforce-
ment learning controller for a 3-degree-of-freedom heli-
copter under multiple constraints. Measurement and Con-
trol, vol.52, no.7-8, pp.844-854, 2019. DOI: 10.1177/
0020294019847711.

S. Preitl, R. E. Precup, Z. Preitl, S. Vaivoda, S. Kilyeni, J.
K. Tar. Iterative feedback and learning control. Servo sys-
tems applications. IFAC Proceedings Volumes, vol.40,
no.8, pp.16-27, 2007. DOI: 10.3182/20070709-3-RO-
4910.00004.

R. P. A. Gil, Z. C. Johanyak, T. Kovacs. Surrogate model
based optimization of traffic lights cycles and green period
ratios using microscopic simulation and fuzzy rule inter-
polation. International Journal of Artificial Intelligence,
vol. 16, no. 1, pp. 2040, 2018.

F. L. Lewis, D. Vrabie, K. G. Vamvoudakis. Reinforce-
ment learning and feedback control: Using natural de-
cision methods to design optimal adaptive controllers.
IEEE Control Systems Magazine, vol. 32, no.6, pp. 76-105,
2012. DOI: 10.1109/MCS.2012.2214134.

J. X. Yu, H. Dang, L. M. Wang. Fuzzy iterative learning
control-based design of fault tolerant guaranteed cost con-
troller for nonlinear batch processes. International Journ-
al of Control, Automation and Systems, vol.16, no.5,
pp-2518-2527, 2018. DOI: 10.1007/s12555-017-0614-0.

H. Modares, F. L. Lewis, Z. P. Jiang. Optimal output-feed-
back control of unknown continuous-time linear systems
using off-policy reinforcement learning. IEEE Transac-
tions on Cybernetics, vol.46, no.11, pp.2401-2410, 2016.
DOI: 10.1109/TCYB.2015.2477810.

B. Hu, J. C. Wang. Deep learning based hand gesture re-
cognition and UAV flight controls. International Journal
of Automation and Computing, vol.17, no.1, pp.17-29,
2020. DOI: 10.1007/s11633-019-1194-7.

Zhan Li received the Ph.D. degree in con-
trol science and engineering from Harbin
Institute of Technology, Harbin, China in
2015. He is currently an associate profess-
or with Research Institute of Intelligent
Control and Systems, School of Astronaut-
ics, Harbin Institute of Technology, China.

His research interests include motion
control, industrial robot control, robust

control of small unmanned aerial vehicles (UAVs), and cooperat-
ive control of multivehicle systems.
E-mail: zhanli@hit.edu.cn


http://dx.doi.org/10.1109/CDC.1995.478953
http://dx.doi.org/10.1109/MCI.2009.932261
http://dx.doi.org/10.1109/TAC.2016.2548662
http://dx.doi.org/10.1109/TAC.2015.2509421
http://dx.doi.org/10.1016/j.jprocont.2013.03.011
http://dx.doi.org/10.1016/j.jprocont.2013.03.011
http://dx.doi.org/10.1109/TCYB.2014.2319577
http://dx.doi.org/10.1109/TCYB.2014.2319577
http://dx.doi.org/10.1007/s11633-018-1122-2
http://dx.doi.org/10.1177/1729881419894417
http://dx.doi.org/10.1007/s11633-017-1062-2
http://dx.doi.org/10.1016/j.compind.2006.04.006
http://dx.doi.org/10.1109/TIE.2016.2597763
http://dx.doi.org/10.1016/j.automatica.2015.10.039
http://dx.doi.org/10.1016/j.automatica.2015.10.039
http://dx.doi.org/10.1016/j.automatica.2014.02.015
http://dx.doi.org/10.1016/j.automatica.2016.05.017
http://dx.doi.org/10.1007/s12555-017-0259-z
http://dx.doi.org/10.1007/s12555-017-0259-z
http://dx.doi.org/10.1016/j.neucom.2018.08.007
http://dx.doi.org/10.1016/j.neucom.2018.08.007
http://dx.doi.org/10.1177/0020294019847711
http://dx.doi.org/10.1177/0020294019847711
http://dx.doi.org/10.3182/20070709-3-RO-4910.00004
http://dx.doi.org/10.3182/20070709-3-RO-4910.00004
http://dx.doi.org/10.1109/MCS.2012.2214134
http://dx.doi.org/10.1007/s12555-017-0614-0
http://dx.doi.org/10.1109/TCYB.2015.2477810
http://dx.doi.org/10.1007/s11633-019-1194-7
http://dx.doi.org/10.1109/CDC.1995.478953
http://dx.doi.org/10.1109/MCI.2009.932261
http://dx.doi.org/10.1109/TAC.2016.2548662
http://dx.doi.org/10.1109/TAC.2015.2509421
http://dx.doi.org/10.1016/j.jprocont.2013.03.011
http://dx.doi.org/10.1016/j.jprocont.2013.03.011
http://dx.doi.org/10.1109/TCYB.2014.2319577
http://dx.doi.org/10.1109/TCYB.2014.2319577
http://dx.doi.org/10.1007/s11633-018-1122-2
http://dx.doi.org/10.1177/1729881419894417
http://dx.doi.org/10.1007/s11633-017-1062-2
http://dx.doi.org/10.1016/j.compind.2006.04.006
http://dx.doi.org/10.1109/TIE.2016.2597763
http://dx.doi.org/10.1016/j.automatica.2015.10.039
http://dx.doi.org/10.1016/j.automatica.2015.10.039
http://dx.doi.org/10.1016/j.automatica.2014.02.015
http://dx.doi.org/10.1016/j.automatica.2016.05.017
http://dx.doi.org/10.1007/s12555-017-0259-z
http://dx.doi.org/10.1007/s12555-017-0259-z
http://dx.doi.org/10.1016/j.neucom.2018.08.007
http://dx.doi.org/10.1016/j.neucom.2018.08.007
http://dx.doi.org/10.1177/0020294019847711
http://dx.doi.org/10.1177/0020294019847711
http://dx.doi.org/10.3182/20070709-3-RO-4910.00004
http://dx.doi.org/10.3182/20070709-3-RO-4910.00004
http://dx.doi.org/10.1109/MCS.2012.2214134
http://dx.doi.org/10.1007/s12555-017-0614-0
http://dx.doi.org/10.1109/TCYB.2015.2477810
http://dx.doi.org/10.1007/s11633-019-1194-7

Z. Li et al. / Controller Optimization for Multirate Systems Based on Reinforcement Learning 427

ORCID iD: 0000-0002-7601-4332

Sheng-Ri Xue received the B.Sc. degree
in automation engineering from Harbin In-
stitute of Technology, China in 2015,
where he is currently pursuing the Ph.D.
degree with the Research Institute of Intel-
ligent Control and Systems.

His research interests include H-infinity
control, controller optimization, reinforce-
ment learning, and their applications to

sampled-data control systems design.
E-mail: srxue2015@126.com

Xing-Hu Yu received the M. M. degree in
osteopathic medicine from Jinzhou Medic-
al University, China, in 2016. He is cur-
rently a Ph.D. degree candidate in control
science and engineering from Harbin Insti-
tute of Technology, China.

His research interests include intelli-
gent control and biomedical image pro-
cessing.

E-mail: yuxinghul012@126.com

Hui-Jun Gao received the Ph.D. degree
in control science and engineering from
Harbin Institute of Technology, China in
2005. From 2005 to 2007, he carried out his
postdoctoral research with Department of
Electrical and Computer Engineering, Uni-
versity of Alberta, Canada. Since 2004, he
has been with Harbin Institute of Techno-
logy, where he is currently a full professor,
the Director of Inter-discipline Science Research Center, and the
Director of the Research Institute of Intelligent Control and Sys-
tems. He is an IEEE Industrial Electronics Society Administra-
tion Committee Member, and a council member of IFAC. He is
the Co-Editor-in-Chief for IEEE Transactions on Industrial Elec-
tronics, and an Associate Editor for Automatica, IEEE Transac-
tions on Control Systems Technology, IEEE Transactions on Cy-
bernetics, and IEEE/ASME Transactions on Mechatronics.

His research interests include intelligent and robust control,
robotics, mechatronics, and their engineering applications.

E-mail: hjgao@hit.edu.cn (Corresponding author)

ORCID iD: 0000-0001-5554-5452

@ Springer



