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Abstract: Tracking registration is a key issue in augmented reality applications, particularly where there are no artificial identifier
placed manually. In this paper, an efficient markerless tracking registration algorithm which combines the detector and the tracker is
presented for the augmented reality system. We capture the target images in real scenes as template images, use the random ferns classi-
fier for target detection and solve the problem of reinitialization after tracking registration failures due to changes in ambient lighting or
occlusion of targets. Once the target has been successfully detected, the pyramid Lucas-Kanade (LK) optical flow tracker is used to track
the detected target in real time to solve the problem of slow speed. The least median of squares (LMedS) method is used to adaptively
calculate the homography matrix, and then the three-dimensional pose is estimated and the virtual object is rendered and registered.
Experimental results demonstrate that the algorithm is more accurate, faster and more robust.

Keywords: Tracking registration, augmented reality, markerless, random ferns, Lucas-Kanade (LK) optical flow.

1 Introduction

Augmented realityl] (AR) is a kind of technology that
superimposes virtual information such as computer-gener-
ated 3D models, texts, images, and videos into real
scenes. Tracking registration technology is a key techno-
logy that determines the performance of augmented real-
ity systems. Its goal is to quickly and accurately calcu-
late the pose information of the camera relative to the
real scene, and precisely align the virtual information
with the real scene based on the pose information?l.
Based on different identification methods, the methods of
tracking and registration based on augmented reality can
be divided into artificial identification tracking registra-
tion methods and markerless tracking registration meth-
ods. The most representative of the artificial identifica-
tion tracking registration methods are ARToolKitl and
ARTagl4l. This type of methods has the advantages of
small amount of calculation, fast execution speed, and no
need for complicated hardware equipment. However, the
artificial identification oriented registration tracking
methods need to install artificial identifiers with obvious
identification features in natural environments, and these
artificial identifiers can be identified in the video image
through matching algorithms. Due to the placement of
artificial identifiers in real scenes, the artificial identifica-
tion oriented registration tracking methods cannot solve

Research Article

Manuscript received January 3, 2019; accepted July 24, 2019;
published online September 13, 2019

Recommended by Associate Editor Jangmyung Lee

© Institute of Automation, Chinese Academy of Sciencesand
Springer-Verlag GmbH Germany, part of Springer Nature 2019

the problem of environmental illumination changes and
occlusion of artificial identifiers, and had the disadvant-
age of poor robustness. At the same time, placing artifi-
cial identifiers in real scenes also brings a problem of
visual contamination. In these cases, the markerless
tracking registration methods must be used to solve the
registration problem of virtual reality scenes in augmen-
ted realityl®l. Therefore, the markerless tracking registra-
tion method is the main direction of current research and
development.

The markerless tracking registration methods can es-
timate the camera pose directly from the relationship of
the natural features between the template image and the
current frame image. There are mainly two methods: a
method based on template feature tracking and a meth-
od based on template image matching. On account of the
method based on template feature tracking, Shi and To-
masilfl proposed the tracking algorithm based on Kanade-
Lucas-Tomasi (KLT). The method was widely used due
to its real-time advantages and was applied in the real
tracking registration process of augmented reality by Li
et al.l and Yuan et al.l8l. However, the KL'T tracking al-
gorithm has the disadvantage of being greatly affected by
the illumination conditions, and there is a problem of
tracking failure when the target transforms faster or the
target is largely occluded. In addition, once a tracking
failure occurs, the general target tracking algorithms will
not be reinitialized. The tracking registration method
based on template image matching mainly solves the
problem of wide baseline matchingl®. In the traditional
wide baseline matching algorithms, the scale-invariant
feature transform (SIFT) is widely used in the fields of
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pattern recognition and image matching because of its
strong robustness/19. In 2004, Lowellll applied the SIFT
operator to the tracking registration of the AR system for
the first time. However, the traditional wide baseline
matching algorithms have the characteristics of computa-
tional complexity, and there are difficulties in meeting
the real-time requirements of the augmented reality sys-
tem. In response to this problem, Ozuysal et al.ll2] re-
garded wide-baseline image matching as a classification
problem, and constructed a random ferns classifier based
on naive Bayes, which puts the computationally intens-
ive part into the classifier’s offline training process to im-
prove the real-time performance of the algorithm.

We can solve the problems of tracking registration
failure due to changes in ambient lighting or occlusion of
targets by using wide baseline matching based on ran-
dom ferns classifier to detect the target of each frame and
applying it to AR tracking registration. At the same
time, the real-time performance of the algorithm is im-
proved compared with the traditional wide baseline
matching algorithms. However, the real-time require-
ments of the AR system still cannot be satisfied by only
using the original random ferns algorithm. Therefore, we
proposed an augmented reality tracking registration al-
gorithm based on template tracking by combining detect-
or and tracker. The target detection is performed using a
random ferns classifier as a detector, and the detection
output is used as the tracking area of the tracker to nar-
row the tracking range. The detector is capable of resolv-
ing the problem of not being able to reinitialize after a re-
gistration failure due to ambient lighting changes or tar-
get occlusion tracking. After detecting the target, the tar-
get is tracked by the pyramid Lucas-Kanade (LK) optic-
al flow method to improve the real-time performance of
the algorithm. This method was applied to the markless
augmented reality system and had good applicability.

2 Random ferns detector

Using the random ferns classifier as a detector to de-
tect the target mainly includes offline training and target
detection. The flow chart was shown in Fig.1. Offline
training starts by extracting a certain number of keypo-
ints of the template image. Then, the set of stable keypo-
ints and training samples are generated. Finally, the
training samples are put into random ferns of a certain
scale to obtain a random ferns classifier. After getting the
current frame image, corresponding patches of the keypo-
ints are put into the random ferns classifier for rough
matching. Then, random  sampling  consistency
(RANSAQC) is used to eliminate the mismatch and calcu-
late the corresponding homography matrix.

2.1 Basic random ferns algorithm
The random ferns algorithm was originally proposed
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Fig.1 Flow chart for target detection using a random ferns
detector

by Lepetit et al.'3], which is a simplified form of the ran-
dom forests algorithm with better performance than the
random forests algorithm. The hierarchical characterist-
ics of the random forests are changed to non-hierarchical
characteristics by selecting the same decision for each
node. This change transforms the tree structure into a re-
latively single fern structure.

The basic idea of the random ferns classifier is similar
to the feature matching based on random forests. The
template image is described as H feature points. Let
K ={ki,--- ,ku} be the set of the feature points. Take
the set of all possible appearances of the image patch
p(k;) surrounding the feature point k; as a class. Let
ci,i=1,---,H be the set of classes. Therefore, given the
patch surrounding a feature point detected in an image,
our task is to assign it to the most likely class.

Let f;,j=1,---,N be the set of binary features
about the patch surrounding the input image feature
point, and the size of the p(k"P“!) is [, x I (generally
L=32). The value of each binary feature f; only de-
pends on the gray value Iy, and Iq,, of two pixel loca-
tions dj;1 and dj2 randomly generated by the image patch
p(k"""*) in the classifier training stagelll. We therefore

P — 17
n={y

Define the category of the patch p(k"P*') surround-

write

laj, < Iay,

otherwise.

(1)

ing the input image feature point as ¢;. Therefore, we are
looking for

éi:argmaxP(C:C¢|f1,f2a"'7fN) (2)

Cq

where C' is a random variable that represents the class.
Bayes' formula yields
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P(C:Ci|f17f27"' ,fN):
P(f17f27"' 7fN|C:Ci)P(C:Ci) (3)
P(.f17f27"'7fN) .

Assuming that the prior probability P(C) is an uni-
form distribution, since the denominator of the above for-
mula is independent from the class, formula (2) can be
converted into

¢ = argmax P(f1, f2,- -

i

L, INIC = ci). (4)

Due to the independence between f;, we therefore
write

N
P(fl,fzw"7fN|C:Ci):HP(fj|C:C¢)- (5)

In order to reduce the storage of (5) and ensure the
correlation between f;, the random ferns algorithm uses a
Semi-Naive Bayesian approach to patch recognition/'5,

The features f; are divided into M groups of size S = %
These groups are what we define as ferns. Under the con-
dition of Semi-Naive Bayesian classifiers, we believe that
different ferns are independent of each other and that
there is a correlation between nodes in the same fern.

Thus, the conditional probability becomes

P(fi fzo-- 5 InIC =ci) = || P(Fn|C=c) (6)

=

m=1

where Fm = [fg(myl), f0<m72), s ,fg(m,s)] , M = 17 cee 71\4
represents the m-th fern and o(m,j) is a random
permutation function with range 1,---,N. Hence, the
category p(k‘"P**) becomes

M
¢; = arg max H P(Fn|C =c). (7)

i m=1

In order to solve the above formula, it is only neces-
sary to calculate the fern F),, and the conditional probab-
ility P(Fin|C = ¢).

2.2 Offline training

The offline training phase estimates the class condi-
tional probability P(Fm|C = ¢;) for each fern Fi, and
class c;[16l. We assume that at least one image of the ob-
ject to be detected is available for training. We call any
such image as a template image. The key of offline train-
ing is to obtain stable key points and training samples.
These are done by affine transformation. Using the tem-
plate image as the front view, the affine images are ob-
tained by affine transformation, and the affine images
simulate the current frame images of different perspect-

ive transformations. Assuming that the point « in the
template image is the same as the point =’ in the cur-
rent frame image, the relationship between them can be
approximated by an affine transformation.

aix a2z g
At
w':HAac:{ }az—

T az az ty |z (8)
0 L 0 0 1

The linear matrix A can be decomposed by singular
value.

A=UDV" = WUV (VDV") = R(O)R(¢)DR(—¢)
)

A0
o[ 0] a0
cos) —sinf
R(0) = { sinf  cosf } (11)
. cos¢  sing
R(-¢) = [ —sing cos¢ } (12)

where R(—¢), R(¢) and R(6) are rotation transformation
matrix, D is unequal scaling matrix along the direction x
and y, and t = [t;,t,]T is translation matrix. The affine
transformation is represented by A(¢, 0, A1, A2, ta, ty).
Offline training starts by selecting a subset of the key-
points detected on the template image. According to
A(p,0, 1,2, ts,ty) randomly selecting the affine para-
meters, the template image I is performed affine trans-
formation to obtain the affine image J’. The process is
cyclic to obtain affine images Niota;. The detected times
of the same keypoint in all affine images is recorded as
Ngetected- Therefore the probability that the keypoin £ is

_ Ndetectad

detected can be obtained as P(k) . The keypo-
total

ints that are found most often are assumed to be the
most stable and retained. These stable keypoints are as-
signed a unique class ¢;, 1 =1,--- , H.

Then, the training set for each class is generated
based on the set of stable keypoints of the template im-
age. After obtaining the set of stable keypoints, training
set Birain is obtained by projecting each stable keypoint
to the corresponding point in the affine view, taking the
corresponding point as the center, intercepting the pixel
patch as the training patch. We warped the template im-
age using such deformations computed by randomly
choosing ¢, 6 in the [0:27) range and A1, A2 in the
[0.6 : 1.5] range. For each class ¢;, i =1, .-, H, we used
30 random affine deformations per degree of rotation to
produce 10800 training sample images.

After we got the initial class ¢; and training set
Birain, the offline training process can be performed.
Randomly generating M x S random ferns that contains
M ferns and each fern contains S nodes. Each node can
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generate a judgment function. The judgment function se-
lects a pair of pixel position dj; and d;2 for each training
patch in the range of L x L (take L = 32) pixels. For
each initial class c;, the value of the binary features f; of
the M random ferns is calculated by the formula (1) ac-
cording to the gray values of the random pixel position
dj1 and dj2. The conditional probability P(F,,|C = ¢;) of
the class ¢; and each random fern F), in (7) can be calcu-
lated based on the values f;.

2.3 Detection matching

The detection matching starts by extracting the Le-
petit keypoints from the current frame. The patch
patch'™*t of the keypoint is put into the random ferns
classifier for classification. From the basic random ferns
algorithm, it can be known that the classification of the
patch patch™™P*! is to find the corresponding c; according
to formula(7). pz,c; = P(Fm = z|C = ¢;) can be obtained
through offline training. Therefore, if ¢é; is obtained, the
patch patch'™*t of the keypoint can be considered to
match the template image.

After a rough match between the current frame and
the template image by the random ferns classifier, the
random sampling consistency (RANSAC) algorithm is
used to eliminate mismatches. Usually, the larger the size
of the random ferns, the higher the correct rate of match-
ing, but the longer the running time. Figs. 2 and 3 show

the trend of matching points increases with the number
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of random ferns and the average matching time of each
Lepetit keypoint increases with the number of random
ferns. Therefore, we take the random ferns M= 30.

3 Pyramid LK optical flow tracker

The LK optical flow algorithm is a sparse optical flow
algorithm because it only needs to calculate the optical
flow vector of a specific pixel. These specific pixels have
certain characteristics that reflect the characteristics of
the frame image well. Applying the LK optical flow al-
gorithm to the target tracking process had the advant-
ages of small calculation amount and fast calculation of
optical flow. In this paper, the Lepetit keypoints on the
target detected by the random ferns detector are used as
the feature points of the target tracking. The tracking
area is much smaller than the original frame image, so
the tracking speed can be further improved.

The LK optical flow algorithm is based on the three
assumptions/!?: constant brightness, continuous slow mo-
tion, and spatial uniformity. The classical optical flow
constraint equation can be obtained from the assumption
of constant brightness and continuous slow motion. The
equation can be expressed as an expression.

Lu+I,o+I,=0 (13)

where I, and I, are the partial derivative of the image,
I, is the derivative of the image over time, u and v are
the speeds in the =z direction and the y directions
respectively. Because there are two unknowns v and v for
any one pixel, but only one constraining equation, there
is no unique solution to (13). In order to address this
aperture problem, the third hypothesis is proposed. The
spatially consistent hypothesis satisfies the consistency of
pixel motion in a local region. A total of 25 contradictory
equations can be established by using the neighborhood
5 x 5 around the feature point, and the equations can be
solved by the idea of the least square method. The
equations can be expressed as below.

(ATA)d=A"b (14)

where A is a coefficient matrix containing I, and I, AT
is the transpose of A, d is the velocity matrix containing
u and v, and b is the matrix of I;. When ATA is
reversible, the texture of the image exists at least in two
directions. Therefore, the equations have solutions.
Although the LK optical flow tracking algorithm has
good real-time performance, it is not ideal in the case of
large-scale motion. This problem can be solved using im-
age pyramids(!8l. The optical flow is calculated from the
highest layer of the image pyramid, and the calculation
result of this layer is used as the starting value of the cal-
culation of the next layer. The process is repeated until
the bottom layer of the pyramid. This process minimizes
the possibility of not meeting the assumption of continu-
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ous slow motion. Thus, pyramid optical flow tracking al-
gorithm can track targets with faster motion and larger
scale changes.

4 Tracking registration algorithm for
augmented reality based on template
tracking

Performing template target detection on each frame of
image using a random ferns detector, then calculating the
three-dimensional pose of the target and performing vir-
tual registration is feasible in practice. The part with a
large amount of calculation is completed offline in the
training process of the classifier. Compared with the tra-
ditional matching algorithm, this method has certain ad-
vantages, but it is still difficult to meet the real-time re-
quirements of the augmented reality system. In addition,
the method of detecting each frame does not fully utilize
the similarity between successive frames. It is also feas-
ible to apply the target tracking algorithm to the real
tracking registration process, but it is easy to track fail-
ure and cannot be reinitialized. In this paper, we com-
bine the detector and tracker and applied it to the mark-
less augmented reality tracking registration process. The
flow chart was shown in Fig.4. This method mainly in-
cludes three modules: target detection, target tracking
and virtual registration. The target images in the real
scene are used as template images. A random ferns de-
tector is used for target detection according to the tem-
plate image. The pyramid LK optical flow tracker is used
for the target tracking process to track Lepetit keypoints
on the target area in real time. At the same time, we use
the update optical flow tracking strategy to determine if
the tracking area needs to be reinitialized, and use the
least median of squares (LMedS) algorithm to adaptively

calculate the homography matrix to estimate the three-
dimensional pose. OpenGL is used for the virtual registra-
tion process to perform virtual rendering according to the
estimation of the pose value of each frame.

4.1 Updating the optical flow tracker

In the process of optical flow tracking, tracking error
may occur due to the target moving too fast or out of the
scene range, and camera shake, etc., which leads to fewer
and fewer correct tracking points, and finally leads to
tracking failure. For these cases, we judge whether to use
the random ferns detector to reinitialize according to the
number of optical flow tracking points in the target area.
The specific strategy is that when the optical flow track-
ing point of the target area loses more than 30%, the
tracking error is considered to be large, and the target de-
tection is performed again by using the random fern de-
tector to re-determine the tracking area. The strategy of
updating the optical flow tracking is to re-adjust the
tracking error in the case of a large cumulative tracking
error to ensure stable tracking registration, and to reini-
tialize in the case of tracking failure to achieve long-term
tracking.

4.2 Homography matrix estimation

The homography matrix reflects the transformation
relationship between the template image and the current
frame target. The estimation accuracy of the homo-
graphy matrix directly affects the effect of three-dimen-
sional registration. For this problem, although
RANSACH!Y method can obtain the homography matrix
results relatively simply, there are still some shortcom-
ings. First, the RANSAC method needs to set the dis-

Input
real-time frame,

Target detection

Random ferns
detector

omography matri

Failure

Target tracking Virtual registration
Update tracking Add virtual object
corilers using OpenGL
Tracking target area
using pyramid LK End
optical flow
Y

Trackpoint lost End

more than 30%

Calculate
homography matrix
using LMedS

|

3D
pose estimation

Fig.4 Flow chart of augmented reality tracking registration algorithm based on template tracking
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tance deviation threshold. If the threshold is set too
small, the number of iterations will increase. Conversely,
if the threshold is set too large, it will have a large im-
pact on the estimation results. In addition, since the few-
er the inner points, the higher the number of iterations,
RANSAC is not suitable for the case where the interior
point rate is low. However, the LMedS (least median of
squares) method automatically processes according to the
median value of the minimum distance deviation. This
method can obtain more accurate and stable results be-
cause no thresholds need to be set/20].

We use D = {(x1,2}), (x2,25), -+, (Tn, 7))} to repres-
ent the set of all corresponding point pairs of the tem-
plate image and the current frame target image, where
21,%2, -+ ,x, and zi,xh,---,x), are the corresponding
coordinate points of the template image and the current
frame target image. If d; is used to indicate the projec-
tion distance of the i-th pair of matching point pairs, we
therefore write.

d; = dist(Hz;, 5). (15)

The LMedS method records the distance deviation
median Med; and the homography matrix H calculated
by the i-th iteration.

Med; = median{di,d2, -+ ,dn}. (16)

After M iterations, the smallest MinMed is selected
from distance deviation median, and the estimated value
of the corresponding model parameter is the final homo-
graphy matrix H.

4.3 Three-dimensional pose estimation

As the correct tracking for target motion, the corres-
pondence between the current frame target and the tem-
plate can be obtained by pyramid LK optical flow track-
ing and homography matrix estimation. Thus we have

(XL.HN,t) :HH(X17H.N,t()) (17)

where H"™ is the corresponding relationship between the
current frame target point set and the template point set,
that is the homography matrix. The position and
orientation of the tracking target in camera coordinates
can be estimated from homography matrix. The
relationship between the camera transmission projection
model and the target tracked by pyramid LK optical flow
tracker according to the template is shown in Fig.5. In
order to simplify the projection equation, the world
coordinate is defined as the tracking target's
coordinatel21,

As shown in Fig.5, (zp,yp) is the true coordinate of
any point on the current frame target, (zo,yo) is the co-
ordinate of the corresponding template point in the pro-
jection plane of the camera, and (x,yn) is the coordin-
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Fig.5 Relationship between current frame target and camera
in tracking process

ate of the current frame target point in the projection
plane of the camera. Therefore, the relationships among
them can be written as

o Tp

Yo = P‘?V Yp (18)
1 1

Tn Tp

Yn | =Pw | v (19)
1 1

Tn To

Yn = Hn Yo . (20)
1 1

The visual transmission projection equation is as fol-
lowsl(22],

Tp
In
yn | =AK[RIT]| 7 (21)
1 “»

1

where A is the scale factor, K is the intrinsic parameters
of the camera, [R|T] is the extrinsic parameters of the
camera. R = [ry 72 r3] is the rotation matrix and T is
translation matrix. Because the world coordinate has
been defined with respect to the tracking target, [R|T] is
the three-dimensional pose that we need to solve for
tracking and registration. Let the target plane be the Z
plane in the world coordinate and z, = 0. Substituting
the three equations (18), (19) and (20) into the visual
transmission projection (21), we have

H" = P, (Py,) " = AK[rir|T)(PY) . (22)



P. X. Cao et al. / Tracking Registration Algorithm for Augmented Reality Based on Template Tracking 263

It is known from the characteristics of the rotation
matrix that |ri| = |rz| = |rs|, and 71, r2, r3 are perpendic-
ular to each other. So 73 can be obtained after finding 1,
ro. The projection matrix P, can be calculated by (18)
(the number of calculating points > 4). Thus, the three-
dimensional pose [R|T] of the target can be got by com-
puting (22).

5 Experimental results

The experiments on the algorithms in this paper were
implemented in the environment of VS2012 and
OpenCV2.4.9. PC is Pentium(R) Dual-core T4400@2.20
GHz, ROM 2GB. The normal camera Logitech C525 was
used to capture images and videos. The resolution of the
template image is 640 x 480.

In the experiment, the wide baseline matching target
detection was firstly performed using the random ferns al-
gorithm based on naive Bayesian classification. Accord-
ing to Fig.6, the target can be accurately detected under
different angles and different illumination environments.
In particular, the target can still be accurately detected
when the target was partially occluded.

After the target was successfully detected, the pyram-
id LK optical flow tracker was used to track the Lepetit
keypoints on the target area in real time. Meanwhile, the
homography matrix was adaptively calculated using
LMedS. As shown in Fig.7, we had tested the tracking ef-
fects of the pyramid LK and the algorithm of this paper
in different environments such as different scales, changes
in lighting conditions, and partial occlusion of the target.
When the target moves too fast, the target is occluded,
and the camera shakes, it will result in fewer and fewer
correct tracking points, and may even cause tracking fail-

(a) Viewing angle change detection

(b) Illumination change detection

ure. For example, the third graph in Fig.7(a) has shown
a cumulative tracking error and the fourth graph in
Fig.7(a) has a tracking failure phenomenon. However,
the random ferns detector can be used in this paper to re-
adjust the tracking error in the case of a large cumulat-
ive tracking error to ensure stable tracking registration,
and to reinitialize in the case of tracking failure to
achieve long-term tracking. The fourth picture in
Fig.7(b) was the result of reinitialization using a random
ferns detector after tracking failure.

After obtaining the target of each frame image using
the random ferns detector and the pyramid LK optical
flow method, the three-dimensional pose estimation was
performed. The three-dimensional registration can be
realized by using OpenGL drawing. Fig.8 shows the ex-
perimental effects of using the algorithm of this paper to
perform virtual and real registration for targets under dif-
ferent conditions. Therefore, the tracking registration al-
gorithm for augmented reality based on template track-
ing can solve the problem of tracking registration failure
under the condition that the lighting condition changes
and the target is partially occluded. At the same time, for
the same video stream, the time spent in the detection
process and the tracking process of the algorithm are
tested. The average single frame time of the detection
process is about 47ms, and the average single frame time
of the tracking process is about 10ms. In addition, the
augmented reality tracking registration process using the
algorithm of this paper is mostly in the tracking state,
and only in the initial state and a small amount of reini-
tialization is required to be in the detection state. There-
fore, the real-time performance of the algorithm has been
greatly improved, and it can meet the real-time require-

(c) Partial occlusion detection

Fig.6 Detection results based on random ferns broad baseline matching
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(b) Tracking results of the algorithm of this paper
Fig. 7 Tracking results of pyramid LK optical flow and the algorithm of this paper

N0} 15,9
Jquiasug

D

(b) Certain persective registration

(c) Light change registration

(d) Partial occlusion registration

Fig. 8 Tracking registration results of markless augmented reality based on template tracking

ments of the augmented reality system.

6 Conclusions

In this paper, we had proposed an augmented reality
tracking registration algorithm based on template track-
ing. This method combined random ferns detector with
the pyramid LK optical flow tracking algorithm for aug-
mented reality tracking registration. According to the
template image, the target was detected by the random
ferns classifier. The detection result was used as the in-
put of the pyramid LK optical flow tracking, and the key-
points of the target area were tracked in real time to im-

@ Springer

prove the real-time performance of the algorithm. The
random ferns detector was used to reinitialize the target
area when the optical flow tracking points of the target
area lost more than 30%. By repeating this process, long-
term tracking registration can be achieved. The method
of this paper can meet the requirements of real-time per-
formance of the augmented reality system while ensuring

the accuracy of registration.
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