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Abstract: The aim of this work is to model and analyze the behavior of a new smart nano force sensor. To do so, the carbon nanotube
has been used as a suspended gate of a metal-oxide-semiconductor field-effect transistor (MOSFET). The variation of the applied force
on the carbon nanotube (CNT) generates a variation of the capacity of the transistor oxide-gate and therefore the variation of the
threshold voltage, which allows the MOSFET to become a capacitive nano force sensor. The sensitivity of the nano force sensor can
reach 0.12431V/nN. This sensitivity is greater than results in the literature. We have found through this study that the response of the
sensor depends strongly on the geometric and physical parameters of the CNT. From the results obtained in this study, it can be seen
that the increase in the applied force increases the value of the MOSFET threshold voltage V3. In this paper, we first used artificial
neural networks to faithfully reproduce the response of the nano force sensor model. This neural model is called direct model. Then,
secondly, we designed an inverse model called an intelligent sensor which allows linearization of the response of our developed force

sSensor.
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1 Introduction

In recent years, micro and nano force measurement
has become a major problem for many applications, par-
ticularly in areas such as micro-assembly and microma-
nipulation. A force sensor is a device combining electron-
ics and mechanics, it converts an applied force into an
electrical signal.

All the micro or nano force sensors are based either on
the measurement of the displacements of a non-deform-
able solid or on the measurement of the deformations of
an elastic microstructure. Therefore, the unknown force
must be deduced from the knowledge of these displace-
ments or deformations by means of appropriate sensors.

The importance of force measurement on a micro or
nano-scale has led to numerous prototypes of micro and
nano force sensors. Most of these prototypes have sensit-
ive elements (SE) that are passive elastic microstructures.
These sensors differ by the means used to measure the
deformation of the SE. For example, the atomic force mi-
croscope (AFMs) with 4-segment photodiodel! or interfer-
ometer?, the piezoresistive force sensorsldl that use the
variation of resistance when an external force is applied
to them, the piezoelectric force sensorsll generating a po-
tential difference in the presence of an external force field,
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the capacitive force sensorsl’l based on the principle of
change of capacitance induced by the change of distance
between two metal plates after the application of an ex-
ternal force. Among the many sensors and sensing devices
studied and developed, micro beam-based sensors show a
large number of published works on the subject. The mi-
cro-beams have wide ranges of sensitivities, which are
particularly interesting for applications in the fields of
safety, the environment, industrial process control, product
quality and health.

The literature on micro beam force sensors indicates
numerous publications on the subject. For example, silic-
on micro-beams are used for the calibration of mechanical
pen meter type instruments(®. Silicon micro-beams are also
used to control the applied forces by micromanipulators!7.

Some researchers developed a nano-scaled force sensor
based on a photonic crystal which can be used to meas-
ure the component force in X and Y directions(®: 9.

The advancement of the nano and micro-electromech-
anical systems (NEMS/MEMS) technology to obtain
nano force sensors of increasing sensitivity leads to the
use of sensors of sub-micrometric or nanometric size. The
carbon nanotubes, by their size and aspect ratio, coupled
to their mechanical rigidity are very good nano-sensors.

In this paper, we propose a nano sensor specifically
designed to detect and measure the force at the nano-
newton scale, using a structure consisting of a suspended
carbon nanotube with both of its ends embedded.

The nano force sensor can be operated in a static op-
erating mode. In the static mode, the force applied to the
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nano force sensor disrupts the balance of forces (mo-
ments) acting in the transducer and consequently in-
duces a mechanical movement of the movable element
which allows the transducer to reach a new state of
mechanical equilibrium.

The difference between this state and the initial one is
then used to measure this applied force. The detection of
the deflection can also be deduced by a capacitive meas-
urement. For this, we used the carbon nanotube as the
suspended gate of a metal-oxide-semiconductor field-ef-
fect transistor (MOSFET). The distance between the gate
and the transistor oxide has a capacity, the deflection of
the nanotube then induces a variation of this capacitance.
The use of the clamped-clamped (C-C) structure in the
static mode for the detection of nano force is a particu-
larly effective concept in terms of sensitivity and relat-
ively simple to implement because it requires no actuat-
ing device.

We are also interested in this article to design a neur-
al model of the nano force sensor based artificial neural
networks (ANNs) approach. This model is implemented
as a component in the library of the Oregon computer-
aided design (ORCAD)-personal computer simulation
program with integrated circuit emphasis (PSPICE) elec-
trical simulator. This component must accurately express
the behavior of the sensor. A second model based on
neural networks, which will deal with the correction and
compensation of the sensor output signal, has been de-
signed and implemented on the same simulator, while
eliminating the non-linearity of the sensor. Taking into
account the complexity of the relation between inputs
and outputs, the results obtained are very encouraging
and satisfactory and lead us to understand that a good
prediction requires the use of an optimal number of neur-
ons in the hidden layer and a sufficient amount of data.

2 Structure of single wall carbon nano-
tube (SWCNT)

Since the discovery in 1991 by Sumio Iijima of the
surprising electricalll’), mechanical and thermal proper-
ties of carbon nanotubes, the scientific and industrial
world has studied the different fields of their application.
A carbon nanotube results from the winding of one or
more sheets of graphene on themselves. In the case where
there is only one graphene sheet, a single wall carbon
nanotube (SWCNT) is obtained. In the contrary case,
where several sheets of graphene have been wound on
themselves and have thus given a tube consisting of sev-
eral tubes concentrically nested each into the other, we
obtain what is called a multi wall carbon nanotube (MW-
CNT)[U. In addition, there are various types of winding
that can be described with the chirality vector. A
graphene plane has a “honeycomb” type structure, i.e., it
is formed by a periodic succession of carbon hexagons
(benzene) of a; and ay basis vectors. The chirality vector
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is then defined as the winding vector of the nanotube.
This chirality vector is decomposed according to the two
vectors a; and az forming the graphene base (Fig.1).
Thus, by introducing a couple of integers (m, m), the
chirality vector is defined according to the relation 1[12I:

Ch=mxXai1+nxas. (1)

Fig. 1 Two dimensional hexagonal network of graphenel2l

Depending on the couple (m, n), three types of car-
bon nanotubes result, Armchair nanotubes are defined by
n=m, Chiral nanotubes are defined by n#m+#0 and zig-
zag nanotubes are defined by n=0. These different types
of nanotubes have mechanical, thermal and, above all,
electrical properties specific to themselves/!3l. The mech-
anical properties of carbon nanotubes are also used to
realize the nano electro mechanical systems (NEMS).
These include, the random access memory (RAM)[M the
rotating cylinders, the nano levers with feedbackl!?, the
photomechanical actuators, the transparent resistive elec-
trodes, the flexible light emitting diodes (LEDs), and
more. All the geometrical characteristics of the nan-
otubes derive from the knowledge of the couple (n, m).

The nanotube diameter is given by the expression

2 2
D= decy/3 (n? +m +nm)’ de. is the carbon-carbon

™
bond length (about 1.44 A°) and the chiral angle is
defined according to the relation 2 with |0] € [0, 30°][6].

V3m

0 = arcsin — .
2/ n2tm* + nm

(2)

2.1 Modeling of carbon nanotube by finite
elements

The finite element method is widely used today to
simulate the physical behavior of structures and systems
(mechanical, thermodynamic, acoustic, etc.). In numeric-
al analysis, the finite element method is used to numeric-
ally solve partial differential equations. Concretely, this
method makes it possible to analyze complex structures
by decomposing them into elements more regular in form,
which will be described and solved by linear partial differ-



F. Menacer et al. / Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks 281

ential equations. The accuracy of the simulation depends
on the density of the mesh, but also on the choice of the
elements, these elements are the basic cell for the calcula-
tion.

The finite element simulation software that we use is
analysis of systems (ANSYS); it is one of the widely used
tools in the finite element method (FEM) analysis area,
which allows analysis on several physical behaviors in dif-
ferent modes: static, dynamic, modal, temporal, etc. First
of all in this study, we have developed a three dimension-
al model of the carbon nanotube based on the finite ele-
ments in Fig.2. The modeling was done using the AN-
SYS calculation software based on the theoretical basis
described in [17]. In this modeling, we have retained a
type of structural element that can define the elementary
beam of the carbon nanotube model: this element is
called beam 188. The mechanical and geometrical proper-
ties of this element are presented in Table 1 below. This
simulation is based on an energy equivalency method to
pass an energy model (quantum mechanics) to structural
mechanics[!8: 19],

Fig.2 Carbon nanotube model developed by the finite
elements using ANSY'S simulator

Table 1 Mechanical and geometrical properties of beam
elements|18, 19]

Parameters Value
Diameter of the nanotube d 1.466 A°
Length of carbon-carbon bond L 1.421 A°
Area of cross-sectional A 1.68794 A2
Polar inertia momentum I, 0.453456 A4
Inertia momentum I..=1I,=I 0.22682 A4

The beam 188 element corresponds to the beam ele-
ments, working in traction, compression, bending and
flections and torsion. This element has three degrees of
freedom at each node: the translations along the x and y
directions and the rotation around the nodal z axis.

To validate our developed FEM model, we have taken
an example of a nano-resonator studied by Wu et al.[20l
presented in Fig.3. For this, we used the carbon nan-
otube model developed as a resonant sensor, in a
clamped-free configuration for species detection. The de-
tection method is based on the variation of the resonance

SWCNT
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Fig. 3 A cantilever carbon nanotube biosensor developed by
Wu et al.[20]

frequency of the resonator, whose change in the effective
mass of the resonator induced by the mass added in end
of the nano-resonator causes a change in its resonance fre-
quency.

Our numerical simulation results are compared with
the theoretical results and with the study carried out by
Wu et al.l20]

It can be seen from Table 2 that our FEM simulation
results are in good agreement compared with the theoret-
ical and literature results.

Table 2 Resonant frequency for clamped-free resonator based
SWCNT with different attached mass

Attached Theoretical FEM simulated Our FEM

mass (Fg) values (Hz) by [20] simulation
20 2017274.93 2025396.28 2019969.33
22 1938830.63 1945438.16 1954100.24
24 1868879.03 1874251.81 1881115.19
26 1805990.60 1810343.33 1835466.45
28 1749051.48 1752552.38 1754325.64
30 1697179.17 1699961.81 1700023.25

2.2 Study ofthe carbon nanotube deflection

We proposed to study the deflection of a carbon nan-
otube clamped at its two ends (bridge structure). This
constitutes the sensitive element, which is presented in
Fig.4(a), with length L, diameter D, the elasticity modu-
lus is E = 2.038 Tpa, the Poisson's coefficient is 0.30 and
the mass density is 1330kg/m? subjected to a concen-
trated force F21l. When the carbon nanotube is subjected
to a force, generally all the points of the carbon nanotube
change position and the constraints are exerted on the
three axes. The displacement of a point is defined as the
distance between its initial position and its final position.

The general equations of the mechanics are presented

by (3)-(5).

1
Sx:ETm—%Ty—%Tz (3)
Y 1 o
sy:_ETx-s-ETy—ETZ (4)
S 7 N &7 273 (5)
z—_E:c_Ey“!‘Ez
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(a) Mathematical idealization

(b) ANSYS Simulation.

Fig. 4 Schemes of a nanotube subjected to a point force

where S;, S, and S represent the relative elongations
along the three axes (z: parallel to the length, y: parallel
to the width and z: parallel to the thickness). T, T, and
T, represent the stresses along the three axes, FE
represents the Young's modulus and 7 represents the
Poisson’s coefficient. In mechanics, generally when D < L,
then we consider that T, = T, = 0 and the mechanical
equations are summarized by (6):

1 v v
SIZETQE7 Sy:—ETI and Sz:—ETE. (6)
The formula describes the deflection def of the
clamped-clamped nanotube (bridge structure), as a func-
tion of the applied force position, and is given by (7).

FCC 2 2 .
= — <z<
def 1SET (3L 4x ) with 0 <z <

(7)

ro |

where I is the moment of inertia of the nanotube, x is the
applied force position. When a force F' is applied to the
center of a clamped-clamped structure, this force will
cause maximum deflection at this point, the maximum
deflection is described by (8):

FL?
4A8ET’ (8)

defmax =

The three-dimensional finite element ANSYS simulat-
or is designed to calculate the deflection of the carbon
nanotube FEM model (Fig.4(b)). Fig.5 shows the max-
imum deflection variation at the center of the nanotube
as a function of the applied force, we observe that the
rate of deflection is a straight line. It can be concluded
that the maximum deflection at the center of the nan-
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otube is directly proportional to the applied force. The
maximum deflection of a nanotube (9,9) with length
200nm is 5.5510nm and 3.0918nm for an applied force
9nN and 5nN, respectively.

60
55
50
45
40
35 ¢
30
25 ¢
20
15 r
10
5

Nanotube (9,9)
L =200 nm

Deflection (nm)

EX1=2.038 1x10'"> Pa

1 2 3 4 5 6 7 8 9 10
Applied force (nN)

Fig. 5 Variation of the maximum deflection at the center of the
nanotube as a function of the applied force

2.3 Influence of geometric parameters on
deflection

In order to study the influence of the different geomet-
ric and physical parameters on the nanotube’s deflection,
we have simulated the deformation, and more particu-
larly the maximum deflection, as a function of the length,
the chirality and the nanotube’s Young's modulus.

A first series of calculations corresponded to a fixed
nanotube chirality of n=9 and lengths varying between
130nm and 200nm. The results of the simulations are
shown in Fig. 6.

The sensitivity to applied force is an essential charac-
teristic for defining the performance of a force sensor. The
sensitivity to the applied force is defined by (9).

s(r) =55 (9)

A second series of calculations corresponds to a fixed
length of 200nm and chiralities varying between n=7
and n =10, the results of the simulations are shown in
Fig 7.

According to Fig.6(a) and Fig.7(a), it is clear that
for a fixed applied force, the more the length of carbon
nanotube is high and its diameter is small, the more the
deflection of the SWCNT is important.

We can conclude from Figs.6(b) and 7(b), that for
the sensitivity S(F) of the force sensor to be large, it is
necessary to have a carbon nanotube that has a small
chirality as possible and as long a nanotube length as
possible.

A third series of calculations corresponded to a car-
bon nanotube of chirality n=9 and fixed length of 200 nm
and Young's modulus varying from EX1=2.0381x10!2Pa,



F. Menacer et al. / Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks 283

60
TCLTARMM oy —2.038 1x102 P
50 F|——L =170 nm Nanotube (9, 9)
—e—[ =200 nm
40 ¢ §=0.618 11 nm/nN g _ ( 376 39 nm/uN

30

Deflection (nm)

20

1 2 3 4 5 6 7 8 9 10
Applied force (nN)

(a)

120

—e—Nanotube (10, 10) _

Nanotube (9, 9) EX1=2.038 1x10" P,
100 H—*—Nanotube (8, 8) |L =200 nm
—v— Nanotube (7, 7)

e 80 | §=1.3162nm/nN »'S=0.820 81 nm/nN
=
§ 60 | 618 1 nm/nN
3
L=
jo
A 40+t

20 §=10.459 51 nm/nN

0 L L L L L L L L L

0 1 2 3 4 5 6 7 8 9 10
Applied force (nN)
(b)

Fig.6 Effect of nanotube length on (a) maximum deflection
and (b) sensor sensitivity

EX2=2.3055%x1012Pa, FEX3=24301x1012Pa, EX4=
2.4497x1012Pa, the results of simulations are shown in
Fig.8(a).

According to Fig.8(a), it is clear that when the
Young's modulus is higher, the nanotube deflection de-
creases.

We calculated the sensitivity of the nano force sensor
for a nanotube chirality n=m=9 and length L=200nm
for different values of Young's modulus. The results of
the sensitivity are shown in Fig.8(b). Comparing Figs.6
and 7 with Fig.8, it is obvious that the effect of Young's
modulus is much lower than that of both the nanotube
length and diameter. We have found that the deflection
of the carbon nanotube depends strongly on the geomet-
ric and physical parameters.

3 Electrical modeling of nano force
sensor

The detection of the deflection of the studied nan-
otube in the preceding part can be detected by a capacit-

0.7

Nanotube (9, 9)

06 & EX1=2.038 1x10'? Pa
’ Vds=1V
Tox1

0571

04 r

03 r

02 r
0.1 r

0 1 1 1

200

Sensitivity (nm/nN)

130 150 170
Carbon nanotube length (nm)

(2

1.4
EX1=2.038 1x10"? Pa
1.2 L=200nm
Vds=1V
Z 1.0 + Tox1
E
g 08 r
2
Z 06
g
wn 04 1
02
0 . . .
7 8 9 10
Carbon nanotube chirality (n = m)
(b

Fig.7 Effect of the nanotube chirality on (a) maximum
deflection and (b) sensor sensitivity

ive measurement, for which purpose the carbon nanotube
was used as a suspended gate of a the metal-oxide-semi-
conductor field-effect transistor (MOSFET). The vari-
ation in the applied force causes a variation in the capa-
citance of the gate-oxide transistor, the MOSFET itself
may become a capacitive sensor. In the SG-MOSFET
(suspended gate MOSFET) structure, the gate is suspen-
ded above the gate insulation (Fig.9), the space between
the suspended gate and the gate insulator is called a gap.

When a force is applied to the gate, it moves and the
gate capacitance is changed, which causes the variation of
the drain current and the threshold voltage. By detect-
ing the threshold voltage electrically, the input force can
therefore be measured. The structure in Fig.9 is a schem-
atic diagram of our capacitive nanoforce sensor.

Since the suspended gate field effect transistor is simil-
ar to a metal-oxide-semiconductor (MOS) transistor in its
structure, the threshold voltage Vi, can be written in the
case of a suspended gate transistor in the following form[22].

_ +Q,a
Ve = Wa — Wei + 295 — @ss QCB; Qgar (10)
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Fig.8 Young modulus effect on (a) maximum deflection and
(b) sensor sensitivity
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Fig. 9 Schematic diagram of our capacitive nanoforce sensor
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where W is the work function of the gate material, ¢ is
the difference between the Fermi level and the intrinsic
level, Qgs is the charge in the gate insulator, C7 is the
capacitance of the gate insulator, Cgy, is the gap
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capacity, Qpo is the space charge in the depletion region
at the beginning of the strong inversion, Qgqp is the
charge in the gap, g¢ is the free space permittivity, oz
(€rox=3.9) is the relative dielectric permittivity of silicon
dioxide, to; is the thickness of oxide layer and Zyq, is the
air gap, the air gap relative permittivity equals to 1.
When the suspended gate of the transistor is subjected to
a force F, its position changes from Y; to Yi—d,
consequently the threshold voltage will change from Vip
to Vina.

We used the TCAD-SILVACO (ATLAS) simulator to
simulate the behavior of the suspended gate transistor of
the nano force sensor, based on data from the previous
section obtained by the finite elements method, where we
performed a relation between the nanotube deflection and
the applied force. By combining the results obtained by
the finite elements method with that of SILVACO, the
threshold voltage Vi, as a function of the applied force
can be deduced. We describe the evolution of the
threshold voltage characteristics as a function of the ap-
plied force F' as well as the applied voltages Vds, Vgs, and
the upper silicon oxide thickness (Toxl=17nm, Tox2=
19nm Tox3=22nm).

Fig.10 illustrates the relationship between the
threshold voltage of the transistor and the applied force.

From Fig.10, we find that the increase of the applied
force generates an increase in the threshold voltage value
V.. Following the results shown in Figs. 10 (a)-10(c), we
can affirm that different geometrical parameters (upper
oxide thickness of transistor, length and chirality of the
carbon nanotube (CNT)) can affect the sensor response.

It can be seen that increasing the length of the nan-
otube causes an increase in the threshold voltage V3. On
the other hand, increasing the nanotube diameter or in-
creasing the thickness of the upper transistor oxide causes
a reduction in the threshold voltage Vi3. It is evident
from Figs.10(a)—10(c) that the effect of the carbon nan-
otube diameter is much greater than that of the carbon
nanotube length and the thickness of the transistor up-
per oxide.

It is noted according to Fig.10(b) that the variation
in the threshold voltage V75, observed seem to stabilize
when the thickness of the air gap is zero (Zgp=0). For
an applied force F' >4nN, in the case of a nanotube with
chirality n=7 and length 200nm, the threshold voltage
becomes constant V7 =-0.2V. However, this fact has no
negative impact on the ability of the detection of the ap-
plied force because our target is to detect the weaker
nanoscale. It can be seen from Fig.10(d) that it is obvi-
ous that when the nanotube has a lower young modulus,
its threshold voltage is important. For the mathematical
modeling of the nano force sensor response, we made a
polynomial interpolation of the third degree. The third-
order polynomial interpolation is very suitable for the
mathematical modeling of the nano force sensor response
based on a carbon nanotube, with a chirality 9 and of a
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Fig. 10 Simulation of the threshold voltage as a function of the applied force under the physical and geometrical parameters effect

length 200nm, the mathematical equation of this polyno-
mial is given by (12) and presented in Fig.11.
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Fig. 11 Modeling of the threshold voltage as a function of the

applied force

Virn =(0.001503 x F* +0.01895 x F>+
0.1353 x F —0.8169). (12)

The non-linearity of the nano force sensor response is

calculated by the following equation:

(Vrn),, — (Vrn),

NL =100 x 7S

(13)
where (Vq1,)m is the threshold measurement point, (Vi)
is the straights line of the least squares point for the same
applied force and FS is the full scale response. The non-
linearity value is expressed in 12 as a percentage of the
full scale response (FS). The non-linearity response of the
nanoforce sensor in function of applied force, for a
nanotube (9,9) with a length of 200nm, is shown in
Fig. 11.

Fig.12 (a) shows the effect of the nanotube length on
the sensor sensitivity, it is found that the sensitivity of the
sensor takes the values of 0.026 155V /nN, 0.029176 V/nN,
0.041428 V/nN, 0.066391V/nN respectively when the
length of the nanotube has the values 130nm, 150nm,
170nm and 200 nm, respectively.

It is also observed from Fig.12(b) that the sensitivity
decreases from 0.12431V/nN to 0.066391V/nN to
0.046445V /nN when the nanotube chirality takes values
n="7, n=8, n=9 and n=10 respectively. It is noted that,
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Fig. 12 Sensitivity characteristics

the sensitivity to the applied force is defined by (14).

A(Vrp)
S(F) = —AF (14)

After these results, we can conclude that to have a
nano force sensor with high sensitivity, it is necessary to
choose the longest nanotube with the shortest diameter
possible.

It can be seen from Fig.12 that the sensitivity ob-
tained by our developed model can reach the value
0.12431V/nN. On the other hand, the sensitivity ob-
tained by previous studies, for example, the sensitivity of
nano sensor developed by [23] is 0.011V/nN. It is found
that the sensitivity of our proposed nano force sensor is
higher than the results of the literature.

4 Modeling of nano force sensor by
neural networks

Artificial neural networks (ANNs) are used to model
complex systems because of their highly multi-variable
aspect and their strong non-linearity. In this study, we
found that our nano force sensor exhibits a nonlinear

@ Springer

characteristic, as well as the influence of different para-
meters on its response. For this purpose, neural networks
have been adopted as a general approach of linearization
in order to obtain a smart sensor. This involves associat-
ing an electronic structure for the corrections to the
sensor. We have used the simulation results by the finite
elements of the previous part as a database of the neural
approach.

4.1 Artificial neural networks-direct model

The aim of this part is to develop a direct model
based on artificial neural networks called “ANN-model”,
the latter is used to faithfully substitute the nano force
sensor response of the model developed in the previous
part. Artificial neural networks structures are organized
around a set of cells (neurons) interconnected according
to a certain architecture by weighted and modifiable links
(bias/weights) during a procedure called training2.
There are many applications of ANN in data analysis,
model identification and controll25: 261,

Among different types of ANN, the multi-layer per-
ceptron (MLP) is quite popular and used for current
work. The MLP consists of three layers: an input layer,
an output layer, and one or more hidden layers. Each lay-
er consists of a predefined number of neurons. The neur-
ons in the input layer act only as distributors of the in-
put signals a; to the neurons in the hidden layer. Each
neuron j in the hidden layer summarizes its input signals
a; after weighing them by the connection weights w;; ac-
cording to the connections of the input layer and calcu-
lates its output value y; of the neuron as function (sum
f), while b is bias. The output value y; is given by (15).

yi=1f (Z Wija; + b) . (15)

The output of the neurons in the output layer is cal-
culated in a similar manner. The mean square error
(MSE) between the predicted (estimated) and simulated
(FEM) values of the output neurons MSE is defined by
(16).

MSE = %Z(ydj — i) (16)

J

where yq4; is the desired value of the output neuron j and
y; is the FEM simulated output of this neuron, each
weight w;; is adjusted to reduce E as rapidly as possible.
Fig. 13 illustrates the neural network developed for the
estimation of the threshold voltage Vzn. The network
produces a result (the threshold voltage V) by
propagating its initial inputs ([F, n, Tozx, L, EX, Vds,
Vgs]) through the various network neurons to the output.

The configuration of a mneural network for the
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Fig. 13 Neural network layers diagram of the optimized
architecture

threshold voltage estimation Vi, requires the choice of an
adequate architecture, a training algorithm and activa-
tion functions.

In our case, the developed neural network is formed of
four layers and the activation functions including the sig-
moid function for the hidden layers and the function
identity for the output layer. Our neural network has 7
inputs (F, n, Tox, L, EX, Vds, Vgs) and a single output
(Vim), all inputs are standardized to improve the perform-
ance of the network training process(20].

In our case, we have chosen MLP as the network type,
the interest of this network is in its characteristic of uni-
versal approximation and its ease of implementation.

The optimization process of the previous network in-
volves several steps: building the database, validating the
structure of the neural network, correcting its weights
and its training. The training and optimization of the
network is accomplished by a program structured in
Matlab.

Once the training is complete, it is necessary to test it
on a database different from that used for training.

During the training and optimization of our network,
different architectures are tested to determine the ad-

equate number of layers and hidden neurons

Table 3 summarizes the network-optimized paramet-
ers for the sensor modeling.

The number of neurons in the first hidden layer is
nine neurons, the second hidden layer has seven neurons
and the model stabilizes after 1200 iterations. From
Fig. 14, it is easy to verify the reliability of our model for
the prediction of the response of our nano force sensor
over a wide applied force range from 1nN to 7nN.

The results obtained show a very good concordance
explained by a high correlation coefficient for the train-
ing phase (R;=0.9981) the test phase (Ries:=0.9971)
and the validation phase (Ryu=0.9969), this indicates
that these results are very satisfactory.

4.1.1 Implementing of the direct neural model in
PSPIC

The implementation of such a model in ORCAD-
PSPICE was possible thanks to the improvements made
on the latest versions of this software, which now allows a
great flexibility in the description of the models. It is in-
deed possible to describe these with the aid of analog be-
havioral modeling “ABM” in which any type of equation
linking the input variables to the output can be envis-
aged. These tools will allow us to easily implant our neural
model of the nano force sensor in the PSPICE simulator.

Fig. 15 shows the neuronal model implanted as a com-
ponent in the PSPICE simulator.

The “ABMSs” blocks of the PSPICE simulator library
and the results obtained during the design and optimiza-
tion phase (optimal architecture, bias and network
weight) are used to implement the model as a compon-
ent in the library of the PSPICE simulator.

4.1.2 PSPICE simulation results

The validation of the model will consist in simulating
our neural model in an electrical environment. The res-
ults of the simulation are presented in Figs.16(a) and
16 (b).

Table 3 Optimized parameters of the ANN-direct model

Training base 821
Database Test base 410
Validation base 410
Input layer 7 1st hidden layer Logsig
1st hidden layer 9 2nd hidden layer Logsig
Number of neurons Transfer function
2nd hidden layer 7 Output layer Linear
Output layer 1
F n L (nm) Ezx Tox (nm) Vgs Vds
Input Max 7Nn 10 200 2.4301X10'2 22 1.5V 2V
Min 1Nn 7 130 2.0381X1012 17 0.2V | 0.5V
Vi Test MSE 7.3158 X105
Output Max -0.1822 Training MSE 10
Min -0.7792
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Fig. 15 Neuronal model implanted as a component in the
PSPICE simulator

According to these results, it is clear that the model
designed and implemented in the PSPICE simulator ac-
curately expresses the behavior of the nano force sensor
in the electrical environment, taking into account the
nonlinearity of the response. The simulation results show
that the new nanoforce sensor model can be implemented
as a component in the PSPICE library. The non-linear-
ity of the sensor response poses a measurement problem,
in this context the linearization of nano force sensor re-
sponse is primordial to avoid measurement errors, which
will be discussed in the next part.

4.2 Smart inverse ANN model (INV-ANN)

In order to have a linear response of our sensor, we
need an inverse model INV-ANN, also called a smart
model. For the development of this model, we begin by
linearizing the response of the threshold voltage obtained
using the neural networks, we choose a characterized
database. The formation of the test and validation data-
base is carried out by separating the training database
and then we do the training of a neural network based on
the back propagation algorithm. Finally the performance
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Fig. 16 PSPICE simulation results of the ANN direct model

of the model obtained is verified with the test database.
After the creation of the database, we proceed to carry
out a simulation by neural networks, where we keep the
same previous neural architecture. The number of hidden
layers is two, the number of neurons used in each hidden
layer is nine for the first layer and seven for the second
layer, and the same choice of the activation functions
type is also maintained. Fig. 17 shows the evolution of the
MSE as a function of the number of iterations.

4.2.1 Performance measurement of the INV-ANN

model using PSPICE

In order to test the performance of the smart model
developed in an electrical environment, we have im-
planted it as an electrical component in the ORCAD-
PSPICE simulator library.

Fig.18 (a) shows the Direct-ANN model output curve
with the INV-ANN model for a nanotube (9,9) with a
length 200nm. In examining the results obtained in
Figs.18(b) and 18(c), we can say that they give excel-
lent results. In effect, they deliver a linear output re-
sponse.

Fig.19 shows the difference between the desired cor-
rection model (inverse ANN model) and that obtained by
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the sensor, in other words, to obtain a linear sensor. It
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