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Abstract:    Computer based automation and control systems are becoming increasingly important in smart sustainable buildings, of-
ten referred to as automated buildings (ABs), in order to automatically control, optimize and supervise a wide range of building perform-
ance applications over a network while minimizing energy consumption and associated green house gas emission. This technology gener-
ally refers to building automation and control systems (BACS) architecture. Instead of costly and time-consuming experiments, this pa-
per focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS archi-
tecture in simulation by run-time coupling two or more different software tools over a network. This involves using distributed dynamic
simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of
real BACS technology. The application and capability of this new dynamic simulation environment are demonstrated by an experiment-
al design, in this paper.
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1   Introduction

With  the  impact  of  recent  technological  advances  on

computers  and  communication  protocols,  a  computer-

based  automation  and  control  system  is  frequently  used

to  replace  so-called  hardwired  controls  with  control

strategies implemented in software. Such a technology in

automated buildings  (ABs),  named also  smart  or  intelli-

gent  buildings,  generally  refers  to  building  automation

and  control  systems  (BACS)  architecture.  In  order  for

BACS technology  to  adapt  ABs  to  changing  require-

ments such  as  the  needs  of  the  occupants  and  environ-

mental  changes  in  a  building  by  control  systems  design,

experiments or similar analyses must be conducted to im-

prove  the  operational  integrity  and  the  automation  of

heating, ventilation  and  air-conditioning  (HVAC)  equip-

ment and lighting components in ABs[1]. However, experi-

ments  are  time  consuming  as  they  require  at  least  24

hours  to  obtain  the  results  and  because  realizing  BACS

architecture in a real building is expensive. For this reas-

on, this  paper  deals  with  the  development  and  imple-

mentation of  a  distributed  dynamic  simulation  environ-

ment with the capability to similarly represent BACS ar-

chitecture  in  simulation  by  run-time  coupling  two  or

more different software tools over a network.

The current  situation  is  that  representing  BACS  ar-

chitecture  in  simulation  by  means  of  a  single  software

tool or two different simulation tools running on a single

computer  is  complex  and even more  challenging  because

it requires taking into account the physical distance of a

network in control  loops so as to emulate the real-world

applications of BACS as closely as possible. It is also im-

portant to  represent  the  BACS  architecture  in  simula-

tion  by  distributing  multiple  different  software  tools  at

run-time over a network to enable assessment of distrib-

uted building control applications by predicting the over-

all effect of innovative control strategies in ABs (see e.g.,

[2, 3]).  As  there  exists  a  software  tool  very  advanced  in

control  modelling,  i.e.,  Matlab/Simulink,  and  a  domain

based building  performance  simulation  such  as  environ-

mental system performance-research version (ESP-r), the

combination of both over a network would result in a ra-

tional design of distributed control and building perform-

ance simulations by means of experimental design for rep-

resenting, as in a similar way, the BACS architecture in

simulation.  This  has  an  objective  to  assist  architectural

use and design of distributed control applications in ABs

in the form of combined simulations in heterogeneous sys-

tems (i.e.,  different  operating  systems  with  different  ac-

cess technologies).

Distributed simulations  involving  two  or  more  differ-

ent  software  tools  (or  diverse  applications)  at  run-time

provide the ability to exchange data and events in a dis-

tributed  and  co-operative  way.  This  way  of  run-time

coupling diverse applications over a network offers sever-

al advantages such as exploiting different modes of com-
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munication  (including  synchronous,  asynchronous  and

partially  asynchronous),  increasing  the  execution  speed,

running applications on heterogeneous environments, and

combining  the  relative  strengths  of  different  tools.

However,  some  advantages  can  be  lost  when  a  run-time

coupling is developed only to run in one environment and

to exchange data in synchronous mode. For example, pre-

vious and ongoing work by others, especially with the de-

velopment of run-time coupling for the purpose of enhan-

cing  building  performance  simulation,  comprise  coupling

between lighting and building energy simulation (e.g., [4]),

coupling  between  computational  fluid  dynamic  programs

and  building  energy  simulation[5],  and  coupling  between

systems and building energy simulation[6]. However, these

approaches are limited to a particular application, and of-

ten based  on  the  coupling  of  two  simulation  tools  run-

ning  on  the  same  machine.  Besides  these  approaches,

some other works have been developed based on the use

of  libraries  such as:  1)  building  controls  virtual  test  bed

(BCVTB)  library  used  to  couple  different  simulation

tools for co-simulation[7], 2) co-simulation between build-

ing performance and energy systems based on BCVTB[8],

and 3) modelica buildings library used to support simula-

tion models of building energy and control systems[9]. Still

these efforts  are  insufficient  as  they  are  based  on  coup-

ling  of  two  simulation  tools  in  synchronous  mode,  for

which they are inefficient to be used to represent distrib-

uted building control operations such as multi-agent sys-

tems  (MASs)  in  simulation.  Because  they  also  do  not

take network  dynamics  into  account,  these  are  inad-

equate to explore real-time control applications in a simu-

lation the same as  they are  performed in real  BACS ar-

chitecture. For  this  reason,  a  novel  middleware  for  dis-

tributed  dynamic  simulations  by  run-time  coupling

between a software for control systems design and one or

more  specific  building  performance  simulation  software

tool(s)  over  a  network  is  developed  for  a  more  general

and wider applicability.

2   Development and implementation

2.1   Description of BACS architecture

ABs are a class of buildings that are automatically su-

pervised  and  controlled  by  or  from  a  central  computer-

based monitoring and control system such as distributed

control  system  (DCS)  architecture,  or  more  specifically

BACS architecture. Therefore, BACS is an example of a

DCS because it uses a computer-based control system to

replace  so-called  hardwired  controls  with  control

strategies implemented in software. The basic function of

BACS  is  to  automatically  monitor  and  control  a  wide

range  of  building  performance  applications  including

HVAC  equipment,  lighting  components  and  other  tasks

such as access control, energy management, and fault dia-

gnoses in  a  building  or  a  group  of  buildings  over  a  net-

work.  While  this  technology  has  several  advantages,  it

also brings inevitable problems due to the network. Fig. 1
shows a  complete  BACS  architecture  that  can  be  de-

scribed at four main levels[2, 10, 11]:

1) The  management  level  consists  of  a  central  com-

puter used for managing and analyzing data,  communic-

ating  with  external  systems,  and  operating  building

equipment and components.

2) The network level consists of an open protocol con-

nected to the network through routers used for data ex-

change between the central computer and substations (or

terminals).

3) The automation level  consists of  one or more sub-

stations  used  for  interfacing  building  HVAC  equipment

and lighting components to the network.

4) The field level represents the low level where build-

ing  HVAC  equipment  and  lighting  components  (i.e.,

sensors and actuators) and final users are located.

Because  BACS  uses  a  network  for  data  exchange

between a central computer and substations, this can de-

grade  both  the  performance  and  the  stability  of  HVAC

equipment  and  lighting  components  in  buildings.  The

most  common and straightforward way to  evaluate  such

problems  without  a  full-scale  implementation  of  BACS

architecture  is  by  a  modelling  and  simulation  approach.

Therefore,  successful  development  and  application  of

BACS require  a  scalable  simulation  platform  that  sup-

ports  evaluation and verification of  different  control  and

network algorithms. As a consequence, a distributed sim-

ulation  environment  was  developed  and  implemented

mainly  for  BACS  to  simultaneously  simulate  building

control applications and communication network dynam-

ics.

2.2   Development and design of run-time
coupling

The design of run-time coupling between Matlab/Sim-

ulink and  one  or  more  ESP-r(s)  begins  with  the  defini-

tion requirements, and proceeds eventually to conceptual

design  of  the  run-time  coupling  by  means  of  trade-off

analysis, and then to detailed design of every part of the

run-time coupling being developed. Therefore, a set of re-

quirements were first identified and set forth as the basis

for the development and design of the run-time coupling.

However,  these  requirements  must  then  be  taken  into

consideration  at  the  early-stage  of  development.  Among

the most important of these requirements are[4, 12]:

1)  The  ability  for  run-time  coupling  between

Matlab/Simulink  and one  or  more  ESP-r(s)  to  run on a

heterogeneous network as on Windows and Unix operat-

ing systems (OS).

2)  The  ability  for  run-time  coupling  between

Matlab/Simulink  and  one  or  more  ESP-r(s)  to  support

data exchange over a network in either unidirectional or

bidirectional way.
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3) The ability for run-time coupling between Matlab/

Simulink  and  one  or  more  ESP-r(s)  to  support  different

data exchange  formats  including  ASCII,  binary  and  ex-

tensible markup language (XML).

4) The ability for run-time coupling between Matlab/

Simulink  and  one  or  more  ESP-r(s)  to  support  different

communication modes including synchronous, asynchron-

ous, partially synchronous (or asynchronous).

5) The possibility for run-time coupling between Mat-

lab/Simulink and ESP-r to enable simulations with either

a real building (e.g., building emulator) or a control test-

rig  (e.g.,  hardware  in  the  loop  testing),  in  which  the

inter-process communication  (IPC)  must  then  be  plat-

form independent.

After evaluating and selecting the most suitable solu-

tion among a  number  of  possible  options,  using network

(or  internet)  sockets  has  been  chosen  and  approved  by

[2, 13, 14]  as  the  best  means  of  implementing  run-time

coupling  between  Matlab/Simulink  and  one  or  more

ESP-r(s) since they meet all the requirements of the run-

time coupling, including those described above, and they

can  also  be  used  to  represent  in  simulations  real-time

building  control  implementations  over  a  network,  as

shown in Fig. 1.

Network  sockets  are  an  IPC mechanism  that  is  used

for  run-time  coupling  between  ESP-r  and  Matlab/Sim-

ulink to support modelling of a building model and its ex-

ternal control systems separately. Both the building mod-

el  and  its  control  systems  can  be  located  on  either  the

same machine or different separate machines running dif-

ferent OS such as Unix and MS-Windows connected to a

network. They also work together by exchanging data in

a common format including ASCII, binary and extensible

markup language (XML) over a network, and by support-

ing communication  modes  such  as  synchronous,  asyn-

chronous, and partially synchronous. Fig. 2 illustrates the

proposed  approach  to  run-time  coupling  between

Matlab/Simulink and ESP-r.

Run-time  coupling  is  implemented  in  such  a  way  to

facilitate  data  exchange  between  Matlab/Simulink  and

ESP-r when they are concurrently operating either on the

same machine or to increase the speed of simulations, on

separate  machines  connected  by  a  network.  In  addition,

when Matlab/Simulink  and  ESP-r  are  located  on  differ-

ent machines running over different OSs and/or using dif-

ferent data formats by initiating network protocols, such

as  LonWorks  and  Bacnet,  run-time  coupling  can  be  run

to support  portability  and  distributed  dynamic  simula-

tions over a heterogeneous network (i.e., on different ma-

chines  with  different  OSs  and/or  different  data  format

protocols). For  this  reason,  in  this  work  different  meth-

ods for marshalling and demarshalling (or unmarshalling)

data  over  a  network  were  implemented  within  run-time

coupling to  convert  data  (i.e.,  sensed  or  actuated  vari-

ables) into a form of external network representation and

then back to their native format before being accessed by

a building model and its control systems, respectively.
2.2.1   Detailed design of run-time coupling

In  order  to  implement  run-time  coupling  between

ESP-r  and  Matlab/Simulink  with  network  sockets,  the

C/C++ programming language  was  used  of  which  socket

libraries were originally implemented. As neither Matlab/

Simulink nor ESP-r has simple interfaces with socket ap-

plication  programming  interfaces  (APIs),  a  detailed

design of  the  run-time  coupling  is  proposed  and  imple-

mented  with  the  objective  of  interfacing  socket  APIs  to

both ESP-r and Matlab/Simulink, as shown in Fig. 3.

As the detailed design shown in Fig. 3 is based on the

idea that run-time coupling should be delivered in such a

way with no or minor user interferences, the details of the

parallel and distributed computations are then hidden to

users, while necessary information, such as the port num-

ber  and  IP  address  of  the  Matlab/Simulink  location,  is

provided through user interfaces in order to create sock-

ets  that  allow  one  or  more  ESP-r(s)  to  exchange  data

with  Matlab/Simulink.  As  both  datagram  and  stream

sockets  are  supported,  the  same  sockets  type  should  be

selected on  both  sides  of  the  run-time  coupling  mechan-

ism. By such means, this mechanism can serve as a virtu-

al interface that  supports  portability  between heterogen-

eous platforms, enables distributed dynamic simulation of

BACS, and achieves a higher level of interoperability by

using a common middleware platform rather than a non-

distributed communication  system.  Besides  this  middle-

ware platform,  two  data  encoding  methods  are  integ-

rated  to  improve  interoperability  when  Matlab/Simulink

and  ESP-r  are  running  in  heterogeneous  environments
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and  to  increase  the  speed  of  data  exchange  between  a

building model and its control systems when both ESP-r

and  Matlab/Simulink  are  running  on  distant  machines

connected to a network. The first method of data encod-

ing  consists  of  implementing  two  modes  (ASCII  strings

and binary  codes)  to  meaningfully  and  accurately  ex-

change data between a building model and its control sys-

tems over a network.  The second method consists  of  us-

ing a set of web-based interoperability specifications, such

as web-services  based  on  XML in  order  to  enable  build-

ing  models  and  their  control  systems  to  exchange  data

with  a  high  level  of  interoperability  between  ESP-r  and

Matlab/Simulink  while  representing  different  network

technologies, such as BACnet and LonWorks protocols, in

a simulation.

The  right  side  of Fig. 3 shows how ESP-r  and its  in-

tegrated subsystems (zone,  plant,  and flow modules)  are

bound to socket APIs, while the left side of Fig. 3 details

how  the  “matespexge”  toolbox  is  implemented  to  bind

socket APIs to Matlab/Simulink. On the ESP-r side, sev-

eral  subroutines,  such  as  IBCLAW25,  IPCLAW12,  and

IFCLAW4, are added and implemented in a building sim-

ulator  (BPS)  to  allow  direct  data  transmission  between

the  subroutines  and  their  parallel  programs,  which  are

implemented in  the  matespexge  toolbox  during  simula-

tion. Other subroutines, such as that for a test function,

are implemented in a project manager (PRJ) to determ-

ine whether  any  of  the  building  simulator  (BPS)  integ-

rated  modules  invokes  external  control  system  that

should  be  remotely  processed  from  Matlab/Simulink.  If

one  of  these  integrated  modules  occurs,  a  graphical  user

interface  containing  data  regarding  the  port  number,

server IP  address,  current  process  number,  communica-

tion mode, protocol type, and mode of data exchange ap-

pears so that the user can modify and choose specific set-

tings. Initially, these settings are set to default values and

correspond  exactly  to  those  specified  in  the  matespexge

toolbox.  Changing  these  settings  is  possible,  although

Matlab/Simulink and ESP-r must use the same entries to

ensure  their  connection.  On  the  Matlab  side,  the

matespexge  toolbox  is  designed  with  graphical  interfaces

in  order  to  allow  users  to  differentiate  between  sensed

and  actuated  variables  that  should  be  exchanged  with

ESP-r.  Executing the  matespexge toolbox at  the  Matlab

prompt results in a graphical user interface appearing and

displaying  the  machine  IP  address  of  the  Matlab/Sim-

ulink location, which should match the ESP-r IP address.

As Matlab is the server of ESP-r client(s), executing first

the matespexge toolbox is essential before initiating simu-

lation in ESP-r.

As shown in Fig. 3,  run-time coupling between ESP-r

and  Matlab/Simulink  is  designed  in  a  layered  model,

where the upper open systems interconnection (OSI) lay-

ers resolve  different  aspects  of  the  communication  pro-
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cess. As ESP-r consists of legacy Fortran codes, the pro-

grams  that  operate  building  simulation  and  those  that

initiate  and  terminate  it  are  positioned  and  executed  in

different steps (i.e., the first programs are executed every

time-step during the simulation period,  while  the second

programs are executed only when initiating and terminat-

ing the simulation). Placing functions that open and close

sockets in the first programs would certainly incur signi-

ficant  delays  while  exchanging  data  with  Matlab/Sim-

ulink during simulation, and opening and closing sockets

at every time step could lead to computer failures.

The main advantages of this developed run-time coup-

ling are that it permits any simulation of a building mod-

el  and  its  control  systems  to  be  built  separately  using

ESP-r  and  Matlab/Simulink,  respectively,  and  that  it

provides  the  preferred  means  to  handle  interoperability

tasks,  especially  cross  interdisciplinary  data  integration

and exchange between ESP-r  and Matlab/Simulink with

no or minor user interferences. Therefore, it requires only

modelling a building model on ESP-r and its control sys-

tems on  Matlab/Simulink,  and  then  indicating  their  in-

terfaces by  specifying  the  port-numbers,  modes  of  ex-

change, or  variables  that  they  will  use  to  import  or  ex-

port data to or from each other.
2.2.2   Interfacing client socket to ESP-r

Because  ESP-r,  e.g.,  [15], is  almost  completely  writ-

ten in Fortran programming language and socket applica-

tion programming interface (APIs) can only be implemen-

ted in programming languages such as C/C++, mixed-lan-

guage programming using Fortran and C++ must be used

to  interface  between  Fortran  and  C/C++ programs[16].

Therefore, mixed-language programming is used to devel-

op and implement an approach combining a Fortran com-

mon block with global C/C++ extern data structures (or

extern  structs)  of  the  same name in  order  to  enable  the

addition of new variables that need to be exchanged with

Matlab/Simulink  without  making  large  modifications  in

the existing programming codes.

ESP-r  was  modified  and  extended  to  enable  users  to

obtain data  on  sensed  and  actuated  variables  in  the  ex-

ternal control  systems  of  building  zones,  plant  compon-

ents,  and/or  mass-flow  networks,  and  to  choose  settings

(including server  IP  address,  port  number,  current  pro-

cess number, network protocol, communication mode, and

data-exchange  format)  for  run-time coupling.  The added

Fortran  subroutines  that  exchange  data  with

Matlab/Simulink  and  functions  indicate  when  initiating

and ending simulations are combined together with sock-

et APIs of the C/C++ client code separately. The C/C++

client  code was developed in a hierarchical  way in order

to support  all  possible  combinations  of  exchanged  vari-

ables  and  settings  that  a  user  could  choose  in  run-time

coupling  with  Matlab/Simulink.  Compiling  the  modified

and extended ESP-r  code together  with the socket  APIs

of the C/C++ client code generates executable ESP-r, re-

spectively, and allows ESP-r to run as a client process.

2.2.3   Interfacing server socket to Matlab/Simulink

In [17], there is a built-in utility called Matlab EXcut-

able (MEX) that is often used to convert C or C++ pro-

grams to a MEX format. The original sense of the Matlab/

Simulink  word  represents  two  different  environments,

which  are  a  high-level  technical  programming  language

and  a  graphical  block-diagram  interface.  Depending  on

which  environment  is  interfaced,  two  main  approaches

can be used to link external programs written in C/C++ code:

1)  For  Matlab,  MEX-files  are  used  with  dynamically

linked programs that, when compiled, can be called from

within Matlab in the same way as M-files or built-in func-

tions.  In  case  we  need  to  deal  with  Simulink,  the  links

can  be  established  between  each  other  by  just  using

“sim” functions.

2) Practically the same procedure is adopted by Sim-

ulink, although MEX S-functions are used with dynamic-

ally  linked  programs  that,  when  compiled,  can  be  called

from  within  a  Simulink  block  diagram.  However,  when

there  is  a  need  to  deal  with  Matlab,  the  link  should  be

done  via  M-file  S-functions  that  are  more  complicated

than using a straightforward “sim” function.

The first approach is preferable not only because it is

less  complex  than the  second approach but  also  because

it offers more advantages, such as: 1) the ability to man-

age a  high  number  of  exchanging  variables  simultan-

eously, 2)  the  versatility  needed  to  meet  the  require-

ments of  run-time coupling,  and 3)  the  ability  to  imple-

ment  functionalities  that  are  not  accessible  by  M-file  S-

functions.

Although the MEX-files were originally designed to al-

low  the  inclusion  of  external  routines  written  mainly  in

C/C++,  they  are  also  capable  of  integrating  external

shared  libraries,  such  as  socket  APIs,  into  Matlab.  For

these  reasons,  a  MEX-file  was  used  for  the  development

and implementation of the “matespexge” toolbox.

By combining MEX-file functions and socket APIs, ac-

cess  from ESP-r  to  Matlab  and  Simulink  functionalities,

especially to the application toolboxes for advanced con-

trol  systems,  is  realized  by  just  invoking  the  name

“matespexge”  from  the  Matlab  prompt.  Once  the

matespexge  toolbox  has  been  executed,  a  graphical  user

interface  including  icons  and  menus  will  display  and

provide the  dialogue  for  users  to  create  M-files  to  re-

motely control a building zone, plant, and/or flow model

as built on ESP-r accordingly. Further access from these

M-files to Simulink can be obtained by using “sim” func-

tions, although access from Simulink to Stateflow should

be  obtained  by  incorporating  a  Stateflow  block  in  the

Simulink  block  diagram.  Moreover,  these  M-files  include

Matlab functions that contain the left- and right-hand ar-

guments  with which the  MEX-file  is  invoked.  Therefore,

the  matespexge  toolbox  was  designed  with  the  use  of

MEX-files  that  include  facilities  for  enabling  run-time

coupling  between  Matlab/Simulink  and  one  or  multiple

ESP-r(s). After compiling the matespexge toolbox, a dy-
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namic executable file is generated with an extension cor-

responding to the OS over which Matlab/Simulink is run-

ning. Within the implementation of the matespexge tool-

box, the external routines that specifically exchange data

with subroutines  for  building  zone,  plant,  and  flow  net-

work  modules  of  ESP-r  are  encapsulated  into  a  single

MEX-file. A global identifier is also integrated to determ-

ine which building zone, plant, and/or flow network mod-

el will exchange data with the created control file. Due to

this fact, the user must provide valid information (i.e., as

stated  in  ESP-r)  on  the  input  interface.  In  addition,  as

Matlab is an interactive tool, the handling callbacks from

ESP-r  are  ensured  by  default  in  order  to  access

Matlab/Simulink  as  a  computational  engine.  For  these

reasons,  the  matespexge  toolbox  is  designed  in  such  a

way  to  let  Matlab/Simulink  operate  as  a  server  process

when  its  created  control  files  are  invoked  by  one  of  the

three ESP-r  modules.  Because  stateflow  can  be  used  to-

gether with Simulink for the simulation of MASs, the use

of the matespexge toolbox becomes essential for enabling

the integration of advanced control  systems, such as hy-

brid systems  and MASs  in  building  performance  simula-

tion.  It  enables  a  user  to  interactively  build,  test,  and

simulate  distributed  applications  between  ESP-r  and

Matlab/Simulink, even when both software tools are run-

ning on separate and different OSs. Therefore, it is a key

solution in enabling the analysis of multi-variable control

systems of  building  performance  applications  (or  opera-

tions) that had previously not been feasible.

2.3   A practical approach to representing
BACS architecture in simulation

Although representing  BACS  technology  in  simula-

tion, as shown in Fig. 1, is difficult if not impossible, this

design  of  run-time  coupling  between  multiple  ESP-r(s)

and Matlab/Simulink can allow identifying practical solu-

tions for the integration of advanced control systems into

building performance  simulation,  and  improving  distrib-

uted control applications such as planning and coordina-

tion of control actions, in ABs for better control and op-

eration.  As  one  of  constrained  BACS  architecture  has

network-induced time delays,  distributed  simulations  are

required  to  analyze  and  simulate  both  the  performance

and  stability  of  building  HVAC  equipment  and  lighting

components in ABs. Hence, the need for distributed simu-

lations  originates  from  the  fact  that  BACS  requires  the

study of  both  control  theory  and  communication  net-

works in design architecture[18].

By assuming that Matlab/Simulink represents a cent-

ral  computer  and  ESP-r,  a  terminal  in  a  similar  way  to

BACS  architecture,  the  IPC  meshcanism  used  for  run-

time coupling  Matlab/Simulink  and  ESP-r  is  thus  de-

signed to support cooperative applications through an in-

teroperable middleware that is involved in facilitating the

interface of any building model built in ESP-r with its ex-

ternal  control  system  modelled  in  Matlab/Simulink,  as

shown in Fig. 3. This has for an objective to simplify data

management and distribution over a network, provide for

the  independence  and  transparency  of  data  exchange

between  building  models  and  their  control  systems,  and

allow  web-services  to  be  highly  portable  in  distributed

simulations, in a similar way as the real-time control ap-

plications are  represented  in  BACS  architecture.  There-

fore, this work has enhanced the traditional approach to

run-time  coupling  between  ESP-r  and  Matlab/Simulink

as  shown  in Fig. 2,  with  the  addition  of  involving  more

ESP-r(s)  to  represent  BACS  architecture  in  simulation.

Fig. 4 illustrates a more practical approach to distributed

control and building performance simulation by run-time

coupling  multiple  ESP-r(s)  and  Matlab/Simulink  over  a

network.

As  shown in Fig. 4, the  framework  that  is  implemen-

ted  to  support  distributed  and  parallel  simulations  by

run-time  coupling  one  or  more  ESP-r(s)  with  Matlab/

Simulink  over  a  network  occurs  practically  the  same  as

BACS architecture. This framework was developed using

multi-threads  to  optimally  handle  and  connect  multiple

ESP-r(s)  to  Matlab/Simulink,  for  which  an  application

similar to the one used in BACS architecture can at once

run across several machines distributed over a network[1].

In a similar way to BACS architecture, each ESP-r in the

framework  must  be  used  to  simply  model  building

zone(s),  plant  system(s)  and/or  flow  network(s),  while

Matlab/Simulink must be used to model all their remote

control systems.

2.4   Run-time coupling two or more ESP-
r(s) with Matlab/Simulink

Of  the  many  possible  ways  to  run-time  couple  more

than one ESP-r with Matlab/Simulink at the same time,

the portable  operating  system  interface  (POSIX)  stand-

ard for threads has been the most widely adopted[12]. The

use of POSIX threads is very advantageous because of its

standardization, flexibility, and portability, as well as fact
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that POSIX  threads  provide  a  standardized  program-

ming  interface  for  the  dynamic  creation  and  destruction

of  threads  (i.e.,  sub-threads).  It  also  enables  using  the

same  port  and  a  single  shared  address  space  to  make

Matlab/Simulink  accessible  to  all  ESP-r(s)  connections

that are  handled  on  the  network.  By  using  a  single  ad-

dress  space  abstraction,  it  is  however  possible  to  avoid

the overhead inherent to data exchange and provide bet-

ter  support  for  concurrency,  parallelism,  and consistency

of  data  exchange  in  run-time  coupling  of  Matlab/Sim-

ulink  and  multiple  ESP-r(s)  with  substantial  ease.  To

nearly  represent  BACS  architecture  in  simulation,  the

previous  approach,  shown in Fig. 2, was  therefore  exten-

ded  with  a  capability  to  run-time  couple  one  or  more

ESP-r(s) with  Matlab/Simulink.  This  capability  was  de-

veloped with multi-threads in conjunction with C++ codes

to  support  parallel  and  distributed  control  and  building

performance  applications  between  multiple  ESP-r(s)  and

Matlab/Simulink  in  the  same  simulation  environment.

Within this capability, all ESP-r(s) should share the same

connection as Matlab/Simulink and be able to run either

on the same machine as Matlab/Simulink or on separate

machines connected to a network. Each time a new ESP-r

is  connected  to  Matlab/Simulink,  its  specific  thread  is

thus  created  by  the  matespexge  toolbox  so  as  to  avoid

conflicts  and  data  inconsistencies  with  other  concurrent

ESP-r(s) participating  in  the  same  simulation  environ-

ment. As  all  participating  (or  connected)  ESP-r(s)  ex-

change data with the same Matlab/Simulink,  any ESP-r

can  access  all  the  global  variables  exchanged  by

Matlab/Simulink  via  its  specific  sub-thread. Fig. 5 illus-

trates  how  run-time  coupling  is  implemented  between

Matlab/Simulink (i.e.,  matespexge toolbox) and multiple

ESP-r(s) using POSIX threads.

As illustrated in Fig. 5, the matespexge toolbox is im-

plemented in such a way that one or more ESP-r(s) can

connect and interact with Matlab/Simulink concurrently.

The  number  of  ESP-r(s)  to  run-time  couple  to

Matlab/Simulink  depends  on  the  application,  varying

from  one  (1)  to  nine  (9)  ESP-r(s)  simultaneously.  This

implementation  is  fairly  complex  as  it  requires  that  the

main  thread  of  the  matespexge  toolbox  accept  incoming

connections  and  create  one  ESP-r  sub-thread  for  each

ESP-r  connection  that  is  handled.  These  ESP-r  sub-

threads  are  a  part  of  the  matespexge  toolbox  used  by

shared data structures to communicate with their all par-

allel connected  ESP-r(s).  Because  the  matespexge  tool-

box can run-time couple with multiple ESP-r(s),

1)  each  data  exchange  to/from  ESP-r  is  handled  by

the  corresponding  ESP-r  sub-thread  on  the  matespexge

toolbox side;

2) each ESP-r sub-thread can send data to other con-

nected  ESP-r(s)  by  accessing  the  shared  data  structure

that contains their references;

3) the sockets connecting the matespexge toolbox to each

ESP-r can be retrieved through this shared data structure.

Consequently,  all  interactions  between  ESP-r(s)  and

Matlab/Simulink  occur  via  the  matespexge  toolbox,

where every ESP-r is handled by a particular sub-thread.

Also this toolbox is implemented with call-back methods

to  allow  remote  control  systems  (i.e.,  control  systems

modelled on Matlab/Simulink) to be invoked as they re-

ceive data from their corresponding building models built

on  one  or  more  ESP-r(s).  Because  building  models  built

on multiple ESP-r(s) can interact with each other via the

matespexge  toolbox,  their  corresponding  remote  control

systems  can  also  interact  with  each  other  on  the

Matlab/Simulink  side.  The  main  objective  of  using  this

approach is to represent the BACS architecture in simu-

lation and enable unrelated remote control systems, par-

ticularly  advanced  control  systems  such  as  MASs,  to

communicate  with  each  other  when  their  corresponding

building models are built on seperate ESP-r(s). In effect,

permitting control systems – particularly MASs – to com-

municate with each other while remotely regulating build-

ing  zone,  plant,  and  mass-flow  models  built  on  diverse

ESP-r(s) connected to a network results in the design and

development  of  advanced  building  control  applications

that had previously not been feasible, such as:

1)  the  use  of  coordinated  and  interconnected  control

systems, especially MASs, to better operate and regulate

building HVAC equipment and lighting components in ABs;

2) the use of self-adapting control systems to react to

climate changes, the addition or removal of equipment in

a building, or building plant variations;

3)  the  use  of  self-upgrading  control  systems  to  meet

occupant needs when damping effects or changes are crit-

ical factors in the functioning of the systems.

2.5   Communication modes in run-time
coupling

Because the main feature distinguishing a distributed

simulation from a standalone simulation (or a sequential

simulation)  is  the  method of  advancing  simulation  time-

 

Process

Process

Process
Network

ESP-r (1)

ESP-r (2)

Matlab/Simulink

(matespexge.toolbox)

Main thread

Sub-thread (1)

Sub-thread (2)

 
Fig. 5     Conceptual  view  of  multi-threading  Matlab/Simulink
with multiple ESP-r(s)
 

 470 International Journal of Automation and Computing 17(3), June 2020

 



steps,  run-rime  coupling  between  Matlab/Simulink  and

ESP-r  was  implemented  with  all  the  options  accessible

from the user  interface  to specify  the number of  simula-

tion  time-steps  per  hour  and  to  determine  whether  the

simulation should run in a synchronous, an asynchronous,

or a partially synchronous mode.
2.5.1   Synchronous mode

Synchronous  mode  is  used  when  ESP-r  and

Matlab/Simulink  are  run-time  coupled  and  synchronized

with the same number of simulation time-steps in execu-

tion.  When  either  ESP-r  or  Matlab/Simulink  must  wait

for incoming data from the other, the number of simula-

tion time-steps is defined by ESP-r, which is the client for

Matlab/Simulink, the server. Fig. 6 shows how ESP-r and

Matlab/Simulink must wait for each other and exchange

data by run-time coupling at several predetermined time

steps for the completion of their computations.

Because both  ESP-r  and  Matlab/Simulink  are  ex-

ecuted  sequentially,  the  exchange  of  data  in  this  mode

blocks the entire simulation at each predetermined time-

step until the data exchange has been totally completed.

Therefore,  when  Matlab/Simulink  and  ESP-r  are  run-

time  coupled  in  synchronous  mode,  the  time  constraints

of scheduled transitions must be satisfied by such means

as adjusting  the  timing  of  a  control  loop  for  several  ap-

plications.
2.5.2   Asynchronous mode

Asynchronous  mode  is  used  when  ESP-r  and

Matlab/Simulink  are  run-time  coupled  and  processing

separately from each other, and not synchronized totally.

As  such,  neither  ESP-r  nor  Matlab/Simulink  must  wait

for incoming data from the other and can continue their

computations  with  the  existing  data,  although  the  data

might be outdated, until the updated data become avail-

able for computation. Running distributed simulations in

asynchronous mode  can  be  positive  in  some  cases  be-

cause ESP-r and Matlab/Simulink can be computed with

different  numbers  of  simulation  time-steps,  although  in

other  cases  the  accuracy  of  obtained  simulation  results

cannot  be  ensured. Fig. 7 shows  a  case  where  the  time-

step of either Matlab/Simulink or ESP-r differs from that

of the other.

The asynchronous  mode  is  difficult  to  program  be-

cause it requires that Matlab/Simulink and ESP-r be run-

time coupled in a chaotic manner; i.e., in such a way that

neither Matlab/Simulink nor ESP-r must wait for incom-

ing data from the other but instead proceed with its com-

putation  until  the  common task  is  fulfilled.  As  run-time

coupling between  Matlab/Simulink  and  ESP-r  is  imple-

mented with network sockets,  the  asynchronous commu-

nication  is  characterized  by  the  fact  that  the  client  and

server  programs  integrated  in  ESP-r  and  Matlab/

Simulink,  respectively,  contain  functions  that  change

sockets  to  non-blocking  mode.  Moreover,  such  changing

signal is returned immediately when the operations read-

ing data  from the  sockets  are  invoked by another  to  in-

dicate that there are no data to be received, see e.g., [19].

The asynchronous mode was developed in such a way

that  Matlab/Simulink  began  computing  once  it  received

the first data from ESP-r. After data were received, ESP-r

and Matlab/Simulink computed independently from each

other,  and  when  no  data  were  available  to  be  received,

both continued  computing  using  the  most  recently  re-

ceived  data.  Using  asynchronous  mode  allows  run-time

coupling  between  Matlab/Simulink  and  ESP-r  to  handle

existing  data  in  a  manner  that  may  significantly  reduce

the  execution  time,  see  e.g.,  [20]. As  it  imposes  no  con-

straints  on  the  control  performance,  this  mode  can  be

used in situations where network-induced time delays are

unpredictable.  When  synchronous  mode  is  used  in  these

situations, Matlab/Simulink and ESP-r may have to wait

for incoming data for an extended time, which could res-

ult in  very  low  or  even  impractical  computation  effi-

ciency. Therefore, computation in asynchronous mode can

be useful for the simulation of large building control  ap-

plications, such  as  supported  by  BACS  technology,  al-

though it is much more difficult to parallelize and distrib-

ute  efficiently  due  to  various  independencies  in  run-time

coupling  between  Matlab/Simulink  and  multiple  ESP-

r(s).
2.5.3   Partially synchronous mode

The  partially  synchronous  mode  is  used  when  ESP-r

and  Matlab/Simulink  are  run-time  coupled  in  partially

synchronized  (or  partially  asynchronized)  mode,  which

partly imposes time restrictions on the synchronization of

their  events.  However,  the  exchange  of  data  between

Matlab/Simulink  and  ESP-r  by  run-time  coupling  does

not  occur  in  lock-time-step,  as  it  does  in  synchronous

mode. When using the partially synchronized mode, it is
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assumed that the computation time-step and data deliv-

ery  time of  either  Matlab/Simulink  or  ESP-r  is  between

the  upper  and  lower  bounds.  Therefore,  as  a  partially

synchronous  mode  lies  between  the  synchronous  and

asynchronous  modes,  two  possibilities  are  available  for

run-time coupling  Matlab/Simulink  and  ESP-r  in  par-

tially  synchronized  mode:  1)  when  ESP-r  is  running  in

synchronous mode and Matlab/Simulink in asynchronous

mode,  and  2)  when  ESP-r  is  running  in  asynchronous

mode  and  Matlab/Simulink  in  synchronous  mode. Fig. 8
shows both cases of the partially synchronous mode.

The partially synchronized mode, when ESP-r is run-

ning  in  asynchronous  mode  and  Matlab/Simulink  is  in

synchronous mode,  represents  the  most  realistic  commu-

nication  characteristics  of  BACS  technology  (i.e.,  such

the  real-time  control  applications  are  performed  in

BACS).  Although  time  delays  associated  with  network

(i.e.,  with  communication)  are  difficult  to  predict  in

BACS  architecture,  these  delays  usually  have  an  upper

bond,  mainly  when  data  are  exchanged  over  a  network.

Hence, use of the partially synchronous mode leads to less

uncertainty  than  does  the  fully  asynchronous  mode,  but

is very difficult to program due to the timing differences

between Matlab/Simulink and ESP-r, see e.g., [21].

3   User interfaces for run-time coupling
of ESP-r and Matlab

The  user  interfaces  were  developed  and  implemented

on both sides of the run-time coupling in order to facilit-

ate its use (i.e., the setting up of a connection session and

exchanging  variables). Fig. 9 depicts  the  user  interfaces

for run-time coupling settings on the side of ESP-r.

On the ESP-r side,  the user-interface of  the run-time

coupling settings menu can be displayed only if one of the

three control laws (zone, plant and systems, and flow net-

work)  chooses  “Calling  Matlab/Simulink”  as  a  control

system/strategy,  in  which  there  will  be  requiring  using

then external (or remote) control systems, either existing

or newly designed, modelled on Matlab/Simulink. Fig. 10

depicts  the  user  interfaces  for  run-time coupling settings

on the side of Matlab/Simulink.

≫
On the Matlab side, the user interface of the run-time

coupling  settings  menu  is  displayed  by  typing  “

matespexge” at the Matlab prompt, as shown in Fig. 11.

After  providing  and  choosing  the  necessary  entries  for

run-time coupling with ESP-r, and invoking the creation

of one of the three control laws (zone, plant and systems,

and flow networks), a sub user interface is then displayed.

Fig. 10 shows  this  developed  and  implemented  sub  user

interface on the Matlab side to set up which sensed and

actuated  variables  should  be  exchanged  with  ESP-r  by

run-time coupling.

The manner  of  entering  all  the  necessary  data  re-

quired for run-time coupling in Matlab side is rather sim-

ilar to that in ESP-r.  In addition, the sub user interface

on the Matlab/Simulink side was designed in a way as is

typically done in ESP-r. All possible sensed variables (in-

puts)  and  actuated  variables  (outputs)  for  control  of
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zones, plant and systems, and flow components that ESP-r

can  exchange  by  run-time  coupling  with  Matlab/Sim-

ulink are as shown in Fig. 11.

4   Experimental design

The resulting experimental design, in this study, con-

sists of representing important functions of BACS techno-

logy in simulation,  and comparing simulation results  ob-

tained in different modes of communication using at least

two instances of ESP-r(s) by run-time coupling with Mat-

lab/Simulink over a network, as referred to BACS archi-

tecture, shown in Fig. 1. One way of doing this was to run

ESP-r(s) and Matlab/Simulink on different machines over

different  OSs  like  Unix,  Cygwin,  and  Windows.  These

machines  were  a  Sun  Blade  Workstation  (or  Server),  a

laptop PC, and an office PC, respectively. ESP-r1 was in-

stalled  over  the  Unix  10  (or  Solaris  10)  OS  on  the  Sun

sever, ESP-r2 was installed over the Cygwin 6.1 over the

Windows XP OS on the laptop PC, and Matlab was in-

stalled over the Windows 7 OS on the office PC. The Sun

server and laptop PC were connected to the network by

an  Ethernet  LAN  cable  at  a  speed  of  10 MBps,  and  at

distance of about 7 m from each other, whereas the office

PC was  connected  to  the  network  by  an  Ethernet  LAN

cable at a speed of 100 MBps, and distanced from the two

other machines (Sun blade workstation and office PC) by

about  2 km.  The  compilers  used  for  Fortran  and  C/C++

programs were of the GNU public license on Unix and of

the  Visual  Studio  2010  on  Windows. Fig. 12 shows  how

distributed  dynamic  simulations  are  performed  as  in  a

grid  computing  environment  by  run-time  coupling  of

Matlab/Simulink and  multiple  ESP-r(s)  while  exchan-

ging data over a network in the form of ASCII, binary or

XML format, and in different communication modes such

as synchronous, asynchronous, and partially synchronous

during the simulation.

 

Fig. 11     Matlab sub user interface for zone, plant and systems, and flow network control variables with ESP-r by run-time coupling
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4.1   Distributed building control applica-
tion

The  research  study  presented  in  [2]  has  highlighted

the  importance  of  run-time coupling  between ESP-r  and

Matlab/Simulink  over  standalone  simulations  within  the

integration of  advanced  control  systems  in  building  per-

formance  simulation  for  improving  all  quality  aspects  of

building indoor  environments,  as  well  as  in  the  simula-

tion of  building  control  applications  requiring  multivari-

able control  systems.  In order  to  demonstrate  the devel-

opment and  design  of  run-time  coupling  between  mul-

tiple instances of  ESP-r and Matlab/Simulink,  and com-

pare the simulation results obtained by different modes of

communication, the same building model,  which is  actu-

ally an existing exemplar in ESP-r, was built in two dis-

tanced  instances  of  ESP-r,  as  shown  in Fig. 12,  and  in

combination with an external (or remote) proportional in-

tegral  (PI)  control  modelled  in  Matlab/Simulink,  i.e.,  in

the form of  a  closed  control  loop.  This  external  PI  con-

trol is here used simply to regulate the air-temperature in

a building zone by supplying the required heating flux ca-

pacity to it (which is at maximum 3 000 W). Fig. 13 shows

a building model built on two instances of ESP-r (left) in

a  closed  loop  with  its  external  PI  control  modelled  on

Matlab/Simulink (right).

In this application, the continuous PI control is set to

maintain the indoor air-temperature (i.e.,  the control  re-

sponse) at the set-point of 22°C during a period which is

valid  from 07:00  till  18:00  o′clock. Consequently,  the  in-

put to the PI control implemented in Matlab/Simulink is

the error signal created by subtracting the sensed indoor

air-temperature  of  the  building  model  built  on  ESP-r

from  the  set-point.  The  output  of  this  PI  control,  a

weighted sum of the error signal and its gains, is the ac-

tuated heating flux to that building model built on ESP-r.

4.2   Simulation results

The  simulation  results  were  obtained  with  run-time

coupling  between  Matlab/Simulink  and  two  instances  of

ESP-r,  as  shown  in Fig. 11,  while  exchanging  data  in  a

binary format over a network,  and in different modes of

communication including synchronous, asynchronous, and

partially  synchronous. Fig. 14 shows the  simulation  res-

ults  obtained  for  the  PI  control  by  run-time  coupling

between Matlab/Simulink and two ESP-r(s) in synchron-

ous  mode  for  simulation  time-steps  of  1 min  (left)  and

2 min (right).

By comparing the simulation results obtained by ESP-r1

with those obtained by ESP-r2, it can easily be observed

that they are similar and very comparable to each other

for both simulation time-steps of 1 min and 2 min. This is

mainly because every coupled Matlab/Simulink and ESP-r

is  synchronized  at  run-time,  and  thus  takes  no  network

induced  time  delays  into  account  as  both  Matlab/Sim-

ulink and ESP-r must wait for each other to receive data

during  the  simulation. Fig. 15 shows the  simulation  res-

ults  obtained  for  the  PI  control  by  run-time  coupling

between Matlab/Simulink  and  two  ESP-r(s)  in  asyn-

chronous  mode  for  simulation  time-steps  of  1 min  (left)

and 2 min (right).

By comparing the simulation results obtained by ESP-r1

with those obtained by ESP-r2, it can easily be observed

that  they  are  quite  different  and  incomparable  to  each

other  for  both  simulation  time-steps  of  1 min  and  2 min.

They  are  different  especially  when  the  control  action  is

applied (or valid which is during the period between 7:00

and  18:00  o′clock),  i.e.,  once  the  control  response  has

reached the set-point of 22°C because every coupled Mat-
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lab/Simulink  and  ESP-r  is  asynchronized  at  run-time.

Neither Matlab/Simulink nor ESP-r waits for one anoth-

er to receive data during the simulation as both precede

their  computations  independently.  It  also  appears  that

these simulation results are different from those shown in

Fig. 14 for  both  ESP-r(s)  and  different  simulation  time

steps. The  reason  of  this  difference  is  because  the  addi-

tion  of  a  network  (i.e.,  physical  distance)  into  a  control

loop  and  the  use  of  more  than  one  ESP-r  by  run-time

coupling with  Matlab/Simulink  adversely  affect  the  con-

trol response due to time delays associated with that net-

work  in  principal,  and  time  delays  associated  with  the

processing capabilities  of  the  used computers  for  simula-

tion  (i.e.,  over  which  Matlab/Simulink  and  ESP-r  run).

When considering the control performance, it can be seen

from Fig. 15 that the control responses are continually in-
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fluenced by network induced time delays once they reach

the control set-point. Therefore, those results validate the

fact  that  network  induced  time  delays  degrade  both  the

performance and  the  stability  of  building  HVAC  equip-

ment and lighting components. Fig. 16 shows the simula-

tion results obtained for the PI control by run-time coup-

ling between  Matlab/Simulink  and two ESP-r(s)  in  par-

tially  synchronous  mode,  i.e.,  when  Matlab/Simulink  is

asynchronized  and  ESP-r(s)  synchronized  for  simulation

time-steps of 1 min (left) and 2 min (right).

It appears that the simulation results shown in Fig. 16

are relatively identical to those shown in Fig. 14, because

ESP-r(s) are synchronized and wait to receive data from

Matlab/Simulink. Therefore, network induced time delays

in this communication mode have no impact on the con-

trol  responses  because  building  zones  and  plant  models

built  in  ESP-r  wait  during  the  simulation  (i.e.  at  every

simulation  time  step)  to  receive  data  from  Matlab/Sim-

ulink. Even though Matlab/Simulink is asynchronized, it

does affect the control responses of building models built

in ESP-r while being synchronized. However, these simu-

lation results can also be used to validate the design and

implementation of  run-time coupling between ESP-r and

Matlab/Simulink  as  they  are  accurately  similar  to  those

obtained in synchronous mode. As Matlab/Simulink uses

the  latest  available  data  from  ESP-r,  this  proves  that

when ESP-r  is  synchronized,  the  simulation  results  ob-

tained  by  the  two  different  modes  for  the  two  different

simulation  time  steps  are  perfectly  the  same.  Therefore,

this developed  distributed  dynamic  simulation  environ-

ment by run-time coupling between Matlab/Simulink and

one or more ESP-r(s) over a network is accurately imple-

mented  and  completely  operationalized  throughout  this

study. Fig. 17 shows  the  simulation  results  obtained  for

the PI control by run-time coupling between Matlab/Sim-

ulink  and  two  ESP-r(s)  in  partially  synchronous  mode,

i.e., when Matlab/Simulink is synchronized and ESP-r(s)

asynchronized  for  simulation  time-steps  of  1 min  (left)

and 2 min (right).

By comparing the simulation results obtained by ESP-r1

and ESP-r2, as shown in Fig. 17, it appears that the res-

ults  for  the  simulation  time  step  of  1 min are  absolutely

different and not comparable to each other,  but the res-

ults  for  the  simulation  time  step  of  2 min  are  relatively

similar and more or less comparable to each other. From

this comparison, it can be deduced that network induced

time delays have an impact on the control responses de-

pending mainly on the simulation time step, as it has ac-

tually  been  stated  in  [1, 18] for  networked  control  sys-

tems (NCSs).  It  also  appears  that  the  simulation results

shown  in Fig. 17 are  different  from  those  obtained  in

Figs. 14 and 16,  but  partly  similar  to  those  obtained  in

Fig. 15,  as  especially  for  ESP-r2  for  the  simulation  time

step of 1 min only, because when ESP-r(s) are asynchron-

ized  –  and  Matlab  synchronized  –  the  introduction  of  a

network in a control loop impacts the automation and op-

erational  integrity  of  building  HVAC  equipment  and

lighting components  while  adversely  affecting  their  con-

trol  responses depending on the distance of this network

and  the  time  step  used  for  the  simulation.  In  principle,
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this  is  the  communication  mode  representing  real-time

control  implementations,  as  they  are  actually  performed

in  BACS  architecture.  By  assessing  the  results  obtained

by ESP-r1  with  those  of  ESP-r2  mainly  for  the  simula-

tion time step of 1 min, it can also be observed that these

are different because of less uncertainty that this commu-

nication  mode  deals  with  compared  to  the  asynchronous

mode, and this  is  also  valid  even when the network dis-

tance  that  separates  the  machines  over  where  ESP-r(s)

from Matlab/Simulink run is  important.  In consequence,

the use  of  a  network  by  BACS  architecture  for  distrib-

uted control  applications  in  buildings  can  severely  de-

grade  both  the  performance  and  the  stability  of  HVAC

equipment and  lighting  components  depending  on  net-

work  induced  time  delays.  It  is  therefore  important  to

note that distributed simulations are essential to investig-

ate  and  analyze  the  influence  of  network  induced  time

delays in distributed building control applications.

5   Conclusions

This paper has demonstrated the application of a dis-

tributed dynamic  simulation  environment  that  is  de-

veloped with a capability of representing BACS architec-

ture  in  simulation  by  run-time  coupling  between

Matlab/Simulink  and  multiple  ESP-r(s)  over  a  network.

It briefly described the design of this dynamic simulation

environment  and  how this  is  used  to  similarly  represent

the  BACS architecture  in  simulation  through  the  use  of

different  communication  modes  such  as  synchronous,

asynchronous and  partially  synchronous  while  perform-

ing distributed simulations by run-time coupling between

Matlab/Simulink and one or more instances of ESP-r. It

finally  presented  the  simulation  results  by  experimental

design  for  the  representation  of  BACS  architecture  in

simulation as a grid-computing environment.

The design of a distributed dynamic simulation envir-

onment for BACS exploits the strengths of both Matlab/

Simulink and ESP-r to enable the integration of innovat-

ive  control  strategies  in  building  environments,  and  the

representation of  real-time  network-based  building  con-

trol  implementations  in  simulation.  While  Matlab/Sim-

ulink  is  used  for  control  systems  modelling  and  design,

ESP-r is used for assessing building performance and en-

ergy  consumption.  In  principal,  this  design  enables  the

run-time  coupling  between  Matlab/Simulink  and  one  or

more instances of ESP-r over a network in modelling dis-

tributed  control  and  building  performance  applications

while exchanging data in different formats such as ASCII,

binary, and XML, and in different communication modes

including synchronous,  asynchronous  and  partially  syn-

chronous.

The development of a distributed dynamic simulation

environment for BACS is managed in such a way to sup-

port complex and large-scale control applications such as

the integration of coordinated control strategies in build-

ing  performance  simulation.  Therefore,  future  work  will

include  simulation  of  building  control  applications  with

coordination  of  control  actions  in  a  distributed  network

such as of MASs in ABs.
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Fig. 17     Simulation results obtained for the PI control by run-time coupling between Matlab/Simulink and two ESP-r(s)  in partially
synchronous mode (i.e., when Matlab/Simulink is synchronized and ESP-r(s) asynchronized)
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