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Abstract: Hyperspectral images in remote sensing include hundreds of spectral bands that provide valuable information for accur-
ately identify objects. In this paper, a new method of classifying hyperspectral images using spectral spatial information has been presen-
ted. Here, using the hyperspectral signal subspace identification (HYSIME) method which estimates the signal and noise correlation
matrix and selects a subset of eigenvalues for the best representation of the signal subspace in order to minimize the mean square error,
subsets from the main sample space have been extracted. After subspace extraction with the help of the HYSIME method, the edge-pre-
serving filtering (EPF), and classification of the hyperspectral subspace using a support vector machine (SVM), results were then
merged into the decision-making level using majority rule to create the spectral-spatial classifier. The simulation results showed that the
spectral-spatial classifier presented leads to significant improvement in the accuracy and validity of the classification of Indiana, Pavia

and Salinas hyperspectral images, such that it can classify these images with 98.79%, 98.88% and 97.31% accuracy, respectively.
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1 Introduction

Remote sensing technology is a data collection meth-
od in which contact with the measured objects is minim-
al. Collecting electromagnetic waves for measurement and
recording is among the responsibilities of the sensorslll.
Hyperspectral imaging systems include several hundred
spectral bands and possess high spectral accuracy. Based
on the nature of the datum it carries, every pixel of the
image has a unique spectral graph, called its spectral sig-
naturel?. One of the most important applications of re-
mote sensing science is allocating a class to every pixel,
called classification(?. Nowadays, most research in the
field of remote sensing technology focuses on hyperspec-
tral imagesl3l. The spectral-spatial classification of hyper-
spectral images has faced such challenges as the complex-
ity of the area under study, data selection, image and al-
gorithm processing. There are various approaches toward
creating a classifier with reasonable accuracy. Much of
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the mentioned research uses techniques which allocate a
class to each pixel solely based on its spectral value
without considering the information contained within the
neighboring pixelsl4. Bayesian networksll, decision treesl4],
neural networksl], kernel-based techniquesl®, and sup-
port vector machine (SVM)[l have been proposed for this
purpose. Spectral-spatial classification of hyperspectral
images distinguishes different classes using spatial neigh-
borhood dependence of the pixels and is the best method
for recognizing patterns with high accuracy in order to
improve image classification. Research has shown that
spectral-spatial filters have adequate performance in the
spectral-spatial classification of hyperspectral images. An
important class of these filters are edge-preserving filters.
Recently, edge-preserving filtering[8-12] has become an act-
ive research topic in the field of remote sensing and has
found applications in image segmentation, classification,
dimensionality reduction, feature extraction, and noise
cancellation[!3-16], The dimensionality reduction method
tries to reduce the number of features of each subject and
to fully separate the classes in the hyperspectral image.
The feature extraction method reduces data dimensions
by selecting a subset of the initial features(l”l. Image fea-
ture extraction is an important operation in remote sens-
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ing and has been used for content-based image comparis-
on and for image analysis. Feature extraction has been
employed in the last two decades in diverse applications
such as medicine, industry, machine vision, and control.
In machine vision, image processing, and remote sensing,
using various mathematical operations like edge detec-
tion using gradients and appropriate filtering, the image
features have been extracted[!8l. In recent years, various
algorithms have been proposed for image feature extrac-
tion. The existing methods extract all the characteristics
of features that are sensitive to noise and dependent on
the complexities of image patterns!8l. Zhang et al.l'9 in-
troduce a new index called the mutual information (MI)
and applied it for determination of the specific bands of
the satellite images.

In spite of limitations in spatial data and the complex-
ity of feature merging, the spectral data has not been
eliminated after filtering. To solve this problem, a meth-
od of image feature extraction using a propagated filter
(PF) has been presented (PCA-PF-SVM)20l. After dimen-
sionality reduction using PCA and extracting the image
features, the PF has been applied to the image, and it has
been classified using the SVM classifier2). Combining dif-
ferent areas in an image is another challenge for the exist-
ing filters when they process the image for noise cancella-
tion. The propagated filter cancels noise and smooths the
image using the characteristics of bilateral filters and,
hence, has a smaller computational burden relative to
other filters?ll. Results show that this method effectively
extracts the spectral-spatial features of hyperspectral im-
ages and considerably improves classification accuracyl2!l.

Kang et al.lBl, for first time, introduce a new structure
based on edge-preserving filtering (EPF) for the spectral-
spatial classification. Their structure includes the follow-
ing steps:

First, the hyperspectral image is classified using pixel
classification, i.e., a support vector machine classifier.
Then, the resulting classified map is presented as probab-
ilistic maps in different classes, and edge-preserving filter-
ing is applied to each of the probabilistic maps in the
classes given the first main component or the first three
main components of the hyperspectral image presented as
the reference grey or color image. Finally, the maximum
value on the filtered probabilities is chosen for the final
classification. Experimental results show that edge-pre-
serving filtering can significantly improve classification
accuracy, and therefore can be used in real-world applica-
tions(®l.

Xia et al.ll1l first, used a popular strategy based on the
random subspace (RS) for extraction of K band ran-
domly. Then, independent component analysis (ICA) is
used to extract the independent spectral components, and
EPF is used to generate spatial-spectral features. Finally,
using random classifications, random forest, and random
rotation, classification is performed[t1].

Note that efficient band selection from hyperspectral
images and its role in classification accuracy is one of the
vital challenges in research. On the other hand, in prepro-
cessing stage, the selection of suitable filters is a sensitive
task; i.e., if the mentioned filter is not so efficient some
information may be missed. Moreover, the random selec-
tion of subspace may be eliminated by the important sub-
spaces that have more information.

The contributions of this paper are threefold.

1) We present a new strategy without using any of the
randomness extraction of subspaces. The use of the hy-
perspectral signal subspace identification (HYSIME) tech-
nology for the subspace selection.

2) We propose a new structure from the combination
of the HYSIME method, edge-preserving filtering, and
the SVM classifier for the spectral-spatial classification of
hyperspectral images.

To carry out this task, the hyperspectral subspaces
are extracted from the image, and edge-preserving filter-
ing is applied to the individual subspaces. The results of
the classification obtained from the presented method are
merged into the decision-making level using majority rule
to create the spectral-spatial classification. The proposed
method is capable of improving classification accuracy
and performance, reduce complexity, reduce stored data
volume, cancel small noise, maintain the original struc-
ture of the image, identify subspaces, and automatically
reduce dimensions. Hyperspectral signal identification
with minimum error starts with signal evaluation and
noise correlation matrices, using multiple regression. Then
a subset of inputs of the correlation matrix of the signal
is used to represent the subspace of the signal. This sub-
space is obtained by minimizing the total power of the
prediction error with noise power, which decreases and in-
creases the function of the subspace function, respect-
ively. Therefore, if dimensions are ignored under the
space, the power of noise is dominant, while if the dimen-
sions are below space, the error of the prediction error is
dominant. The overall layout of the computational per-
formance is uncontrolled and completely automated,
which means that no parameters are set.

In Section 2, the determination of hyperspectral sig-
nal subspaces using HYSIME has been described. Section 3
has explained the edge-preserving filter. The proposed
method and its experimental results have been explained
in Section 4. The final part involves results and discus-
sion about the proposed method.

2 Signal subspace estimation wusing

HYSIME

The hyperspectral subspace method was presented in
[22, 23] in recent decades. Every pixel of a hyperspectral
image may be represented by a spectral vector where
each of the spectral bands represents an axis in space.
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The number of pure members present in an area is far
fewer than the number of bands covering that area. For
this reason, an important issue for high-dimensional data
is determining their real number of dimensions. Identify-
ing such a subspace enables one to display the spectral
vectors in a subspace with fewer dimensions. This pro-
cess is known as data dimensionality reduction, and it
leads to a lower computational burden and stored data
volumel23], Dimensionality reduction is one of the most
important preprocessing steps in hyperspectral processing.
High-dimensional data possesses two important character-
istics: first, they can be projected onto subspaces with
fewer dimensions without any data loss, and second, the
number of training samples increases with the number of
data dimensions. Therefore, it is necessary to project
high-dimensional data onto low-dimension subspaces
without loss of datal23. HYSIME is one of the modern
methods of estimating the signal subspace in the hyper-
spectral images, and it is based on minimizing the mean
square error. In this method, the dimensionality of the
hyperspectral space is determined by minimizing the sum
of the powers of the image error and noise error terms.
Here, the noise and signal correlation matrix is first es-
timated using multiple linear regression then, the eigen-
vectors of the signal correlation matrix are used to gener-
ate a series of nested subspaces(?3l. After that, the signal
subspace is determined by minimizing the sum of the
powers of the image error and the noise error terms which
are, respectively, descending and ascending functions of
the subspace dimensionality. Hence, if the subspace di-
mensionality is higher than the true value, the term per-
taining to the power of the noise error will prevail, where-
as if the subspace dimensionality is lower than the true
value, the term pertaining to the power of the image er-
ror will prevail23l. In the first stage, a number of ortho-
gonal directions that create an undetermined subspace
out of the signal subspace are determined. This undeter-
mined subspace is determined by searching for the min-
imum mean square error between the min signal X and
the input data, i.e., the observed spectral vector r = X +
n. The correlation matrix is denoted by R,[23].

X1, Xo, -, Xnl[X1, Xo, -+, Xa]T
R$:[ 1, 2, 9 ]][V 1, 25 ) ] (1)

where X is the signal estimated after subtracting the
noise estimated in the previous step from the main
hyperspectral data. The eigenvalues of the hyperspectral
correlation matrix have been sorted in descending order.
Now, the RL space may be decomposed into two
orthogonal subspaces: the first-order moment and the
second-order moment obtained using (2) (k is the
dimensionality of the subspace).

E (K| X)=UEY|X)=UrE(Y +n|X)=Ur X =X. (2)
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The mean square error between X and Xj equals:

MSE(K|X) = E [(X ~ X0 (X — Xp) |X] _
BX = X=Uen) T (X = Xi = Uin|X] =

(X —X3)" (X—Xk)+(UkRnUE)T. (3)

Finally, an estimate of the hyperspectral subspace is
obtained by minimizing the mean square error using the
yy?T

above relationship. The correlation matrix Ry = N

has been replaced with that of the samples [23].

(kﬂrfr) = arg min {(UkLLRY)T + 2(UkRn)T}. (4)

3 Edge-preserving filtering

The dge-preserving filter is an image processing tech-
nique the objective of which is reducing spatial variety. It
smooths textures and preserves edges. For high-resolu-
tion hyperspectral images, neighboring pixels usually have
strong connections. Using the edge-preserving filter causes
neighboring pixels on the same side of an edge to possess
similar features which helps improve the performance of
the classification?4. Using edge-preserving filters in op-
timizing subsets has two advantages: first, noise subsets
which appear as scattered points can be effectively
smoothed, and second, restored subsets are always level
with the boundaries of the actual objectl8l. These advant-
ages show that the spatial information of the reference
image have been well taken advantage of in the filtration
processl® 24, The edge-preserving filter based on the
Gaussian filter is used. The spatial and range distances
are defined using two Gaussian decreasing functions, i.e.,

Gss (Il i3 ) =exp (M) and G, (I~ L) =

o3
_‘Il — Ij|2 [24] . .
exp( ——s— . In the edge-preserving filter, spa-

tial distancgs are defined using two G functions, where O;
is the filter output, P; the input image, I the reference
image (It is the same variable as that for the reference
image). ¢ and j are the pixels. Those neighboring pixels
that share similar intensity and color tend to have simil-
ar outputs and are defined as follows®l. In the edge-pre-
serving filter, spatial distances are defined using two G
functions, where O; is the filter output, P the input im-
age, I the reference image, and I and j are the pixels. K}
is a normalizing term of the edge-preserving filter, §s con-
trols the size of the local window used to filter a pixel,
and dr defines how much the weight of a pixel decreases
because of the intensity difference between the reference
pixelsl®l. Those neighboring pixels that share similar in-
tensity and color tend to have similar outputs and are
defined as follows:
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0 = % Y > Gos(llli =3 INGsr (11 = Li]) Pr. (5)
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4 Proposed method

Fig.1 displays the structure of the proposed method.
This method has four steps: 1) estimating the hyperspec-
tral signal subspace explained in Section 2, 2) edge-pre-
serving filtering of the subspaces, 3) classifying the
filtered subspaces, and 4) merging the classification res-
ults using majority rule.

As explained in the description of the HYSIME meth-
od in Section 2, after estimating the correlation matrix of
the sample signal, a set is introduced, an unknown sub-
set of which forms the hyperspectral subspace. Where the
sum of the powers of the image error and the noise error
is minimized, i.e., the optimal solution, the dimensions of
the hyperspectral subspace are calculated®. In the next
stage, edge-preserving filtering has been applied to all
subspaces. When the size of the filter and the opaqueness
of the image increase, the filtration outputs are smoother,
and the neighboring input pixels of similar intensities in
the reference image tend more to assimilate to the filtra-
tion outputs. By applying edge-preserving filtration to
the hyperspectral subspaces and considering spatial data,
the reference image is obtained. In the filtration of the
subspaces, spatial data are not initially taken into ac-
count. Therefore, the subspaces have noise and are not
level with the boundaries of the actual object. To solve
this problem, the extracted subspaces are optimized
through edge-preserving filtration®l. Hence, this step faces
two challenges: 1) the choice of the edge-preserving filter,
and 2) the reference imagel'¥. Optimizing subspaces us-
ing edge-preserving filtration has two main advantages: 1)
noise subsets which appear as scattered points can be ef-
fectively smoothed, and 2) restored subsets are always
level with the boundaries of the actual object. These

HYSIME

Hyperspectral
data N band

=

Subspace k&

Subspace £

points indicate that the spatial data have been used well
in the edge-preserving filtration process®. After this
stage, the SVM classification is applied to the filtered
subspaces. Among the reasons for choosing this classifier
are the facts that it is one of the mostly used pixel classi-
fiers, has adequate performance in spectral-spatial classi-
fication applications, and is resistant against noise and
the Hughes phenomenon. Furthermore, the information
fusion from the point of view of features and decision
making have been established in [11, 25]. The results ob-
tained from the classifier are merged into the decision-
making level using majority rule, and finally the classific-
ation map is generated. The merging of the classification
results leads to an improved classification, such that nov-
el results with more comprehensive data may be attained.
The merging process is one which does cause loss of spec-
tral data and which fully preserves spectral features and
adds spatial features to the hyperspectral images/26.

4.1 Hyperspectral data sets

The proposed method is performed on three hyper-
spectral data sets, i.e., the Indian Pines image, the Uni-
versity of Pavia, and the Salinas image. The pictures
have the following characteristics:

Indian Pines: The first hyperspectral image. The In-
dian Pines image capturing the agricultural Indian Pine
test site of north-western Indiana was acquired by the
airborne visible/infrared imaging spectrometer (AVIRIS)
sensor. The image has 220 bands of size 145 x 145 with a
spatial resolution of 20m per pixel and a spectral cover-
age ranging from 0.4pm to 2.5uml. The reason for
choosing this image, similar spectral signatures of differ-
ent classes and the complexity is in the classification.
After removing bands of noise and water absorption, ex-
periments are performed on the remaining 186 bands.
Fig.2(a) shows the corresponding ground truth data of
the Indian Pines image.

.

Classification 1

Decision fusion |
—_—

[ 2

Classification 2

‘2

Cla-ssiﬁcation k

Fig.1 Schematic of the proposed, spectral-spatial classification method
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University of Pavia: The University of Pavia im-
age capturing an urban area surrounding the University
of Pavia was recorded by the ROSIS-03 satellite sensor.
The image has 115 bands of size 610 x 340 with a spatial
resolution of 1.3m per pixel and a spectral coverage ran-
ging from 0.43um to 0.86um (12 most noisy channels
were removed before experiments). Nine classes of in-
terest are considered for this imagel8l. Fig.3 (a) shows the
reference images of the University of Pavia dataset.

Salinas: The Salinas image was captured by the
AVIRIS sensor over Salinas Valley, CA, USA, and with a
spatial resolution of 3.7m per pixel. The image has 224
bands of size 512 x217. As with the Indian Pines and

(@) (b) (©

University of Pavia scenes, 20 water absorption bands
were discarded]. TFig.4(a) shows the corresponding
ground truth data of the Salinas image.

4.2 Quality indexes

In order to evaluate the performance of the proposed
method, three quality indicators were used, namely, over-
all accuracy (OA), average accuracy (AA) and kappa
coefficient. OA is the percentage of pixels which are prop-
erly categorized. AA is the average percentage of pixels
for each class. The kappa coefficient corrects the correct
percentage of classified pixels.

W Alfalfa
M Corn-no till
[ Corn-min till

orn
B Grass/Pasture
Grass/Trees
Grass/Pasture-mowed
[l Hay-windrowed
Oats .
Soybeans-no till
M Soybeans-min till
M Soybean-clean
Wheat
Woods )
(d) [ Building-Grass-Trees-Drives
[l Stone-steel towers

Fig.2 Indian Pine image: (a) Ground truth data; (b) SVM method OA=79.53%; (c) RS-EPF-SVM method OA= 93.43%; (d)

HYSIME-EPF-SVM Method OA=98.79%.

(@) (b) ©

Wl Weeds_1
W Weeds 2
B Fallow
[ Fallow plow
Fallow smooth
[l Stubble
Celery
Grapes
M Soil
Corn
B Lettuce-4wk
B Lettuce-5wk
B Lettuce-6wk
Lettuce-7wk
[ Vinvard unitrained
Vinvard trellis

(d

Fig. 3 Salinas image: (a) Ground truth data; (b) SVM method OA=89.21%; (c) RS-EPF-SVM method OA= 94.65%; (d) HYSIME-

EPF-SVM method OA=97.31%.

(b)

[l Asphalt

[l Meadows
[l Gravel

[ Trees

[] Metal sheets
[l Bare soil
[l Bitumen

[l Bricks

[] Shadows

)
—

38

T

O ™

(d)

Fig.4 University of Pavia image: (a) Ground truth data; (b) SVM method OA=90.57%; (c) RS-EPF-SVM method OA= 95.83%; (d)

HYSIME-EPF-SVM method OA=97.31%.
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4.3 Implementation results

The implementation has been conducted in Matlab
software (a Laptop with 2.50GHz, 2CPU and 4-GB
memory). Tables 1-3 show the hyperspectral subspace es-
timation using the HYSIME method as a function of the
number of pure members (P), SNR, and the noise shape
(white noise and Gaussian noise) in various on three hy-
perspectral data Indian Pines, Salinas and University of
Pavia. For higher signal-to-noise ratio (SNR), better es-
timates of the pure members are obtained for white noise
and Gaussian noise. Tables 1 and 2 are the results of hy-
perspectral subspace estimation it has been shown to In-

dian pines and Salinas with P = 15, SNR = 50dB and
1

n = Ea

mean square error for these values is K = 15 which is

n = 0 as an optimal solution. The minimum

equal to the number of pure members. So the value is
K = 15 and 15 subspaces hyperspectral be extracted from
these images. Also, in Table 3, the results of hyperspec-
tral subspace estimation has been shown to University of

Table 1 Hyperspectral subspace estimated using HYSIME for
white noise and Gaussian noise in Indian Pines image

P
SNR 1
n=0 n= I

50 3 5 10 15 3 5 10 15

35 3 5 10 15 3 5 10 15

25 3 5 10 14 3 5 10 11

15 3 5 8 9 3 5 8 8

Table 2 Hyperspectral subspace estimated using HYSIME for
white noise and Gaussian noise in Salinas image

P
SNR 1
n=0 =13
50 3 5 10 15 3 5 10 15
35 3 5 10 14 3 5 10 11
25 3 5 10 12 3 5 10 12
15 3 5 9 8 3 5 6 8

Table 3 Hyperspectral subspace estimated using HYSIME for
white noise and Gaussian noise in University of Pavia image

P
SNR 1
n=0 =13

50 2 4 6 8 2 4 6 8

35 2 4 6 8 2 4 6 7

25 2 4 6 8 2 4 6 7

15 2 4 5 6 2 4 3 6

Pavia with P = 8, SNR = 50dB. Figs.5 and 6, displays
an assessment of the mean square error for the HYSIME
algorithm in Indiana Pines and Salinas as a function of
the subspace dimensionality with P = 15 and SNR =
50dB, for n = 0 and = 1.18 (n denotes noise type). The
minimum mean square error for these values is K = 15
which is equal to the number of pure members. Accord-
ing to the graph, the power of the image error is decreas-
ing, and the power of the noise error is increasing, and
both are functions of the subspace dimensionality. Given
the mentioned findings, 15 subspaces are extracted from
the actual hyperspectral Indiana image, and the pro-
posed algorithm is applied to them. Also Fig.7 shows the
evaluation of the mean square error for the HYSIME al-
gorithm in University of Pavia as a function of the sub-
space dimensionality with P = 8 and SNR = 50dB, for
n = 0 and n = 1.18. The minimum mean square error for
these values is K = 8 which is equal to the number of
pure members. According to the graph, the power of the
image error is decreasing, and the power of the noise er-
ror is increasing, and both are functions of the subspace
dimensionality.

Given the mentioned findings, 8 subspaces are extrac-
ted from the actual hyperspectral Pavia image, and the
proposed algorithm is applied to them. After dimensional-
ity reduction with the help of the HYSIME method, edge-
preserving filtering (EPF), and classifying the hyperspec-
tral subspaces using a support vector machine (SVM),
the results obtained from the classification have been
presented. These results were then merged into the de-
cision-making level using majority rule to create the spec-
tral-spatial classifier. Tables 46 show the number of
training samples. For each of the three hyperspectral
data, 30 samples are considered. Training samples were
randomly selected from the ground truth data.

It is worth noting that based on previous research, we
set 0; = 7, 4 for the Indian Pines and the University of
Pavia, respectively?2. Also, the best range o, for the
three sets of data is between 0.1 and 0.3[22. For the Sali-
nas image, the best classification function in the pro-
posed method is os = 5. Figs.2-4 shows the implementa-
tion results and the classification maps obtained from the
Indian Pines, Salinas and University of Pavia hyperspec-
tral images in the proposed method dependent on the cor-
responding OA criterion. For categorization based on spa-
tial information, the proposed method of HYSIME-EPF-
SVM is used for low space. The logic behind the success
is to estimate hyperspectral subcomponents for combin-
ing results for subspace using the HYSIME technique. In
this case, we can increase classification performance
without allocating spectral information. The results in
Tables 4-6 show that HYSIME-EPF-SVM in all cases
provides better classification results than random sub-
groups and SVMs. The proposed HYSIME-EPF-SVM ap-
proach significantly improves the classification. Results
using spectral information (HYSIME) indicate the im-
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portance of EPF in extracting spatial information. The
results shown in Tables 4-6 show that HYSIME-EPF-
SVM is superior to RS-ICA-RGF-RF, PCA-PF-SVM and
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HYSIME and EPF shown through a group strategy. Ac-
cording to Figs.2 and 3, in which the spectral-spatial
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Plot of mean square error for (Indian Pines) hyperspectral data obtained by the HYSIME method
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Fig. 6 Plot of mean square error for (Salinas) hyperspectral data obtained by the HYSIME method

HySime

=—— Mean squared error
----- = Projection error
--=- Noise power

15 20 25 30 35 40 45 50
k

(a) Gaussian noise

HySime
10
100 F = Mean squared error
----- « Projection error
00 [ --=- Noise power
S
5107
=
107 F
104 7
10—5 ’ 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
k
(b) White noise

Fig. 7 Plot of mean square error for (University of Pavia) hyperspectral data obtained by the HYSIME method
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Table 4 Results of each class for Indian Pines hyperspectral data in the proposed method

229

Proposed method

Indian Pines class Train Test SVM EPF-SVMBl PCA-PF-SVM[2I RS-ICA-EPF-RF[1
RS-EPF-SVM HYSIME-EPF-SVM
1 Alfalfa 15 26 68.80 57.78 54.55 98.75 99.17 100
2 Corn-no till 30 1408 71.26 85.80 95.22 90.70 91.97 97.11
3 Corn-no till 30 810 73.91 89.35 94.97 89.47 93.38 97.65
4 Corn 30 217 62.28 43.06 91.44 99.75 99.26 97.82
5 Grass/Pasture 30 463 88.30 92.93 72.16 93.53 95.27 96.38
6 Grass/Trees 30 710 86.44 91.93 100 98.84 98.08 100
7 Grass/Pasture- 15 14 88.07 82.35 81.92 99.23 98.46 100
mowed
8 Hay-windrowed 30 485 90.89 100 100 99.80 99.63 100
9 Oats 15 10 77.77 100 54.45 100 100 100
10 Soybeans-no till 30 952 74.42 66.32 84.34 91.86 88.40 93.35
11 Soybeans-mintill 30 2435 77.79 92.13 95.90 88.24 98.60 99.02
12 Soybean-clean 30 537 69.31 52.77 88.51 94.67 92.43 97.80
13 Wheat 30 185 91.84 100 95.85 99.34 99.23 99.60
14 Woods 30 1245 92.60 96.94 100 98.27 99.40 99.98
15 Duilding-Grass- 30 366 68.84 88.99 72.58 98.23 85.10 97.56
Trees-Drives

16  Stone-steel Towers 30 73 99.05 87.95 87.01 99.08 92.20 97.15
OA - - 79.53 83.03 91.54 93.15 93.43 98.79
AA - ~  80.01 83.02 81.06 96.23 96.56 98.32

Kappa - - 770 81.02 90.01 - 94.86 99.0

Table 5 Results of each class for University of Pavia hyperspectral data in the proposed method

Proposed method

Universityof Pavia class Train Test SVM EPF-SVMB PCA-PF-SVMR!  PCA-PFEPF-RF[1
RS-EPF-SVM HYSIME-EPF-SVM

1 Asphalt 30 6832 96.82 98.05 92.30 95.81 92.92 99.19
2 Meadows 30 18666 97.50 97.40 99.47 95.64 97.72 99.90
3 Gravel 30 2187 77.18 89.16 84.96 99.22 87.60 98.03
4 Trees 30 3416 87.90 96.20 76.68 96.68 97.78 89.75
5 Metal sheets 30 1358 97.38 95.05 99.92 93.24 99.68 99.92
6 Bare soil 30 5084 77.75 64.27 84.80 94.45 95.54 97.49
7 Bitumen 30 1336 67.5 58.20 85.61 90.88 92.08 99.77
8 Bricks 30 3858 85.91 76.20 79.43 92.75 92.18 99.31
9 Shadows 30 1006 99.91 99.89 96.95 96.41 99.96 88.91
OA - - 90.57 87.00 90.41 94.54 95.83 98.88
AA - - 87.22 86.05 88.90 95.01 95.37 99.09
Kappa - - 88.0 83.03 89.02 - 95.79 98.31

classification results in Indian Pines and Salinas hyper-
spectral data are shown, the noise level in the classifica-
tion map of the HYSIM-EPF-SVM proposed method is
lower than the SVM method. Also, OA in the proposed
method is more than the SVM method, so the HYSIME-
EPF-SVM method leads to improved classification per-
formance and increased classification accuracy. In Fig.7,

the spectral-spatial classification results from University
of Pavia hyperspectral data is shown. The noise level in
the classification map of the HYSIM-EPF-SVM proposed
method is lower than the SVM method, also OA in the
proposed method is more than SVM method, so the
HYSIME-EPF-SVM method leads to improved classifica-
tion performance and increased classification accuracy.
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Table 6 Results of each class for Salinas hyperspectral data in the proposed method

Proposed method

Salinas class Train Test SVM EPF-SVMLE PCA-PF-SVMI[21]
RS-EPF-SVM HYSIME-EPF-SVM

1 Weeds 1 30 1989 99.9 100 100 99.09 100
2 Weeds_2 30 3703 99.6 99.89 99.84 99.06 100
3 Fallow 30 1956 95.7 94.91 100 95.07 100
4 Fallow plow 30 1374 97.5 97.86 91.79 97.05 97.6
5 Fallow smooth 30 2658 98.3 99.96 99.52 98.03 99.3
6 Stubble 30 3939 100 99.92 99.97 100 98.62
7 Celery 30 3559 99.0 100 100 99.0 98.74
8 Grapes 30 11251 81.9 82.04 95.28 81.09 97.4
9 Soil 30 6183 99.5 99.48 99.97 99.5 99.8
10 Corn 30 3258 87.3 85.06 97.76 87.3 96.7
11 Lettuce 4wk 30 1048 96.6 98.21 100 96.6 97.65
12 Lettuce 5wk 30 1907 96.9 100 100 96.9 100
13 Lettuce 6wk 30 890 96.9 96.10 98.33 96.06 98.15
14 Lettuce Twk 30 1052 89.2 99.20 93.09 89.02 99.8
15 Vinyard untrained 30 7248 64.2 73.97 85.01 64.2 86.4
16 Vinyard trellis 30 1787 95.0 99.49 95.21 95.0 100
OA 89.21 91.41 96.11 94.65 97.31
AA 93.59 95.38 97.24 97.44 97.24
Kappa 88.01 90.03 96.01 94.04 96.78

The reason for choosing these images is the similarity of
the spectral signature of different classes and therefor, the
complexity of the classification may be increased. If the
edge-preserving filtering is applied on the hyperspectral
image without any selection of subspaces or random selec-
tion, the important information may be ignored. Our pro-
posed method can extract the mentioned information and
maintain the specific classes with the small objects.

Using edge preservation filtering (EPF) and HYSIME
techniques ensures the neighboring that are of the same
class have the same features, so it will reduce the changes
in the areas belonging to one class for this reason, the
HYSIME-EPF-SVM method has shown a significantly
better performance than other methods. According to the
Tables 4-6, using the proposed method, the average ac-
curacy in these images in order is 98.79%, 97.31% and
98.88%, and the kappa coefficient will be capable of in-
creasing significantly.

In order to explain the effect of the strategy for the
subspace selection, we compare our results (HYSIME-
EPF-SVM) with the random subspace approach that so-
called RS-EPF-SVM. Figs.2—4 (cases (c) and (d)) and
Tables 4-6 show this comparison. For example, in Indian
Pines, the OA is 93.43% and 98.79% for the RS-EPF-
SVM and HYSIME-EPF-SVM methods, respectively.
Furthermore, for the complexity of computing, we report
the CPU time of both approaches in Table 7. Due to the
random selection of subspace in RS-EPF-SVM method
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Table 7 Comparison of the CPU time for RS-EPF-SVM and
HYSIME-EPF-SVM methods based on second

Dataset RS-EPF-SVM HYSIME-EPF-SVM
atase method method
Indian Pines 76.87s 105.11s
University of 86.64s 112.52s
Pavia
Salinas 77.55s 109.51s

needs no extra process, it is easy to see that the time con-
suming of RS-EPF-SVM is less than HYSIME-EPF-SVM.
However, the efficiency of HYSIME-EPF-SVM method

from the point of view of accuracy is outperformed.

4.4 Comparisons with other state-of-the
classifier

We offer a comparison of the proposed methods
against spectra-spatial classification, including EPF-
SVMLE], PCA-PF-SVM[0 and ICA-EPF-RF! taking in-
to account the number of training samples (i.e., 30
samples per three images). From Tables 4-6, we find that
the proposed methods are better in terms of classification
differentiation than these methods and are more stable
than other spectral-spatial classifications. Details are giv-

en on the methods mentioned in the introduction.
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5 Conclusions

In this paper, a new method based on automatic selec-
tion signal subspace using the HYSIME method and com-
bining it with the spatial-spectral filtering of the EPF is
proposed. In the algorithm, a subset of the eigenvectors
with minimum mean square error selects the best repres-
entation of the signal subspace by estimating the signal
and noise correlation matrix. So, HYSIME is an automat-
ic method that does not need to adjust its parameters.
The proposed method is superior to other methods for de-
tecting the hyperspectral subspace. The results show the
effectiveness of the proposed methods in extracting spec-
tral and spatial features and providing higher classifica-
tion accuracies when compared with state-of-the-art
methods. In future work, we will utilize, other data
sources in the classification process. As a suggestion, this
algorithm can be compared with virtualized dimension al-
gorithms such as Harsanyi-Farrand-Chang (HFC) and
noise-whitened HFC (NWHFC).
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