

A Practical Approach to Representation of Real-time

Building Control Applications in Simulation

Azzedine Yahiaoui

Center for Building & Systems, Eindhoven University of Technology (TU/e), PO Box 513, Eindhoven 5600MB, Netherlands

Abstract: Computer based automation and control systems are becoming increasingly important in smart sustainable buildings, of-
ten referred to as automated buildings (ABs), in order to automatically control, optimize and supervise a wide range of building perform-
ance applications over a network while minimizing energy consumption and associated green house gas emission. This technology gener-
ally refers to building automation and control systems (BACS) architecture. Instead of costly and time-consuming experiments, this pa-
per focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS archi-
tecture in simulation by run-time coupling two or more different software tools over a network. This involves using distributed dynamic
simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of
real BACS technology. The application and capability of this new dynamic simulation environment are demonstrated by an experiment-
al design, in this paper.

Keywords: Distributed dynamic simulation, networked control systems, building performance applications, smart buildings, building
automation and control systems (BACS) architecture.

1 Introduction

With the impact of recent technological advances on

computers and communication protocols, a computer-

based automation and control system is frequently used

to replace so-called hardwired controls with control

strategies implemented in software. Such a technology in

automated buildings (ABs), named also smart or intelli-

gent buildings, generally refers to building automation

and control systems (BACS) architecture. In order for

BACS technology to adapt ABs to changing require-

ments such as the needs of the occupants and environ-

mental changes in a building by control systems design,

experiments or similar analyses must be conducted to im-

prove the operational integrity and the automation of

heating, ventilation and air-conditioning (HVAC) equip-

ment and lighting components in ABs[1]. However, experi-

ments are time consuming as they require at least 24

hours to obtain the results and because realizing BACS

architecture in a real building is expensive. For this reas-

on, this paper deals with the development and imple-

mentation of a distributed dynamic simulation environ-

ment with the capability to similarly represent BACS ar-

chitecture in simulation by run-time coupling two or

more different software tools over a network.

The current situation is that representing BACS ar-

chitecture in simulation by means of a single software

tool or two different simulation tools running on a single

computer is complex and even more challenging because

it requires taking into account the physical distance of a

network in control loops so as to emulate the real-world

applications of BACS as closely as possible. It is also im-

portant to represent the BACS architecture in simula-

tion by distributing multiple different software tools at

run-time over a network to enable assessment of distrib-

uted building control applications by predicting the over-

all effect of innovative control strategies in ABs (see e.g.,

[2, 3]). As there exists a software tool very advanced in

control modelling, i.e., Matlab/Simulink, and a domain

based building performance simulation such as environ-

mental system performance-research version (ESP-r), the

combination of both over a network would result in a ra-

tional design of distributed control and building perform-

ance simulations by means of experimental design for rep-

resenting, as in a similar way, the BACS architecture in

simulation. This has an objective to assist architectural

use and design of distributed control applications in ABs

in the form of combined simulations in heterogeneous sys-

tems (i.e., different operating systems with different ac-

cess technologies).

Distributed simulations involving two or more differ-

ent software tools (or diverse applications) at run-time

provide the ability to exchange data and events in a dis-

tributed and co-operative way. This way of run-time

coupling diverse applications over a network offers sever-

al advantages such as exploiting different modes of com-

Research Article

Manuscript received March 18, 2017; accepted April 25, 2018;
published online August 3, 2018
Recommended by Associate Editor Zhi-Jie Xu

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag Gmbh Germany, part of Springer Nature 2018

International Journal of Automation and Computing 17(3), June 2020, 464-478
DOI: 10.1007/s11633-018-1131-1

munication (including synchronous, asynchronous and

partially asynchronous), increasing the execution speed,

running applications on heterogeneous environments, and

combining the relative strengths of different tools.

However, some advantages can be lost when a run-time

coupling is developed only to run in one environment and

to exchange data in synchronous mode. For example, pre-

vious and ongoing work by others, especially with the de-

velopment of run-time coupling for the purpose of enhan-

cing building performance simulation, comprise coupling

between lighting and building energy simulation (e.g., [4]),

coupling between computational fluid dynamic programs

and building energy simulation[5], and coupling between

systems and building energy simulation[6]. However, these

approaches are limited to a particular application, and of-

ten based on the coupling of two simulation tools run-

ning on the same machine. Besides these approaches,

some other works have been developed based on the use

of libraries such as: 1) building controls virtual test bed

(BCVTB) library used to couple different simulation

tools for co-simulation[7], 2) co-simulation between build-

ing performance and energy systems based on BCVTB[8],

and 3) modelica buildings library used to support simula-

tion models of building energy and control systems[9]. Still

these efforts are insufficient as they are based on coup-

ling of two simulation tools in synchronous mode, for

which they are inefficient to be used to represent distrib-

uted building control operations such as multi-agent sys-

tems (MASs) in simulation. Because they also do not

take network dynamics into account, these are inad-

equate to explore real-time control applications in a simu-

lation the same as they are performed in real BACS ar-

chitecture. For this reason, a novel middleware for dis-

tributed dynamic simulations by run-time coupling

between a software for control systems design and one or

more specific building performance simulation software

tool(s) over a network is developed for a more general

and wider applicability.

2 Development and implementation

2.1 Description of BACS architecture

ABs are a class of buildings that are automatically su-

pervised and controlled by or from a central computer-

based monitoring and control system such as distributed

control system (DCS) architecture, or more specifically

BACS architecture. Therefore, BACS is an example of a

DCS because it uses a computer-based control system to

replace so-called hardwired controls with control

strategies implemented in software. The basic function of

BACS is to automatically monitor and control a wide

range of building performance applications including

HVAC equipment, lighting components and other tasks

such as access control, energy management, and fault dia-

gnoses in a building or a group of buildings over a net-

work. While this technology has several advantages, it

also brings inevitable problems due to the network. Fig. 1
shows a complete BACS architecture that can be de-

scribed at four main levels[2, 10, 11]:

1) The management level consists of a central com-

puter used for managing and analyzing data, communic-

ating with external systems, and operating building

equipment and components.

2) The network level consists of an open protocol con-

nected to the network through routers used for data ex-

change between the central computer and substations (or

terminals).

3) The automation level consists of one or more sub-

stations used for interfacing building HVAC equipment

and lighting components to the network.

4) The field level represents the low level where build-

ing HVAC equipment and lighting components (i.e.,

sensors and actuators) and final users are located.

Because BACS uses a network for data exchange

between a central computer and substations, this can de-

grade both the performance and the stability of HVAC

equipment and lighting components in buildings. The

most common and straightforward way to evaluate such

problems without a full-scale implementation of BACS

architecture is by a modelling and simulation approach.

Therefore, successful development and application of

BACS require a scalable simulation platform that sup-

ports evaluation and verification of different control and

network algorithms. As a consequence, a distributed sim-

ulation environment was developed and implemented

mainly for BACS to simultaneously simulate building

control applications and communication network dynam-

ics.

2.2 Development and design of run-time
coupling

The design of run-time coupling between Matlab/Sim-

ulink and one or more ESP-r(s) begins with the defini-

tion requirements, and proceeds eventually to conceptual

design of the run-time coupling by means of trade-off

analysis, and then to detailed design of every part of the

run-time coupling being developed. Therefore, a set of re-

quirements were first identified and set forth as the basis

for the development and design of the run-time coupling.

However, these requirements must then be taken into

consideration at the early-stage of development. Among

the most important of these requirements are[4, 12]:

1) The ability for run-time coupling between

Matlab/Simulink and one or more ESP-r(s) to run on a

heterogeneous network as on Windows and Unix operat-

ing systems (OS).

2) The ability for run-time coupling between

Matlab/Simulink and one or more ESP-r(s) to support

data exchange over a network in either unidirectional or

bidirectional way.

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 465

3) The ability for run-time coupling between Matlab/

Simulink and one or more ESP-r(s) to support different

data exchange formats including ASCII, binary and ex-

tensible markup language (XML).

4) The ability for run-time coupling between Matlab/

Simulink and one or more ESP-r(s) to support different

communication modes including synchronous, asynchron-

ous, partially synchronous (or asynchronous).

5) The possibility for run-time coupling between Mat-

lab/Simulink and ESP-r to enable simulations with either

a real building (e.g., building emulator) or a control test-

rig (e.g., hardware in the loop testing), in which the

inter-process communication (IPC) must then be plat-

form independent.

After evaluating and selecting the most suitable solu-

tion among a number of possible options, using network

(or internet) sockets has been chosen and approved by

[2, 13, 14] as the best means of implementing run-time

coupling between Matlab/Simulink and one or more

ESP-r(s) since they meet all the requirements of the run-

time coupling, including those described above, and they

can also be used to represent in simulations real-time

building control implementations over a network, as

shown in Fig. 1.

Network sockets are an IPC mechanism that is used

for run-time coupling between ESP-r and Matlab/Sim-

ulink to support modelling of a building model and its ex-

ternal control systems separately. Both the building mod-

el and its control systems can be located on either the

same machine or different separate machines running dif-

ferent OS such as Unix and MS-Windows connected to a

network. They also work together by exchanging data in

a common format including ASCII, binary and extensible

markup language (XML) over a network, and by support-

ing communication modes such as synchronous, asyn-

chronous, and partially synchronous. Fig. 2 illustrates the

proposed approach to run-time coupling between

Matlab/Simulink and ESP-r.

Run-time coupling is implemented in such a way to

facilitate data exchange between Matlab/Simulink and

ESP-r when they are concurrently operating either on the

same machine or to increase the speed of simulations, on

separate machines connected by a network. In addition,

when Matlab/Simulink and ESP-r are located on differ-

ent machines running over different OSs and/or using dif-

ferent data formats by initiating network protocols, such

as LonWorks and Bacnet, run-time coupling can be run

to support portability and distributed dynamic simula-

tions over a heterogeneous network (i.e., on different ma-

chines with different OSs and/or different data format

protocols). For this reason, in this work different meth-

ods for marshalling and demarshalling (or unmarshalling)

data over a network were implemented within run-time

coupling to convert data (i.e., sensed or actuated vari-

ables) into a form of external network representation and

then back to their native format before being accessed by

a building model and its control systems, respectively.
2.2.1 Detailed design of run-time coupling

In order to implement run-time coupling between

ESP-r and Matlab/Simulink with network sockets, the

C/C++ programming language was used of which socket

libraries were originally implemented. As neither Matlab/

Simulink nor ESP-r has simple interfaces with socket ap-

plication programming interfaces (APIs), a detailed

design of the run-time coupling is proposed and imple-

mented with the objective of interfacing socket APIs to

both ESP-r and Matlab/Simulink, as shown in Fig. 3.

As the detailed design shown in Fig. 3 is based on the

idea that run-time coupling should be delivered in such a

way with no or minor user interferences, the details of the

parallel and distributed computations are then hidden to

users, while necessary information, such as the port num-

ber and IP address of the Matlab/Simulink location, is

provided through user interfaces in order to create sock-

ets that allow one or more ESP-r(s) to exchange data

with Matlab/Simulink. As both datagram and stream

sockets are supported, the same sockets type should be

selected on both sides of the run-time coupling mechan-

ism. By such means, this mechanism can serve as a virtu-

al interface that supports portability between heterogen-

eous platforms, enables distributed dynamic simulation of

BACS, and achieves a higher level of interoperability by

using a common middleware platform rather than a non-

distributed communication system. Besides this middle-

ware platform, two data encoding methods are integ-

rated to improve interoperability when Matlab/Simulink

and ESP-r are running in heterogeneous environments

Substation

(computer)

+

Substation

Management

level

Network level

Automation

level

Field level

Central computer

Network

Fig. 1 BACS architecture

Network

+− +−

Windows/Unix or Linux

Matlab/Simulink

Recipient

sensed variables
Sender

actuated variables

Recipient

actuated variables
Sender

sensed variables

Demarshalling Marshalling Demarshalling Marshalling

Unix or Linux/Windows

ESP-r

Fig. 2 Run-time coupling between Matlab/Simulink and ESP-r

 466 International Journal of Automation and Computing 17(3), June 2020

and to increase the speed of data exchange between a

building model and its control systems when both ESP-r

and Matlab/Simulink are running on distant machines

connected to a network. The first method of data encod-

ing consists of implementing two modes (ASCII strings

and binary codes) to meaningfully and accurately ex-

change data between a building model and its control sys-

tems over a network. The second method consists of us-

ing a set of web-based interoperability specifications, such

as web-services based on XML in order to enable build-

ing models and their control systems to exchange data

with a high level of interoperability between ESP-r and

Matlab/Simulink while representing different network

technologies, such as BACnet and LonWorks protocols, in

a simulation.

The right side of Fig. 3 shows how ESP-r and its in-

tegrated subsystems (zone, plant, and flow modules) are

bound to socket APIs, while the left side of Fig. 3 details

how the “matespexge” toolbox is implemented to bind

socket APIs to Matlab/Simulink. On the ESP-r side, sev-

eral subroutines, such as IBCLAW25, IPCLAW12, and

IFCLAW4, are added and implemented in a building sim-

ulator (BPS) to allow direct data transmission between

the subroutines and their parallel programs, which are

implemented in the matespexge toolbox during simula-

tion. Other subroutines, such as that for a test function,

are implemented in a project manager (PRJ) to determ-

ine whether any of the building simulator (BPS) integ-

rated modules invokes external control system that

should be remotely processed from Matlab/Simulink. If

one of these integrated modules occurs, a graphical user

interface containing data regarding the port number,

server IP address, current process number, communica-

tion mode, protocol type, and mode of data exchange ap-

pears so that the user can modify and choose specific set-

tings. Initially, these settings are set to default values and

correspond exactly to those specified in the matespexge

toolbox. Changing these settings is possible, although

Matlab/Simulink and ESP-r must use the same entries to

ensure their connection. On the Matlab side, the

matespexge toolbox is designed with graphical interfaces

in order to allow users to differentiate between sensed

and actuated variables that should be exchanged with

ESP-r. Executing the matespexge toolbox at the Matlab

prompt results in a graphical user interface appearing and

displaying the machine IP address of the Matlab/Sim-

ulink location, which should match the ESP-r IP address.

As Matlab is the server of ESP-r client(s), executing first

the matespexge toolbox is essential before initiating simu-

lation in ESP-r.

As shown in Fig. 3, run-time coupling between ESP-r

and Matlab/Simulink is designed in a layered model,

where the upper open systems interconnection (OSI) lay-

ers resolve different aspects of the communication pro-

U
se

r
d
at

a
&

si
m

u
la

ti
o
n
 s

et
ti

n
g
s

in
te

rf
ac

e
fi

le
s

Start simulation

Interruotion /End of

simuiation

Building simulation (BPS)

U
D

P
T

C
P

create Socket,1,2,3()

close Socket,1,2,3()

configure BIND()

establish Connect()

Client code

Application layer

Tranaport layer

ESP-r

Project manager (PRJ)

lf

IBCLAW25

or IPCLAW12 or

IFCLAW4

=1?

U
D

P
T

C
P

configre Bind()

establish Connect()

confirm Accept()

create Socket,1,2,30

create Socket,1,2,30

read from Socket()

read from Socket()

read from Socket1()

read from Socket2()

read from Socket3()

Yes

read from Socket1()

write to Socket()

write to Socket()

write to Socket1()

write to Socket2()

write to Socket3()

write to Socket1()

read from Socket2()

write to Socket2()

read from Socket3()

write to Socket3()

...

...

...

...

If IBCLAW=1

If IPCLAW=1

If IFCLAW=1

//close sockets

call zonexge()

call pltexge()

call ftwexge()

callexge.cpp
mexfunction()

MEX-File

Matlab/Simulink

Matlab prompt

matespexge

Matlab Simulink

sim0

Stateflow

Matlab files

(m-functions)

sirn_var.m

zone_ctl.m

plt_ctl.m

flw_ctl.m

zonexege.cpp

pltexge.cpp

flwexge.cpp

Matespexge toolbox

Server code

Enter the followings:

Port number

Server IP address
Current process number

Communication mode
Protocol type

Mode of data exchange

Simulation settings

Zone module

when IBCLAW25=1

Plant module

when IPCLAW12=1

Flow module

when IFCLAW4=1

In
te

g
ra

ti
o
n
 o

f
su

b
sy

st
em

s

Network (Ethemet)

Fig. 3 Detailed design of run-time coupling between ESP-r and Matlab/Simulink

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 467

cess. As ESP-r consists of legacy Fortran codes, the pro-

grams that operate building simulation and those that

initiate and terminate it are positioned and executed in

different steps (i.e., the first programs are executed every

time-step during the simulation period, while the second

programs are executed only when initiating and terminat-

ing the simulation). Placing functions that open and close

sockets in the first programs would certainly incur signi-

ficant delays while exchanging data with Matlab/Sim-

ulink during simulation, and opening and closing sockets

at every time step could lead to computer failures.

The main advantages of this developed run-time coup-

ling are that it permits any simulation of a building mod-

el and its control systems to be built separately using

ESP-r and Matlab/Simulink, respectively, and that it

provides the preferred means to handle interoperability

tasks, especially cross interdisciplinary data integration

and exchange between ESP-r and Matlab/Simulink with

no or minor user interferences. Therefore, it requires only

modelling a building model on ESP-r and its control sys-

tems on Matlab/Simulink, and then indicating their in-

terfaces by specifying the port-numbers, modes of ex-

change, or variables that they will use to import or ex-

port data to or from each other.
2.2.2 Interfacing client socket to ESP-r

Because ESP-r, e.g., [15], is almost completely writ-

ten in Fortran programming language and socket applica-

tion programming interface (APIs) can only be implemen-

ted in programming languages such as C/C++, mixed-lan-

guage programming using Fortran and C++ must be used

to interface between Fortran and C/C++ programs[16].

Therefore, mixed-language programming is used to devel-

op and implement an approach combining a Fortran com-

mon block with global C/C++ extern data structures (or

extern structs) of the same name in order to enable the

addition of new variables that need to be exchanged with

Matlab/Simulink without making large modifications in

the existing programming codes.

ESP-r was modified and extended to enable users to

obtain data on sensed and actuated variables in the ex-

ternal control systems of building zones, plant compon-

ents, and/or mass-flow networks, and to choose settings

(including server IP address, port number, current pro-

cess number, network protocol, communication mode, and

data-exchange format) for run-time coupling. The added

Fortran subroutines that exchange data with

Matlab/Simulink and functions indicate when initiating

and ending simulations are combined together with sock-

et APIs of the C/C++ client code separately. The C/C++

client code was developed in a hierarchical way in order

to support all possible combinations of exchanged vari-

ables and settings that a user could choose in run-time

coupling with Matlab/Simulink. Compiling the modified

and extended ESP-r code together with the socket APIs

of the C/C++ client code generates executable ESP-r, re-

spectively, and allows ESP-r to run as a client process.

2.2.3 Interfacing server socket to Matlab/Simulink

In [17], there is a built-in utility called Matlab EXcut-

able (MEX) that is often used to convert C or C++ pro-

grams to a MEX format. The original sense of the Matlab/

Simulink word represents two different environments,

which are a high-level technical programming language

and a graphical block-diagram interface. Depending on

which environment is interfaced, two main approaches

can be used to link external programs written in C/C++ code:

1) For Matlab, MEX-files are used with dynamically

linked programs that, when compiled, can be called from

within Matlab in the same way as M-files or built-in func-

tions. In case we need to deal with Simulink, the links

can be established between each other by just using

“sim” functions.

2) Practically the same procedure is adopted by Sim-

ulink, although MEX S-functions are used with dynamic-

ally linked programs that, when compiled, can be called

from within a Simulink block diagram. However, when

there is a need to deal with Matlab, the link should be

done via M-file S-functions that are more complicated

than using a straightforward “sim” function.

The first approach is preferable not only because it is

less complex than the second approach but also because

it offers more advantages, such as: 1) the ability to man-

age a high number of exchanging variables simultan-

eously, 2) the versatility needed to meet the require-

ments of run-time coupling, and 3) the ability to imple-

ment functionalities that are not accessible by M-file S-

functions.

Although the MEX-files were originally designed to al-

low the inclusion of external routines written mainly in

C/C++, they are also capable of integrating external

shared libraries, such as socket APIs, into Matlab. For

these reasons, a MEX-file was used for the development

and implementation of the “matespexge” toolbox.

By combining MEX-file functions and socket APIs, ac-

cess from ESP-r to Matlab and Simulink functionalities,

especially to the application toolboxes for advanced con-

trol systems, is realized by just invoking the name

“matespexge” from the Matlab prompt. Once the

matespexge toolbox has been executed, a graphical user

interface including icons and menus will display and

provide the dialogue for users to create M-files to re-

motely control a building zone, plant, and/or flow model

as built on ESP-r accordingly. Further access from these

M-files to Simulink can be obtained by using “sim” func-

tions, although access from Simulink to Stateflow should

be obtained by incorporating a Stateflow block in the

Simulink block diagram. Moreover, these M-files include

Matlab functions that contain the left- and right-hand ar-

guments with which the MEX-file is invoked. Therefore,

the matespexge toolbox was designed with the use of

MEX-files that include facilities for enabling run-time

coupling between Matlab/Simulink and one or multiple

ESP-r(s). After compiling the matespexge toolbox, a dy-

 468 International Journal of Automation and Computing 17(3), June 2020

namic executable file is generated with an extension cor-

responding to the OS over which Matlab/Simulink is run-

ning. Within the implementation of the matespexge tool-

box, the external routines that specifically exchange data

with subroutines for building zone, plant, and flow net-

work modules of ESP-r are encapsulated into a single

MEX-file. A global identifier is also integrated to determ-

ine which building zone, plant, and/or flow network mod-

el will exchange data with the created control file. Due to

this fact, the user must provide valid information (i.e., as

stated in ESP-r) on the input interface. In addition, as

Matlab is an interactive tool, the handling callbacks from

ESP-r are ensured by default in order to access

Matlab/Simulink as a computational engine. For these

reasons, the matespexge toolbox is designed in such a

way to let Matlab/Simulink operate as a server process

when its created control files are invoked by one of the

three ESP-r modules. Because stateflow can be used to-

gether with Simulink for the simulation of MASs, the use

of the matespexge toolbox becomes essential for enabling

the integration of advanced control systems, such as hy-

brid systems and MASs in building performance simula-

tion. It enables a user to interactively build, test, and

simulate distributed applications between ESP-r and

Matlab/Simulink, even when both software tools are run-

ning on separate and different OSs. Therefore, it is a key

solution in enabling the analysis of multi-variable control

systems of building performance applications (or opera-

tions) that had previously not been feasible.

2.3 A practical approach to representing
BACS architecture in simulation

Although representing BACS technology in simula-

tion, as shown in Fig. 1, is difficult if not impossible, this

design of run-time coupling between multiple ESP-r(s)

and Matlab/Simulink can allow identifying practical solu-

tions for the integration of advanced control systems into

building performance simulation, and improving distrib-

uted control applications such as planning and coordina-

tion of control actions, in ABs for better control and op-

eration. As one of constrained BACS architecture has

network-induced time delays, distributed simulations are

required to analyze and simulate both the performance

and stability of building HVAC equipment and lighting

components in ABs. Hence, the need for distributed simu-

lations originates from the fact that BACS requires the

study of both control theory and communication net-

works in design architecture[18].

By assuming that Matlab/Simulink represents a cent-

ral computer and ESP-r, a terminal in a similar way to

BACS architecture, the IPC meshcanism used for run-

time coupling Matlab/Simulink and ESP-r is thus de-

signed to support cooperative applications through an in-

teroperable middleware that is involved in facilitating the

interface of any building model built in ESP-r with its ex-

ternal control system modelled in Matlab/Simulink, as

shown in Fig. 3. This has for an objective to simplify data

management and distribution over a network, provide for

the independence and transparency of data exchange

between building models and their control systems, and

allow web-services to be highly portable in distributed

simulations, in a similar way as the real-time control ap-

plications are represented in BACS architecture. There-

fore, this work has enhanced the traditional approach to

run-time coupling between ESP-r and Matlab/Simulink

as shown in Fig. 2, with the addition of involving more

ESP-r(s) to represent BACS architecture in simulation.

Fig. 4 illustrates a more practical approach to distributed

control and building performance simulation by run-time

coupling multiple ESP-r(s) and Matlab/Simulink over a

network.

As shown in Fig. 4, the framework that is implemen-

ted to support distributed and parallel simulations by

run-time coupling one or more ESP-r(s) with Matlab/

Simulink over a network occurs practically the same as

BACS architecture. This framework was developed using

multi-threads to optimally handle and connect multiple

ESP-r(s) to Matlab/Simulink, for which an application

similar to the one used in BACS architecture can at once

run across several machines distributed over a network[1].

In a similar way to BACS architecture, each ESP-r in the

framework must be used to simply model building

zone(s), plant system(s) and/or flow network(s), while

Matlab/Simulink must be used to model all their remote

control systems.

2.4 Run-time coupling two or more ESP-
r(s) with Matlab/Simulink

Of the many possible ways to run-time couple more

than one ESP-r with Matlab/Simulink at the same time,

the portable operating system interface (POSIX) stand-

ard for threads has been the most widely adopted[12]. The

use of POSIX threads is very advantageous because of its

standardization, flexibility, and portability, as well as fact

Sensor SensorSensor SensorActuator ActuatorActuator Actuator

Position PositionTemp
Heating Blinda Temp CoolingPlant

Matlab/Simulink

Open network (LonWorks, BACnet)

ESP-r 1 ESP-r 2

Zone 1
Zone 1Zone 2

Zone 2Zone 3
Process ProcessProcess

Fig. 4 A practical approach to run-time coupling Matlab/
Simulink with multiple ESP-r(s)

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 469

that POSIX threads provide a standardized program-

ming interface for the dynamic creation and destruction

of threads (i.e., sub-threads). It also enables using the

same port and a single shared address space to make

Matlab/Simulink accessible to all ESP-r(s) connections

that are handled on the network. By using a single ad-

dress space abstraction, it is however possible to avoid

the overhead inherent to data exchange and provide bet-

ter support for concurrency, parallelism, and consistency

of data exchange in run-time coupling of Matlab/Sim-

ulink and multiple ESP-r(s) with substantial ease. To

nearly represent BACS architecture in simulation, the

previous approach, shown in Fig. 2, was therefore exten-

ded with a capability to run-time couple one or more

ESP-r(s) with Matlab/Simulink. This capability was de-

veloped with multi-threads in conjunction with C++ codes

to support parallel and distributed control and building

performance applications between multiple ESP-r(s) and

Matlab/Simulink in the same simulation environment.

Within this capability, all ESP-r(s) should share the same

connection as Matlab/Simulink and be able to run either

on the same machine as Matlab/Simulink or on separate

machines connected to a network. Each time a new ESP-r

is connected to Matlab/Simulink, its specific thread is

thus created by the matespexge toolbox so as to avoid

conflicts and data inconsistencies with other concurrent

ESP-r(s) participating in the same simulation environ-

ment. As all participating (or connected) ESP-r(s) ex-

change data with the same Matlab/Simulink, any ESP-r

can access all the global variables exchanged by

Matlab/Simulink via its specific sub-thread. Fig. 5 illus-

trates how run-time coupling is implemented between

Matlab/Simulink (i.e., matespexge toolbox) and multiple

ESP-r(s) using POSIX threads.

As illustrated in Fig. 5, the matespexge toolbox is im-

plemented in such a way that one or more ESP-r(s) can

connect and interact with Matlab/Simulink concurrently.

The number of ESP-r(s) to run-time couple to

Matlab/Simulink depends on the application, varying

from one (1) to nine (9) ESP-r(s) simultaneously. This

implementation is fairly complex as it requires that the

main thread of the matespexge toolbox accept incoming

connections and create one ESP-r sub-thread for each

ESP-r connection that is handled. These ESP-r sub-

threads are a part of the matespexge toolbox used by

shared data structures to communicate with their all par-

allel connected ESP-r(s). Because the matespexge tool-

box can run-time couple with multiple ESP-r(s),

1) each data exchange to/from ESP-r is handled by

the corresponding ESP-r sub-thread on the matespexge

toolbox side;

2) each ESP-r sub-thread can send data to other con-

nected ESP-r(s) by accessing the shared data structure

that contains their references;

3) the sockets connecting the matespexge toolbox to each

ESP-r can be retrieved through this shared data structure.

Consequently, all interactions between ESP-r(s) and

Matlab/Simulink occur via the matespexge toolbox,

where every ESP-r is handled by a particular sub-thread.

Also this toolbox is implemented with call-back methods

to allow remote control systems (i.e., control systems

modelled on Matlab/Simulink) to be invoked as they re-

ceive data from their corresponding building models built

on one or more ESP-r(s). Because building models built

on multiple ESP-r(s) can interact with each other via the

matespexge toolbox, their corresponding remote control

systems can also interact with each other on the

Matlab/Simulink side. The main objective of using this

approach is to represent the BACS architecture in simu-

lation and enable unrelated remote control systems, par-

ticularly advanced control systems such as MASs, to

communicate with each other when their corresponding

building models are built on seperate ESP-r(s). In effect,

permitting control systems – particularly MASs – to com-

municate with each other while remotely regulating build-

ing zone, plant, and mass-flow models built on diverse

ESP-r(s) connected to a network results in the design and

development of advanced building control applications

that had previously not been feasible, such as:

1) the use of coordinated and interconnected control

systems, especially MASs, to better operate and regulate

building HVAC equipment and lighting components in ABs;

2) the use of self-adapting control systems to react to

climate changes, the addition or removal of equipment in

a building, or building plant variations;

3) the use of self-upgrading control systems to meet

occupant needs when damping effects or changes are crit-

ical factors in the functioning of the systems.

2.5 Communication modes in run-time
coupling

Because the main feature distinguishing a distributed

simulation from a standalone simulation (or a sequential

simulation) is the method of advancing simulation time-

Process

Process

Process
Network

ESP-r (1)

ESP-r (2)

Matlab/Simulink

(matespexge.toolbox)

Main thread

Sub-thread (1)

Sub-thread (2)

Fig. 5 Conceptual view of multi-threading Matlab/Simulink
with multiple ESP-r(s)

 470 International Journal of Automation and Computing 17(3), June 2020

steps, run-rime coupling between Matlab/Simulink and

ESP-r was implemented with all the options accessible

from the user interface to specify the number of simula-

tion time-steps per hour and to determine whether the

simulation should run in a synchronous, an asynchronous,

or a partially synchronous mode.
2.5.1 Synchronous mode

Synchronous mode is used when ESP-r and

Matlab/Simulink are run-time coupled and synchronized

with the same number of simulation time-steps in execu-

tion. When either ESP-r or Matlab/Simulink must wait

for incoming data from the other, the number of simula-

tion time-steps is defined by ESP-r, which is the client for

Matlab/Simulink, the server. Fig. 6 shows how ESP-r and

Matlab/Simulink must wait for each other and exchange

data by run-time coupling at several predetermined time

steps for the completion of their computations.

Because both ESP-r and Matlab/Simulink are ex-

ecuted sequentially, the exchange of data in this mode

blocks the entire simulation at each predetermined time-

step until the data exchange has been totally completed.

Therefore, when Matlab/Simulink and ESP-r are run-

time coupled in synchronous mode, the time constraints

of scheduled transitions must be satisfied by such means

as adjusting the timing of a control loop for several ap-

plications.
2.5.2 Asynchronous mode

Asynchronous mode is used when ESP-r and

Matlab/Simulink are run-time coupled and processing

separately from each other, and not synchronized totally.

As such, neither ESP-r nor Matlab/Simulink must wait

for incoming data from the other and can continue their

computations with the existing data, although the data

might be outdated, until the updated data become avail-

able for computation. Running distributed simulations in

asynchronous mode can be positive in some cases be-

cause ESP-r and Matlab/Simulink can be computed with

different numbers of simulation time-steps, although in

other cases the accuracy of obtained simulation results

cannot be ensured. Fig. 7 shows a case where the time-

step of either Matlab/Simulink or ESP-r differs from that

of the other.

The asynchronous mode is difficult to program be-

cause it requires that Matlab/Simulink and ESP-r be run-

time coupled in a chaotic manner; i.e., in such a way that

neither Matlab/Simulink nor ESP-r must wait for incom-

ing data from the other but instead proceed with its com-

putation until the common task is fulfilled. As run-time

coupling between Matlab/Simulink and ESP-r is imple-

mented with network sockets, the asynchronous commu-

nication is characterized by the fact that the client and

server programs integrated in ESP-r and Matlab/

Simulink, respectively, contain functions that change

sockets to non-blocking mode. Moreover, such changing

signal is returned immediately when the operations read-

ing data from the sockets are invoked by another to in-

dicate that there are no data to be received, see e.g., [19].

The asynchronous mode was developed in such a way

that Matlab/Simulink began computing once it received

the first data from ESP-r. After data were received, ESP-r

and Matlab/Simulink computed independently from each

other, and when no data were available to be received,

both continued computing using the most recently re-

ceived data. Using asynchronous mode allows run-time

coupling between Matlab/Simulink and ESP-r to handle

existing data in a manner that may significantly reduce

the execution time, see e.g., [20]. As it imposes no con-

straints on the control performance, this mode can be

used in situations where network-induced time delays are

unpredictable. When synchronous mode is used in these

situations, Matlab/Simulink and ESP-r may have to wait

for incoming data for an extended time, which could res-

ult in very low or even impractical computation effi-

ciency. Therefore, computation in asynchronous mode can

be useful for the simulation of large building control ap-

plications, such as supported by BACS technology, al-

though it is much more difficult to parallelize and distrib-

ute efficiently due to various independencies in run-time

coupling between Matlab/Simulink and multiple ESP-

r(s).
2.5.3 Partially synchronous mode

The partially synchronous mode is used when ESP-r

and Matlab/Simulink are run-time coupled in partially

synchronized (or partially asynchronized) mode, which

partly imposes time restrictions on the synchronization of

their events. However, the exchange of data between

Matlab/Simulink and ESP-r by run-time coupling does

not occur in lock-time-step, as it does in synchronous

mode. When using the partially synchronized mode, it is

Send a request and then

wait for response
ESP-r

Request
Matlab/

Simulink
Not running Process

request

Response

Block waiting until next

request

Time

Fig. 6 Run-time coupling between ESP-r and Matlab/Simulink
in synchronous mode

Send a request

and continue
ESP-r

Request
Matlab/

Simulink
Running Process

request

Response

Continue

Time

Fig. 7 Run-time coupling between ESP-r and Matlab/Simulink
in asynchronous mode

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 471

assumed that the computation time-step and data deliv-

ery time of either Matlab/Simulink or ESP-r is between

the upper and lower bounds. Therefore, as a partially

synchronous mode lies between the synchronous and

asynchronous modes, two possibilities are available for

run-time coupling Matlab/Simulink and ESP-r in par-

tially synchronized mode: 1) when ESP-r is running in

synchronous mode and Matlab/Simulink in asynchronous

mode, and 2) when ESP-r is running in asynchronous

mode and Matlab/Simulink in synchronous mode. Fig. 8
shows both cases of the partially synchronous mode.

The partially synchronized mode, when ESP-r is run-

ning in asynchronous mode and Matlab/Simulink is in

synchronous mode, represents the most realistic commu-

nication characteristics of BACS technology (i.e., such

the real-time control applications are performed in

BACS). Although time delays associated with network

(i.e., with communication) are difficult to predict in

BACS architecture, these delays usually have an upper

bond, mainly when data are exchanged over a network.

Hence, use of the partially synchronous mode leads to less

uncertainty than does the fully asynchronous mode, but

is very difficult to program due to the timing differences

between Matlab/Simulink and ESP-r, see e.g., [21].

3 User interfaces for run-time coupling
of ESP-r and Matlab

The user interfaces were developed and implemented

on both sides of the run-time coupling in order to facilit-

ate its use (i.e., the setting up of a connection session and

exchanging variables). Fig. 9 depicts the user interfaces

for run-time coupling settings on the side of ESP-r.

On the ESP-r side, the user-interface of the run-time

coupling settings menu can be displayed only if one of the

three control laws (zone, plant and systems, and flow net-

work) chooses “Calling Matlab/Simulink” as a control

system/strategy, in which there will be requiring using

then external (or remote) control systems, either existing

or newly designed, modelled on Matlab/Simulink. Fig. 10

depicts the user interfaces for run-time coupling settings

on the side of Matlab/Simulink.

≫
On the Matlab side, the user interface of the run-time

coupling settings menu is displayed by typing “

matespexge” at the Matlab prompt, as shown in Fig. 11.

After providing and choosing the necessary entries for

run-time coupling with ESP-r, and invoking the creation

of one of the three control laws (zone, plant and systems,

and flow networks), a sub user interface is then displayed.

Fig. 10 shows this developed and implemented sub user

interface on the Matlab side to set up which sensed and

actuated variables should be exchanged with ESP-r by

run-time coupling.

The manner of entering all the necessary data re-

quired for run-time coupling in Matlab side is rather sim-

ilar to that in ESP-r. In addition, the sub user interface

on the Matlab/Simulink side was designed in a way as is

typically done in ESP-r. All possible sensed variables (in-

puts) and actuated variables (outputs) for control of

ESP-r

Request
Matlab/

Simulink
Not running Process

request

Response

Block waiting until next

request

Time

(b) ESP-r asynchronized and Matlab/Simulink synchronized

Send a request

and continue

(a) ESP-r synchronized and Matlab/Simulink asynchronized

Send a request and then

wait for response
ESP-r

Request
Matlab/

Simulink
Running Process

request

Response

Continue

Time

Fig. 8 Run-time coupling between ESP-r and Matlab/Simulink
in partially synchronized mode

Fig. 9 User interfaces for run-time coupling settings: ESP-r
side

Fig. 10 User interfaces for run-time coupling settings: Matlab
side

 472 International Journal of Automation and Computing 17(3), June 2020

zones, plant and systems, and flow components that ESP-r

can exchange by run-time coupling with Matlab/Sim-

ulink are as shown in Fig. 11.

4 Experimental design

The resulting experimental design, in this study, con-

sists of representing important functions of BACS techno-

logy in simulation, and comparing simulation results ob-

tained in different modes of communication using at least

two instances of ESP-r(s) by run-time coupling with Mat-

lab/Simulink over a network, as referred to BACS archi-

tecture, shown in Fig. 1. One way of doing this was to run

ESP-r(s) and Matlab/Simulink on different machines over

different OSs like Unix, Cygwin, and Windows. These

machines were a Sun Blade Workstation (or Server), a

laptop PC, and an office PC, respectively. ESP-r1 was in-

stalled over the Unix 10 (or Solaris 10) OS on the Sun

sever, ESP-r2 was installed over the Cygwin 6.1 over the

Windows XP OS on the laptop PC, and Matlab was in-

stalled over the Windows 7 OS on the office PC. The Sun

server and laptop PC were connected to the network by

an Ethernet LAN cable at a speed of 10 MBps, and at

distance of about 7 m from each other, whereas the office

PC was connected to the network by an Ethernet LAN

cable at a speed of 100 MBps, and distanced from the two

other machines (Sun blade workstation and office PC) by

about 2 km. The compilers used for Fortran and C/C++

programs were of the GNU public license on Unix and of

the Visual Studio 2010 on Windows. Fig. 12 shows how

distributed dynamic simulations are performed as in a

grid computing environment by run-time coupling of

Matlab/Simulink and multiple ESP-r(s) while exchan-

ging data over a network in the form of ASCII, binary or

XML format, and in different communication modes such

as synchronous, asynchronous, and partially synchronous

during the simulation.

Fig. 11 Matlab sub user interface for zone, plant and systems, and flow network control variables with ESP-r by run-time coupling

ESP-r1 ESP-r2

C
y
g
w

in

(W
in

d
o
w

s)

Network

Unix (solaris)

Matlab/Simulink

W
in

d
o
w

s

Fig. 12 Distributed simulations by run-time coupling of
Matlab/Simulink and two ESP-r(s) as in a grid-computing
environment

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 473

4.1 Distributed building control applica-
tion

The research study presented in [2] has highlighted

the importance of run-time coupling between ESP-r and

Matlab/Simulink over standalone simulations within the

integration of advanced control systems in building per-

formance simulation for improving all quality aspects of

building indoor environments, as well as in the simula-

tion of building control applications requiring multivari-

able control systems. In order to demonstrate the devel-

opment and design of run-time coupling between mul-

tiple instances of ESP-r and Matlab/Simulink, and com-

pare the simulation results obtained by different modes of

communication, the same building model, which is actu-

ally an existing exemplar in ESP-r, was built in two dis-

tanced instances of ESP-r, as shown in Fig. 12, and in

combination with an external (or remote) proportional in-

tegral (PI) control modelled in Matlab/Simulink, i.e., in

the form of a closed control loop. This external PI con-

trol is here used simply to regulate the air-temperature in

a building zone by supplying the required heating flux ca-

pacity to it (which is at maximum 3 000 W). Fig. 13 shows

a building model built on two instances of ESP-r (left) in

a closed loop with its external PI control modelled on

Matlab/Simulink (right).

In this application, the continuous PI control is set to

maintain the indoor air-temperature (i.e., the control re-

sponse) at the set-point of 22°C during a period which is

valid from 07:00 till 18:00 o′clock. Consequently, the in-

put to the PI control implemented in Matlab/Simulink is

the error signal created by subtracting the sensed indoor

air-temperature of the building model built on ESP-r

from the set-point. The output of this PI control, a

weighted sum of the error signal and its gains, is the ac-

tuated heating flux to that building model built on ESP-r.

4.2 Simulation results

The simulation results were obtained with run-time

coupling between Matlab/Simulink and two instances of

ESP-r, as shown in Fig. 11, while exchanging data in a

binary format over a network, and in different modes of

communication including synchronous, asynchronous, and

partially synchronous. Fig. 14 shows the simulation res-

ults obtained for the PI control by run-time coupling

between Matlab/Simulink and two ESP-r(s) in synchron-

ous mode for simulation time-steps of 1 min (left) and

2 min (right).

By comparing the simulation results obtained by ESP-r1

with those obtained by ESP-r2, it can easily be observed

that they are similar and very comparable to each other

for both simulation time-steps of 1 min and 2 min. This is

mainly because every coupled Matlab/Simulink and ESP-r

is synchronized at run-time, and thus takes no network

induced time delays into account as both Matlab/Sim-

ulink and ESP-r must wait for each other to receive data

during the simulation. Fig. 15 shows the simulation res-

ults obtained for the PI control by run-time coupling

between Matlab/Simulink and two ESP-r(s) in asyn-

chronous mode for simulation time-steps of 1 min (left)

and 2 min (right).

By comparing the simulation results obtained by ESP-r1

with those obtained by ESP-r2, it can easily be observed

that they are quite different and incomparable to each

other for both simulation time-steps of 1 min and 2 min.

They are different especially when the control action is

applied (or valid which is during the period between 7:00

and 18:00 o′clock), i.e., once the control response has

reached the set-point of 22°C because every coupled Mat-

Reception

Zones

Controls

Project: L-shaped reception, corrective heating
Proiect:L-shaped reception, corrective heating Active definitions

A
ct

u
at

o
rs

Sensors
Building 2

Building 1

Run-time coupling

(Network)

ESP-r2
ESP-r1

−

−
s

Integrator

Saturation

tctl

From Matlab
workspace 1

Qh

To Matlab

workspace

Kp

Gain

Gain1

Ki

References Control strategy

/Algorithm

Continuous PI control system

tsph

From Matlab

workspace

+ ++

1

Matlab/Simulink

Fig. 13 A PI control modelled on Matlab/Simulink (left) with a building model built on two instance of ESP-r (right)

 474 International Journal of Automation and Computing 17(3), June 2020

lab/Simulink and ESP-r is asynchronized at run-time.

Neither Matlab/Simulink nor ESP-r waits for one anoth-

er to receive data during the simulation as both precede

their computations independently. It also appears that

these simulation results are different from those shown in

Fig. 14 for both ESP-r(s) and different simulation time

steps. The reason of this difference is because the addi-

tion of a network (i.e., physical distance) into a control

loop and the use of more than one ESP-r by run-time

coupling with Matlab/Simulink adversely affect the con-

trol response due to time delays associated with that net-

work in principal, and time delays associated with the

processing capabilities of the used computers for simula-

tion (i.e., over which Matlab/Simulink and ESP-r run).

When considering the control performance, it can be seen

from Fig. 15 that the control responses are continually in-

Simulation time step=1 min; (ESP-r 1/2 and Matlab/Simulink synchonized) Simulation time step=1 min; (ESP-r 2/2 and Matlab/Simulink synchonized)

Simulation time step=2 min; (ESP-r 1/2 and Matlab/Simulink synchonized)

8 000

6 000

4 000

2 000

0

26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Simulation time step=2 min; (ESP-r 2/2 and Matlab/Simulink synchonized)
8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

26

22

18

14

10

6

2

26

22

18

14

10

6

2

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Fig. 14 Simulation results obtained for the PI control by run-time coupling between Matlab/Simulink and two ESP-r(s) in
synchronous mode

Simulation time step=1 min; (ESP-r 1/2 and Matlab/Simulink asynchronized) Simulation time step=1 min; (ESP-r 2/2 and Matlab/Simulink asynchronized)
26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Simulation time step=2 min; (ESP-r 1/2 and Matlab/Simulink asynchronized) Simulation time step=2 min; (ESP-r 2/2 and Matlab/Simulink asynchronized)
26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)
Sensitive heating load (W)
Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)
Sensitive heating load (W)
Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Fig. 15 Simulation results obtained for the PI control by run-time coupling between Matlab/Simulink and two ESP-r(s) in
asynchronous mode

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 475

fluenced by network induced time delays once they reach

the control set-point. Therefore, those results validate the

fact that network induced time delays degrade both the

performance and the stability of building HVAC equip-

ment and lighting components. Fig. 16 shows the simula-

tion results obtained for the PI control by run-time coup-

ling between Matlab/Simulink and two ESP-r(s) in par-

tially synchronous mode, i.e., when Matlab/Simulink is

asynchronized and ESP-r(s) synchronized for simulation

time-steps of 1 min (left) and 2 min (right).

It appears that the simulation results shown in Fig. 16

are relatively identical to those shown in Fig. 14, because

ESP-r(s) are synchronized and wait to receive data from

Matlab/Simulink. Therefore, network induced time delays

in this communication mode have no impact on the con-

trol responses because building zones and plant models

built in ESP-r wait during the simulation (i.e. at every

simulation time step) to receive data from Matlab/Sim-

ulink. Even though Matlab/Simulink is asynchronized, it

does affect the control responses of building models built

in ESP-r while being synchronized. However, these simu-

lation results can also be used to validate the design and

implementation of run-time coupling between ESP-r and

Matlab/Simulink as they are accurately similar to those

obtained in synchronous mode. As Matlab/Simulink uses

the latest available data from ESP-r, this proves that

when ESP-r is synchronized, the simulation results ob-

tained by the two different modes for the two different

simulation time steps are perfectly the same. Therefore,

this developed distributed dynamic simulation environ-

ment by run-time coupling between Matlab/Simulink and

one or more ESP-r(s) over a network is accurately imple-

mented and completely operationalized throughout this

study. Fig. 17 shows the simulation results obtained for

the PI control by run-time coupling between Matlab/Sim-

ulink and two ESP-r(s) in partially synchronous mode,

i.e., when Matlab/Simulink is synchronized and ESP-r(s)

asynchronized for simulation time-steps of 1 min (left)

and 2 min (right).

By comparing the simulation results obtained by ESP-r1

and ESP-r2, as shown in Fig. 17, it appears that the res-

ults for the simulation time step of 1 min are absolutely

different and not comparable to each other, but the res-

ults for the simulation time step of 2 min are relatively

similar and more or less comparable to each other. From

this comparison, it can be deduced that network induced

time delays have an impact on the control responses de-

pending mainly on the simulation time step, as it has ac-

tually been stated in [1, 18] for networked control sys-

tems (NCSs). It also appears that the simulation results

shown in Fig. 17 are different from those obtained in

Figs. 14 and 16, but partly similar to those obtained in

Fig. 15, as especially for ESP-r2 for the simulation time

step of 1 min only, because when ESP-r(s) are asynchron-

ized – and Matlab synchronized – the introduction of a

network in a control loop impacts the automation and op-

erational integrity of building HVAC equipment and

lighting components while adversely affecting their con-

trol responses depending on the distance of this network

and the time step used for the simulation. In principle,

Simulation time step=1 min;
(ESP-r 1/2 synchronized and Matlab/Simulink asynchronized)

Simulation time step=1 min;
(ESP-r 1/2 synchronized and Matlab/Simulink asynchronized)

Simulation time step=2 min;
(ESP-r 1/2 synchronized and Matlab/Simulink asynchronized)

Simulation time step=2 min;
(ESP-r 1/2 synchronized and Matlab/Simulink asynchronized)

26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Sensitive heating load (W)

Dry bulb temperature (°C)
Set-point (°C)
Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)
Set-point (°C)
Control response (°C)

Fig. 16 Simulation results obtained for the PI control by run-time coupling between Matlab/Simulink and two ESP-r(s) in partially
synchronous mode (when Matlab/Simulink is asynchronized and ESP-r(s) synchronized)

 476 International Journal of Automation and Computing 17(3), June 2020

this is the communication mode representing real-time

control implementations, as they are actually performed

in BACS architecture. By assessing the results obtained

by ESP-r1 with those of ESP-r2 mainly for the simula-

tion time step of 1 min, it can also be observed that these

are different because of less uncertainty that this commu-

nication mode deals with compared to the asynchronous

mode, and this is also valid even when the network dis-

tance that separates the machines over where ESP-r(s)

from Matlab/Simulink run is important. In consequence,

the use of a network by BACS architecture for distrib-

uted control applications in buildings can severely de-

grade both the performance and the stability of HVAC

equipment and lighting components depending on net-

work induced time delays. It is therefore important to

note that distributed simulations are essential to investig-

ate and analyze the influence of network induced time

delays in distributed building control applications.

5 Conclusions

This paper has demonstrated the application of a dis-

tributed dynamic simulation environment that is de-

veloped with a capability of representing BACS architec-

ture in simulation by run-time coupling between

Matlab/Simulink and multiple ESP-r(s) over a network.

It briefly described the design of this dynamic simulation

environment and how this is used to similarly represent

the BACS architecture in simulation through the use of

different communication modes such as synchronous,

asynchronous and partially synchronous while perform-

ing distributed simulations by run-time coupling between

Matlab/Simulink and one or more instances of ESP-r. It

finally presented the simulation results by experimental

design for the representation of BACS architecture in

simulation as a grid-computing environment.

The design of a distributed dynamic simulation envir-

onment for BACS exploits the strengths of both Matlab/

Simulink and ESP-r to enable the integration of innovat-

ive control strategies in building environments, and the

representation of real-time network-based building con-

trol implementations in simulation. While Matlab/Sim-

ulink is used for control systems modelling and design,

ESP-r is used for assessing building performance and en-

ergy consumption. In principal, this design enables the

run-time coupling between Matlab/Simulink and one or

more instances of ESP-r over a network in modelling dis-

tributed control and building performance applications

while exchanging data in different formats such as ASCII,

binary, and XML, and in different communication modes

including synchronous, asynchronous and partially syn-

chronous.

The development of a distributed dynamic simulation

environment for BACS is managed in such a way to sup-

port complex and large-scale control applications such as

the integration of coordinated control strategies in build-

ing performance simulation. Therefore, future work will

include simulation of building control applications with

coordination of control actions in a distributed network

such as of MASs in ABs.

Simulation time step=1 min;
(ESP-r 1/2 asynchronized and Matlab/Simulink synchronized)

Simulation time step=1 min;
(ESP-r 2/2 asynchronized and Matlab/Simulink synchronized)

Simulation time step=2 min;
(ESP-r 1/2 asynchronized and Matlab/Simulink synchronized)

Simulation time step=2 min;
(ESP-r 2/2 asynchronized and Matlab/Simulink synchronized)

26

22

18

14

10

6

2

26

22

18

14

10

6

2

26

22

18

14

10

6

2

26

22

18

14

10

6

2

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

8 000

6 000

4 000

2 000

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
2
:0

0

0
:0

0

2
0
:0

0

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Sensitive heating load (W)

Dry bulb temperature (°C)

Set-point (°C)

Control response (°C)

Fig. 17 Simulation results obtained for the PI control by run-time coupling between Matlab/Simulink and two ESP-r(s) in partially
synchronous mode (i.e., when Matlab/Simulink is synchronized and ESP-r(s) asynchronized)

A. Yahiaoui / A Practical Approach to Representation of Real-time Building Control Applications in Simulation 477

Acknowledgments

The author would like to thank Pieter Smit, Buur-

man aan Jeroen Boschlaan van Eindhoven in the Nether-

lands for his true friendship and continuous encourage-

ment, Professor Abdelkader Sahraoui at LAAS-CNRS of

Toulouse in France for his significant support in helping

me during these years of hard work, and Professor Jan

Hensen at Eindhoven University of Technology (TU/e) in

the Netherlands for his critical help in doing this re-

search, as well as the anonymous reviewers for their valu-

able feedback to the manuscript.

References

 A. Yahiaoui. A systems engineering approach to distrib-
uted control and building performance simulation. In Pro-
ceedings of the 29th International Conference of CIB W78,
Beirut, Lebanon, pp. 422–431, 2012.

[1]

 A. Yahiaoui, J. Hensen, L. Soethout, D. Van Paassen. In-
tegrating building performance simulation with control
modeling using Internet sockets. In Proceedings of the 9th
International IBPSA Conference, Montreal, Canada,
pp. 1377–1384, 2005.

[2]

 A. Yahiaoui, R. Staal. KR26 A systems engineering ap-
proach to embedded control system implementation in
buildings. INCOSE International Symposium, vol. 18,
no. 1, pp. 1717–1730, 2008. DOI: 10.1002/j.2334-5837.2008.
tb00912.x.

[3]

 M. Janak. Coupling building energy and lighting simula-
tion. In Proceedings of the 5th International IBPSA Con-
ference, Prague, Czech Republic, pp.307–312, 1997.

[4]

 Z. Q. Zhai. Developing An Integrated Building Design
Tool by Coupling Building Energy Simulation and Com-
putational Fluid Dynamics Programs, Ph.D. dissertation,
MIT, USA, 2003.

[5]

 CSTB. Type 155-A new TRNSYS type for coupling
TRNSYS and Matlab, Centre Scienfigique et Technique
du Bâtiment, [Online], Available: https://www.power-
show.com/view/14bc9b-MjlmO/TRNSYSMATLAB_
5.powerpoint_ppt_presentation, 2005.

[6]

 M. Wetter. Co-simulation of building energy and control
systems with the building controls virtual test bed. Journ-
al of Building Performance Simulation, vol. 4, no. 3,
pp. 185–203, 2011. DOI: 10.1080/19401493.2010.518631.

[7]

 I. Beausoleil-Morrison, F. Macdonald, M. Kummert, T.
McDowell, R. Jost. Co-simulation between ESP-r and
TRNSYS. Journal of Building Performance Simulation,
vol. 7, no. 2, pp. 133–151, 2014. DOI: 10.1080/19401493.
2013.794864.

[8]

 M. Wetter, W. D. Zuo, S. T. Nouidui, X. F. Pang. Model-
ica buildings library. Journal of Building Performance
Simulation, vol. 7, no. 4, pp. 253–270, 2014. DOI: 10.1080/
19401493.2013.765506.

[9]

 ISO. Building automation and control systems (BACS)-
Part 2: Hardware, ISO Std. 16484–2, 2005.

[10]

 ISO. Building automation and control systems (BACS)-
Part 5: Data communication protocol, ISO Std. 16484–5,
2014.

[11]

 C. Hughes, T. Hughes. Parallel and Distributed Program-
ming using C++, Boston, USA: Addison-Wesley, 2004.

[12]

 A. Yahiaoui, J. Hensen, L. Soethout. Integration of con-[13]

trol and building performance simulation software by run-
time coupling. In Proceedings of the 8th International
IBPSA Conference and Exhibition, Eindhoven, Nether-
lands, pp.1435–1441, 2003.

 A. Yahiaoui, J. L. M. Hensen, L. L. Soethout. Developing
CORBA-based distributed control and building perform-
ance environments by run-time coupling. In Proceedings of
the 10th International Conference on Computing in Civil
and Building Engineering, Weimar, Germany, pp. 86–93,
2004.

[14]

 ESRU. The ESP-r System for Building Energy Simulation-
User Guide Version 10 Series, ESRU Manual U02/1, Uni-
versity of Strathclyde, Scotland, 2002.

[15]

 B. Einarsson. Mixed language programming, Part 4, mix-
ing ANSI-C with Fortran 77 or Fortran 90. In Proceedings
of International Workshop on Current Directions in Nu-
merical Software and High Performance Computing,
Kyoto, Japan, 1995.

[16]

 Matlab/Simulink Documentation, (Math Works′s web-
site), [Online], Available: https://nl.mathworks.com/,
2015.

[17]

 A. Yahiaoui, A. E. K. Sahraoui. A framework for distrib-
uted control and building performance simulation. In Pro-
ceedings of the 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
Hammamet, Tunisia, pp. 232–237, 2012. DOI: 10.1109/
WETICE.2012.44.

[18]

 W. R. Stevens. UNIX Network Programming, Vol. 2: In-
terprocess Communications, 2nd ed., Upper Saddle River,
USA: Prentice-Hall, 1998.

[19]

 A. Fumagalli, R. Grasso. An efficient asynchronous simu-
lation technique for high speed slotted networks. In Pro-
ceeding of the 32nd Annual Simulation Symposium, San
Diego, USA, pp. 11–18, 1999. DOI: 10.1109/SIMSYM.
1999.766448.

[20]

 J. Shamsi, C. B. Chu, M. Brockmeyer. Towards partially
synchronous overlays: Issues and challenges. In Proceed-
ings of 1st International Workshop on Advanced Architec-
tures and Algorithms for Internet Delivery and Applica-
tions, Orlando, USA, pp.10–17, 2005. DOI: 10.1109/AAA-
IDEA.2005.17.

[21]

Azzedine Yahiaoui received the B. Sc.
degree in electrical and telecommunica-
tions engineering from University of Bou-
merdes, Algeria in 1995, the M. Sc. degree
in electronics engineering specialized con-
trol systems from University of Blida, Al-
geria in 1999, master of advanced studies
(MAS) degree in automatic systems from
LAAS-CNRS of Toulouse, France in 2001,

and the Ph. D. degree in distributed computing and control sys-

tems from Eindhoven University of Technology (TU/e), the

Netherlands in 2013. He is a researcher at TU/e, the Nether-

lands. He has extensive experience in modelling and simulation,

implementation and evaluation of distributed control systems,

application of systems engineering concepts, as well as analysis

and design of control systems for different domains of engineer-

ing namely aerospace, rail, automotive and buildings.

 His research interests include systems of systems engineering,

autonomous vehicles, distributed and hybrid control systems,

multi-agent control systems, verification and validation of com-

plex systems, and buildings automation and control systems.

 E-mail: azzedine.y@outlook.com (Corresponding author)

 ORCID iD: 0000-0003-2581-4521

 478 International Journal of Automation and Computing 17(3), June 2020

http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
http://dx.doi.org/10.1080/19401493.2010.518631
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506
http://www.mathworks.com/
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
http://dx.doi.org/10.1080/19401493.2010.518631
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506
http://www.mathworks.com/
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
http://dx.doi.org/10.1080/19401493.2010.518631
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
http://dx.doi.org/10.1002/j.2334-5837.2008.tb00912.x
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
https://www.powershow.com/view/14bc9b-MjlmO/TRNSYSMATLAB_powerpoint_ppt_presentation
http://dx.doi.org/10.1080/19401493.2010.518631
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.794864
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506
http://www.mathworks.com/
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://www.mathworks.com/
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/WETICE.2012.44
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/SIMSYM.1999.766448
http://dx.doi.org/10.1109/AAA-IDEA.2005.17
http://dx.doi.org/10.1109/AAA-IDEA.2005.17

