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Abstract: To ensure the safe operation of any software controlled critical systems, quality factors like reliability and safety are given
utmost importance. In this paper, we have chosen to analyze the impact of logic error that is one of the contributors to the above factors.
In view of this, we propose a novel framework based on a data driven approach known as software failure estimation with logic error
(SFELE). Here, the probabilistic nature of software error is explored by observing the operation of a safety critical system by injecting
logic fault. The occurrence of error, its propagations and transformations are analyzed from its inception to end of its execution cycle
through the hidden Markov model (HMM) technique. We found that the proposed framework SFELE supports in labeling and quantify-
ing the behavioral properties of selected errors in a safety critical system while traversing across its system components in addition to re-
liability estimation of the system. Our attempt at the design level can help the design engineers to improve their system quality in a cost-

effective manner.
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1 Introduction

Mostly all recent safety critical systems are driven by
software especially for control and monitoring. Since soft-
ware has become dominant, hence inevitably it has to
maintain its quality, cost and time-to-marketll].
Moreover, the software tends to fail when it is least anti-
cipated. It is reported that to ensure that a safety critic-
al software is reliable would cost 7 to 20 times higher
than ensuring a conventional softwarel2. The controlling
software is developed with utmost care expecting it to be
an error free product. Is this expectation true for all
cases? In reality, there is no error free software product.
It doesn't mean that if the software doesn't fail, it would
not have any fault or error. Definitely, there would be a
hidden fault that might have happened in any one of its
phases of the software development life cycle. When a
fault gets activated, it does not cause failure instantan-
eously, rather it causes an internal state in the system
called error that deviates from the actual internal state,
which usually cannot be perceived by the userBl. In addi-
tion, a particular error type can develop into other error
types as a temporal component before an occurrence of fi-
nal failure.
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It is necessary to explore and identify how these er-
rors are likely to propagate across the system compon-
ents and cause failure, so that reliability can be estim-
ated. To achieve reliability in a cost-effective manner, it
is necessary to integrate the knowledge, data and models
of any critical system, that aids design engineers to de-
vise for likelihoods, redundancies and hypothetical
changes right from the early design stage. The categories
of failures due to software errors and bugs are discussed
only when disasters happen.

A software error might cause serious consequences in
the case of safety critical applications that are present in
automotive systems(?l. In recent past, the software has be-
come the most dominant part of automotive systemsl4 5.
The controlling software of these systems is application
software that is integrated with the hardware and it is
the pivotal component of human safety systemsl®l. The
main issue in developing automotive software is its qual-
ity. The failure of these systems will cause severe dam-
ages or loss, so most of the software errors lead directly
to car recalls. It is found that one-third of the recalls in
the recent past is due to software errorsl”- 8. An error is a
part of the system state, which is liable to lead to sub-
sequent failure(s). An error has the property of propagat-
ing and transforming into other error types before it en-
counters a failure. The functional relation between errors
and failure is called as error propagationf3l.

Errors which are not eluded in the early detection ef-
forts and do not surface until the software is operational
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are called Persistent software errorsl. Glass in his article
had listed out two classes of errors: errors of omission and
errors of combinatorics!9. If necessary logic is left out of
the software, it is termed an error of omission and if the
software segments are executed not in expected order, it
is termed an error of combinatorics. Further, he has men-
tioned that 35% of errors are due to omission of required
logicl’0l. These errors are found to be troublesome and
costly and even the test coverage analyzer could not help
in avoiding. Software errors are classified in three notions:
source, severity and cause. The software development
phase in which the error was made, namely requirement,
design, coding, testing and maintenance falls under the
category of “source” of error. Under the “severity” cat-
egory, there are three errors: minor, major and critical.
Under the notion “cause”, errors are classified as compu-
tational, logic, data definition, data handling, database,
interface, operation, and documentation!!ll. Moreover, it
is found that under this category, 38.5% errors happen
due to logicltl.

Software logic errors might happen if the require-
ments are either incomplete or inconsistent, errors
happened during software design stage, or in implementa-
tion stage of any software development lifecycle. These
logic errors might cause failures like infinite loops, incor-
rect calculations, abrupt returns, taking a longer time to
complete routine execution, etc.2l Feiler et al.!3] have
detailed that logic error might happen either as design er-
rors in the decision logic or algorithm or coding errors
such as array index out of bounds. Design errors are of-
ten caused by incorrect assumptions about system opera-
tion, e.g., input x is always followed by input y.

The error can propagate in the form of no output, bad
output, early/late output, etc.l¥] Typically fixing a soft-
ware logic error is not hard but diagnosing these bugs is
most challenging!4. Pressman in his design principles
stated that design should be developed iteratively. In the
beginning, iterations generally concentrate on refining the
design and correcting errors, but later iterations should
concentrate on making the design as simple as is
possiblelfl. System failure and reliability can be predicted
by probing into the error events that have occurred.

Reliability models are developed to predict the resid-
ual errors that exist even after the acceptance testing[!ll.
Reliability assessment in the design phase is useful for
identifying and correcting the critical zones. This goal is
achieved by early determination of the contribution of all
parts of the software in system failure. These parts could
be components, the connection between components, or
structural design blocks like loops, conditions, etc. Soft-
ware architecture is usually expressed in a semiformal
language such as unified modeling language (UML) or ar-
chitecture definition language (ADL)[%. However, to pre-
vent ambiguities and for precise verification, it is re-
quired to transform semiformal models into formal mod-
els which have a strong mathematical basis such as the
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Markov chain (MC), petri net (PN), and Bayesian
modell6],

The behavior of a logic error cannot be unique, it will
be probabilistic in nature and depend upon the system. In
a component-based system, it is assumed that there are
dependencies among system components. Hence, if there
is an error in any one of the components, it might trans-
form and propagate into other components(l7l. In any sys-
tem, the fault causing a failure cannot happen immedi-
ately, the system has to traverse in various error states
called error propagation which are invisible to the userfl.
The fundamental assumption is that the failure can be
predicted through detecting errors in the system compon-
ents and these errors are generally hidden. The various
invisible error states can be investigated through ob-
serving the physical behavior of any safety critical sys-
tem having injected with fault and simultaneously monit-
oring its observable critical parameters. The relationship
between the observable critical parameters and the soft-
ware error states can be mapped and visualized through
hidden Markov models (HMM). HMM is a formalism[8
wherein the system being modeled is assumed to possess a
Markov process. It can estimate hidden/unobserved para-
meters in a model, and hence it is suitable for our meth-
od in investigating the invisible factor, the software error
events which help to predict the failurel!9. Henceforth, we
propose a new framework called software failure estima-
tion with logic error (SFELE). It is a data driven ap-
proach to determine unobservable software behaviors of
safety critical software systems and offers an opportunity
to estimate its reliability.

1.1 Paper outline

The following sections of the paper are structured as
follows: The related works are presented in Section 2. A
basic study on HMM is explained in Section 3. The es-
timation framework SFELE is introduced in Section 4.
The automotive system anti-lock braking system (ABS) is
introduced in Section 5. The framework evaluation is de-
scribed in detail in Section 6. Results analysis is presen-
ted in Section 7. Threats to validity are discussed in
Section 8. Conclusions on our work are presented in
Section 9.

2 Related works

In the recent past, there has been a drastic rise in the
maturity of software in safety critical applications. These
applications are used in diverse areas, which include air-
craft-control, nuclear reactors, real-time sensor networks,
industrial automation, automotive systems and health
care used by millions of communities across the globe dir-
ectly or indirectly. The quality attributes like safety and
reliability requirements are more challenging. To meet
this criterion, the safety critical software systems (SCSS)
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are developed with rigorous validation and verification
techniques to make it an error free product. Although the
system has been well designed, coded, thoroughly tested
and validated, there are many instances wherein critical
and catastrophic failures have occurred[20],

The reason for failure in the Mars Polar Lander in
1999 was due to software error. While investigating this
accident, it was found that a breakdown in the design
process developed in the software condition, made the
specific failure occur. The reason behind the USS York-
town disaster during 1998 was due to “division by zero”
error. This error happened because by mistake a crew-
member of the guided-missile cruiser entered a zero. The
error propagated and ultimately the ship’s propulsion sys-
tem was shut down. The cruiser was dead for several
hours because the software did not check for the validity
of inputsl?ll. The reason behind all these incidents was
due to software impairments: failure, error and fault.

Failures are labeled as content failure, timing failure
and content & timing failure. When the content of the in-
formation delivered at the service interface is different
from the expected is termed as timing failures. When the
time of arrival or the duration of the information de-
livered at the service interface deviates from the expec-
ted, this is termed timing failures. When there is devi-
ation both from content and timing, it is termed as con-
tent and timing failure?. Logic errors might surface in
almost any facet of any nomenclature of errors. If the de-
velopers are not logically omniscient, we cannot expect to
avoid logic errors even in a system having moderate levels
of complexity23l. An error occurs when a fault gets activ-
ated. In other words, “a fault is the hypothesized cause of
an error, which may lead to a failure”[?2l. It is believed
that software performs deterministically so that it will
produce the same output every time for the same range of
input. But in reality, it is not always true. Mostly, the er-
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rors are either due to interaction of software with the
hardware or response of the systeml(21].

Software faults are classified into many types. Aviz-
ienis et al.l?? listed three different types of fault in de-
pendable systems as development faults, physical faults
and interaction faults. Hamill and Popstojanoval?4 have
classified based on NASA software safety guidebook and
ISO/IEC/IEEE 24765 as “requirement faults”, “design
faults”, “data problems”, “coding faults” and “integra-
tion faults”. Further, Duraes and Madeiral?® have cat-
egorized faults on the basis of orthogonal defect classifica-
tion as assignment faults, checking faults, interface faults,
algorithm faults and function faults. Hamill and Goseva-
Popstojanoval?4 summarized the distribution of different
faults for safety-critical failures as 45% of failures are due
to coding faults, 24% of failures are due to requirement
faults, 15% of faults are due to integration & interface,
and design faults contribute 12%. Fig.1 depicts the tax-
onomy of error.

The other version of faults leading to failure is called
bug and there are many categories available, to name a
few Mandelbugs, Bohrbugs, Heisenbugs, etc.(26l Mandel-
bugs have the error propagation property and it has a
phenomenon of causing the error to propagate into par-
tial failures thereby increasing the total time the system
is running. This actually happens due to the accumula-
tion of error states[27.

“System reliability is defined as the ability of a sys-
tem to perform and maintain its required functions un-
der nominal and anomalous conditions for a specified
period of time in a given environment” and “System reli-
ability is typically expressed by a failure-probability dens-
ity function over time”['3], In the recent past, for soft-
ware reliability estimation at the design stage, research-
ers considered the impairment attributes namely fault
propagation, error propagation and failure propagation/2Ll.
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Fault propagation is an incorrect or erroneous intermedi-
ate result that is passed/propagated to the downstream
components(28: 29, “Error propagations represent failures
of a component that potentially impact other system
components or the environment through interactions,
such as communication of bad data, no data, and
early/late data. Such failures represent hazards that if
not handled properly can result in potential damage”[!3].
Many researchers have worked on error propagation[22:30-33],
Fiondella and Gokhale33] in their paper have modeled the
error propagation and recovery among components to
analyze the software reliability based on its architecture.
A reliability and availability worst-case prediction
model for embedded systems through simulation has been
proposed[34. The constraints for that model shows clearly
that predicted values might not perfectly match with
post-development estimated reliability and availability
values achieved during system testing. Since the pro-
posed model does not consider actual system components
during prediction process, here in the proposed method
system functions are realized through functionally equi-
Different
scenarios3® are used to test the system functions and the

valent  generic  components. execution
worst-case reliability and availability predictions are
made based on simulations. The method proposed here is
a cost effective method and helps in the reliability im-
provement process at the end of the development cycle
force to considering these ad-hoc solutions thereby redu-
cing time and cost34.,

In general, researchers use simulation models to evalu-
ate software architecture. Formal description is used to
represent the executable model of architecture and
through this behavior of the software system can be ex-
plored before implementing into a real time product. In
other words, using the executable model, the architec-
ture can be evaluated. This model can be simulated us-
ing the Simulink environment. Simulink is a flexible tool
to visualize the system functions at the implementation
level and it accommodates in providing the most detailed
descriptions of a functional block!”. Hosseinzadeh-Mokar-
ram et al.['6l proposed a model for software reliability as-
sessment at early design stage using the colored Petr-
inet. They predicted the reliability during the execution
of various scenarios using UML sequence diagram.

The safety critical systems are claimed to be depend-
able systems, which expect zero error tolerance. Automot-
ive systems fall under the category of safety-critical sys-
tems anywhere these failures might cause severe damages
or loss. Traction control, stability control, anti-lock brak-
ing and cruise control are software driven subsystems in
the automotive area. These subsystems read input from
sensors, make computations according to its respective
control laws, and output a control value to maintain the
state of the engine, throttle position, or the brakes as re-
quiredl. The number of lines of code of these automot-
ive controlling software lies somewhere between hun-
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dreds and millions, and can make the wrong decision if
there are some hidden faults that might trigger a prob-
lem which were not identified and mitigated during the
testing phase. These situations prompted researchers to
predict the reliability of the software systems, in particu-
lar the worst-case prediction during the early design stage
itself. Automotive systems have a robust software having
constituents like methods, practices, and algorithms de-
signed with higher quality of performance, which will pre-
vent the activation of faults into error and eventually in-
to failure. Model based software using Matlab and Sim-
ulink is vital in the automotive sector which is highly ap-
propriate to represent the physical characteristics of the
system to be controlled and further to look into the beha-
vior of the control systeml[13].

It is recommended that fault injection can be used in
a suitable simulation environment to determine what un-
desirable outputs the component can produce, and what
inputs lead to those outputs, further to find the hidden
flaws as welll6l. Researchers used fault injection tech-
niques for reliability prediction and estimation. Markov
modeling techniques are recommended for software reliab-
ility[36:37, A Markov based error propagation model has
been built to find the reliability of component based soft-
ware systems/26l, but here the description about the type
of error is not mentioned. HMM together with complex
event processing has been used to predict on-line failure
prediction in safety-critical systemsi38l. In our proposed
framework, we have used HMM for estimating failures
and reliability.

3 Hidden Markov model

Markov models, also named as Markov processes or
Markov chains, were introduced by a Russian mathem-
atician Markov in [39] used to construct a stochastic mod-
el. Generally, they deal with finite set of states where
each of them is associated through transition probability
distributions. These distributions describe how a system
evolves from one state to another over a period of time. A
hidden Markov model is a statistical model having two
stochastic processes, wherein the system being modeled
will hold the Markov process with hidden/unobserved
states. These hidden states are statistically organized
through a probability distribution called “transition prob-
ability distribution”, and assumed as a first order Markov
model. The observable variables called “emissions” are
probabilistic functions of the hidden states and it is the
second stochastic process. One of the most comprehens-
ive explanation is provided by Rabiner!!8l. The HMM
having double stochastic layers namely hidden states and
emissions can be explained in Table 1.

A system at any time will exist in any one of a set of
N distinct states: Si,
noted as g, for t =1, 2, -

-, Sn. Any state at time t is de-
, N, S0, e.g., ¢ = S; denotes
that at time ¢, the system remains in state S;. The sys-
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Table 1 HMM symbols

S = {S1,", Sn}; Set of all possible hidden states.
O = {01, -,0n}; Set of emission symbols.

q = {q1,92,"".qn}; Set of values for hidden states.

v = {v1,v2,V3, " ".Un}; Set of values possible in emissions termed as observation vector.

A = {aj;} is the hidden state transition probability distribution, where a;j = P(q: = S; -1 = S;); such that 1 <4, j> N and a;; > 0.

B = {bj(vm)}, is the emission probability distribution, where b;(vm) = P{O; = vm ¢ = Sj}; such that 1<j<Nand 1<m <M.

no is the initial state distribution np = {m;} for hidden states.

Hidden Markov model is represented as A = (A, B, ).

tem moves to a state with a given probability, depending
on the values of the previous times and it is represented as

P(Qt+1 = S]lqt = Sﬂqtfl = Sk7' . ) —
P (qt+1 = Sjlgt = Si) . 1)

Equation (1) conveys that, as per the first order
Markov model, given a present state, the future is inde-
pendent of the previous state. The transition probability
“A” as given in Table 1 says that a transition from S; to
S; has the same probability no matter where it happens
or when it happens in the emission sequence. It is repres-
ented in a N x N matrix where the sum of each row ele-
ments must be one.

In HMM, the hidden states are not observable, for
every state, there will be an emission that is recorded and
this will be a probabilistic function of hidden state. “B”
is the emission probability distribution and its mathemat-
ical equation is depicted in Table 1. The transition prob-
ability represented as a stochastic automaton is depicted
in Fig.2.

Fig. 2 Hidden state probability distribution

Once the HMM X is constructed, then the model A
can be implemented through the following approach:

1) The probability of the emission sequence can be
computed using the “forward and backward algorithm?”.

2) Given a sequence of emissions, the most likely
states sequence can be searched. This can be found using
the “Viterbi algorithm”. An HMM can be unfolded in
time as a lattice or trellis showing all possible trajector-

ies using this algorithm.

3) Given an emission sequence and on a set of pos-
sible models, the HMM model parameters can be adjus-
ted such that the model will fit for the intended applica-
tion. This is realized through the “Baum-Welch al-
gorithm”.

HMMs have been used successfully in many areas,
which includes mechanical, electronics and computer sci-
encel4%, Honamore and Rath[! have implemented HMM
together with fuzzy logic for web services reliability pre-
diction. HMM was used to diagnose the health of patient
for wearable devicel2l. Dorj et al.[43l have presented a
data-driven approach for anomaly detection in electronic
systems using Bayesian HMM classification. Clustering
multivariate time series in the healthcare domain has
been carried out using HMMM44. To monitor predictive
maintenance of diesel engines, HMM algorithms have
been used in [45]. HMM is used to predict the software
failures by identifying the special patterns of errors[17.
Durand and Gaudoinl*6l have established a framework us-
ing HMM for software reliability modeling and prediction.
HMM is a classification technique used to estimate the
unknown/hidden parameters. Hence, it provides an op-
portunity to detect the unobservable hidden software be-
haviors of any system.

4 The proposed SFELE framework

The proposed framework is based on a data driven ap-
proach called “software failure estimation with logic er-
ror (SFELE)” and it is presented as shown in Fig.3. It is
composed of three different phases namely process phase,
analysis phase and end phase. Broadly, our framework
uses a stochastic model to estimate the failure and reliab-
ility of any safety critical software system. We choose to
use a stochastic process namely Markov models for ex-
amining the temporal behavior of software. In the Pro-
cess phase, the architectural model is executed and ob-
servable critical parameters (vi, va, v3, =", v,) are meas-
ured. In parallel, the hidden controlling software behavi-
or pattern is explored, and particularly examined for sys-
tem specific software error patterns.

In analysis phase, the observed critical parameters (v,
vy, v3, ***, Vp) are quantized into emissions O, Os, -,
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Fig. 3 SFELE framework

Oy, based on the domain knowledge. The software error
patterns are analyzed further and categorized into differ-
-+, Sn. These
software error states are unknown/hidden operation of

ent software error states namely Si, Sa,

the system, which brings the uncertainty if there are any
in the software reliability estimation process.

Hence, our framework constructs a machine-learning
model called HMM with available information called
emissions (O, Os,~**,0n) whose readings are associated
with its software behavior. The transitions across the
software error events are summarized through a matrix
called the transition probability distribution. Every soft-
ware state is associated with specific emissions. The
stochastic behavior of any safety critical software, the
hidden software events are mapped with emissions and
arrived with a probability distribution called the emis-
sion probability distribution.

Once the emission states, hidden states, initial state,
transition probability matrix and emission probability
matrix are available, the HMM X is re-estimated using
the Baum-Welch algorithm. In the end phase, the en-
countered failures are identified and the impact of these
failures is estimated to calculate the system reliability.
Once the model is built, it helps to explore types of fail-
ure by visualizing the temporal sequence of error and de-

@ Springer

pendencies among components. This is attained through
the Viterbi algorithm and it actually supports diagnosing
the software behavior by observing the operation of the
safety critical system and helps to find out the possible
trajectories. The proposed data driven framework is eval-
uated through an automotive anti-lock braking system
called ABS.

5 Case study: ABS

ABS is an automotive system that is designed to con-
trol and to maintain the performance of a vehicle. The
ABS either shares a single CPU along with the other sys-
tems, namely traction control, stability control and cruise
control or an individual CPU. The ABS ensures that
maximum braking is accomplished even under adversari-
al conditions such as skidding on rain, snow, or ice. These
brakes function by sensing slippage at the wheels during
braking and continually adjusting braking pressure to en-
sure maximum contact between the tires and the road.
The system computes relative slip value and based on
this relative slip value a control signal is generated which
controls the activation/deactivation of the brake pres-
sure valve in accordance with ABS principle, a detailed
description can be found in [47].
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The component model of ABS is represented in Fig. 4.
Functionality of each component in this system contrib-
utes to the expected performance. The model is visual-
ized through six components namely Comp-1 to Comp-6.
These six components interact with each other during its
operational period. Comp-6 is the controller component
and it computes the brake pressure according to the ABS
principle. The function of Comp-3 is to compute relative
slip as per (1), by accepting input w, and wy, from Comp-2.
The values w, and w, are recalculated in Comp-6 and
Comp-1 respectively using special integrators. The fric-
tional force Fis computed by Comp-4. In Comp-1, FY is
divided by the vehicle mass to produce the vehicle decel-
eration and it integrates to obtain w,. The desired relat-
ive slip is compared with slip for maximum traction at
Comp-5. The value of desirable slip, has to be 0.2, the
number of wheel revolutions equals 0.8 times the number
of revolutions under non-braking conditions with the
same vehicle velocity. The slip is calculated from wheel-
speed and vehicle-speed, and it is given by Slip =

1-— w—w, where w, is the vehicle-speed and w,, the wheel-
Wy

speed.
I:I |:| Dslip |:| D
< Slip Comp-5Dsiip T, Comp-6
= ,,
2 |3
72} o
k3} L
S0 | o—
S| Sip
. Comp-4 T, Comp-1 §,
ot F F,
= - w,
2 i=
(=3 <
| c
o 0,
O Ny *
P Slip Comp-3 Comp-2 Sq
o, & o, D
T o, & o,

Fig. 4 Component model of ABS

For the failure analysis, four critical parameters of
ABS are considered. The first critical parameter is slip
and second critical parameter is the stopping-distance
(Sq), which is defined as the distance covered by the
vehicle from the instant the brake is applied, to the in-
stant the vehicle is stopped completely. The third para-
meter is tire-torque (73). The fourth observation is for
comparing wheel-speed w,, and vehicle-speed wy,.

6 SFELE framework evaluation
6.1 Process phase

ABS is executed with a running speed of 88km/h, and
the system is assumed to be absolute. The actual data
flow for slip is from Comp-3 to Comp-4 and it is shown

by the dotted line in Fig.4. The operational scenario is il-
lustrated through a sequence diagram in Fig.5, which de-
picts the ABS functionality for time instants ¢ = 12.832s,
12.854s and 14.008s. For an absolute system, the vehicle
stops absolutely at time ¢t = 14.008s. The four critical
parameters Sg, T3, Slip and w, & w, are observed over
the complete execution time and sample readings are lis-
ted in Appendix Table Al.

To explore the behavior of ABS when there is a logic
error, the system is injected with a logic fault. A logic er-
ror might happen either as design errors in the decision
logic or algorithm or coding errors. The logic fault is in-
jected altering the dataflow path for slip from Comp-5 to
Comp-4 as shown in the solid line labeled as injected in
Fig.4. This causes undefined program behavior. As men-
tioned in Section1, the system took more than the expec-
ted time to complete its operation resulting in wrong and
late output. Software logic errors might lead to failure
conditions for example infinite loops, abrupt returns, tak-
ing a longer time to complete routine execution and in-
correct calculations/!3l. This error can be mapped into ex-
ternally observed error propagations in the form of no
output, bad output, early/late output, etc. The critical
parameters Sy, T3, Slip and w, & w, are observed over
the execution period and it is expressed through the se-
quence diagram as shown in Fig.6 and the respective
dataset is tabulated in Appendix Table A2. The statist-
ics of this error scenario with respect to the absolute
scenario is tabulated at time ¢t = 12.832s, 12.854s and
t = 14.008s, t = 14.3668s and it is shown in Table 2.

The performance of the ABS system with no error and
with injected logic faults over the critical parameters Sy,
T;, Normalized Slip and w, & w, are depicted in the
graph as shown in Figs.7-10. Fig.10 shows the value of
expected stopping distance Sg as 720.8 in dotted line and
the stopping distance as 722 when associated with logic
fault. Moreover, it shows that the time taken for stop-
ping the vehicle is 14.4s, which is more than the normal
operation of 14.008s. This is an abnormal situation and
the failure can be called as content and timing failure.
This is an anomaly, which is defined as a condition that
is not anticipated.

Fig.8 shows the comparison between the wheel speed
and vehicle speed w, & w, as per vehicle dynamics, the
wheel speed tends to be lower than vehicle speed. In-
stead in the time duration 12.832s to 12.854s, wheel
speed is slightly greater than vehicle speed. The differ-
ence is found to be small when compared with the ABS
having a timing faultl4sl. The failure here is found to be
marginal. Fig.9 shows the tire torque (T};) values. When
the system is absolute, the value of the tire torque never
goes negative. But, when it has a timing fault, it is found
that it possesses negative values during few execution
cyclesl48l. After a few executions the tire torque returns to
habitual values, but the influence is propagated as a
Mandelbug and timing error, disturbing the performance
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Legend:----— Data-flow from previous execution cycle,

Fig. 5

of the system. With these observables, we explored the
performance of the system and mapped to the software
behavior.

6.2 Analysis phase

The critical parameters are measured as a sequence of
data, during the ABS operation over a specified period of
time when the brake is applied. The sequence of meas-
ured data for the critical parameters Sq, Ti, Slip and w,
& wy are recorded for its values. The emission symbols
01, Oz, O3 and Oy are generated according to the vari-
ations in the measured values of Sy, Ti, Slip and w, & wy
as shown in Table 3.

By overlooking the sequence of measurement data, we
could detect that the ABS system has software malfunc-
tioning. The software behavior of system is analyzed to
extract the software error patterns. Investigating each ex-
ecution cycle as shown in Figs.5 and 6 provides know-
ledge of how a logic fault gets activated and this error
propagates across ABS components. It is found that there
are three different software errors occurring at different
instances, namely logic error, Mandelbug and timing er-
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—— Data-flow within the current execution.

Sequence diagram for absolute system

ror.

When the system with a logic fault starts executing,
all critical parameters were within the threshold as depic-
ted in Table 3. It is claimed as error free state S1. At t =
12.832s, slip becomes negative, due to value error and w,,
becomes more than w, which is logic error, here it is cat-
egorized as Ss. The situation continues till ¢ = 12.8540s.
12.9580s.
12.9580s, tire torque becomes negative,

The system runs in a normal mode till ¢
Later at t
which is due to a Mandelbug and it is marked as state Sj.
This continues for eight execution cycles and the system

recovers. Subsequently at ¢ = 13.7120s, the stopping dis-
tance increases beyond its estimated value of 720.8, this
is due to the existence of Mandelbug and timing error
and the state of the software being marked as So.

As per the listed rules in Table 3, the emission sym-
bol O; is assigned when every critical parameter is as ex-
pected. The symbol O3 is assigned when the S; goes bey-
ond the estimated value of 720.8, while the other three
parameters remain as expected. When w, > w,, becomes
false, it is named as O3. The symbol Oy is assigned when
slip goes negative and w, > w, becomes false. Having
identified the emission symbols and hidden software
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Legend: -----— Data-flow from previous execution cycle —— Data-flow within the current execution

Fig. 6 Sequence diagram for ABS operation with logic error

states, by exploring the operation of ABS with and
without fault. The emission symbols of HMM are categor-
ized according to the thresholds as shown in Table 3 and
mapped it to the various software error states to build
the HMM model for the ABS system with fault.
6.2.1 Building the HMM structure for faulty system
The ABS operations are recorded for timing
Lt
changes its state among the four mentioned states Si, So,

se-
quences ti, t2, ts, At any instant, the system
S3 and Sy as described in Section 6.2. A state can be a set
of events characterizing a system at a given condition or
activity. A transition is a passage from one state to an-
other, whose transition probability is the probability of
undergoing this transition[49. The hidden state trans-
itions matrix is the standard way of representing Markov
chains. For the dataset as shown in Table A2, the emis-
sion symbols are generated as per the rules listed in
Table 3 and the corresponding software error states are
counted. The hidden transition probability (A) and emis-
sion probability (B) matrices are computed[8].

The probability of transition for changing a state from
one to another is denoted by a;;. For example, if 1 = 1
and j = 2, then a;; represents the probability of chan-
ging the state from S; to So. The HMM parameters A, B,

. . . O .
n are adjusted in order to maximize p (X) using the

Baum-Welch algorithm[!9 and the graphical representa-
tion is shown in Fig.11. Hence for our model having 4
states, there are 16 possible transitions and represented in
matrix called hidden states probability distribution as de-
picted in Table 4.

The gross performance of the model is computed for a
specific test dataset/® and the results found to be satis-
factory. The performance variables namely sensitivity,
precision and F-measure are depicted as shown in Table 5
for four states.

6.3 End phase

In end phase, we will be concentrating on our four dif-
ferent components: content failure, timing failure, con-
tent & timing failure and impact analysis on a system as
a derivative of hidden Markovian model applied on the
real time system ABS. The following discussions on vari-
ous failures and its parameters depict the complete scen-
ario of the effect of logic error in the real time system.
6.3.1 Content failure

The observable parameters delivered by the real time
system ABS deviates from implementing system function.
As shown in Table 4, when the system traverses in the
states either at Ss or Sy, the observable parameters slip
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Table 2 Tabulation for statistics of error scenarios

Absolute system

wy (m/s?) wy (m/s?) Sa(m) Slip T (N-m)

System with logic error (LE)

wy (m/s?) wy(m/s?) Sa(m) Slip T,(N-m)

Timet = 12.832s

Timet = 12.832s

C1 6.617 716.21 6.46 715.44
Cc2 6.617 4.810 6.46 6.501
C3 0.276 -0.009
C4 487.51 502.77
C5
C6 6.432
Time t = 12.854s Time t = 12.854s
C1 6.479 716.39 6.267 75.702
C2 6.479 4.770 6.267 6.432
C3 0.265 -0.018
C4 489.605 469.48
C5
C6 0
Time t = 14.008s Timet = 14.3668s
C1 0 720.8 0 722.04
C2 0 0 0 0
C3 1 1
C4 351.968 351.968
C5
C6 0 0
1.0 F T T T T T T = 500 F T T T T T T ]
08 L- -Slt:p With LE ! g 400 ]
06 | —Slip without LE i g 300 | ]
! 3
! o 200
ﬁ 100 —Tire torque without LE
0 - - -Tire torque with LE '
0 2 4 6 8 10 12 14
Time (s) Time (s)
Fig. 7 Normalized Slip versus time Fig.9 Tire torque (T}) versus time
3 =
3 ) 740 F T T T T T T T 3
. 60 T T T T T T T 0 720
= i . 720 b - oS .
8 40 8 720.8
E Wheel speed | 50T ]
@ 20 [ |~ -Yvheel spee o0 |- - -Sy with LE ]
P — Vehicle speed 'a 680 —S: without LE
2 0t . . . . . A & 660 : : : " " " "
2 0 2 4 6 8 10 12 14 “x 132 134 136 138 140 142 144

Time (s)
Fig. 8 wy & wy, versus time

value becomes negative and the wheel speed is slightly
greater than vehicle speed that is an abnormal dynamic.
After few milliseconds the system resumes its value as ex-
pected. The behavior of the system in this way is due to
content failure and is revocable.
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Time (s)
Fig. 10 Stopping distance (Sq) versus time

6.3.2 Content & timing failure

It is observed that, when the real time system tra-
verses from state S; to state S2, it encounters content &
timing failure as shown in Fig.11, which is a critical fail-
ure and it is irrevocable. At the transition state S, the
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Table 3 Rules for generating emission symbols

Association of software states with S 5 Ss S
emission symbols 0, 0, 05 o
Sa <720.8 >720.8 <720.8 <720.8
T >0 >0 <0 >0
Slip >0 >0 <0 <0
Wy > Wy True True False False

Table 4 Hidden states transition probability distribution

A ={ai;} S1 Sa S3 S
S1 0.9900 0.0013 0.0013 0.0057
Sa 0.0130 0.9600 0.0130 0.0130
Ss 0.2500 0.1300 0.5000 0.1300
Sy 0.1670 0.0830 0.0830 0.6700

critical parameter Sy is observed to be exceeding the ex-
pected value. Under this scenario, the system takes much
longer time to complete its execution as discussed in Sec-

tion 6.2. The errors occurring at this stage are identified

Emissions

0,

0;

Legend: Solid lines: Transition probability
Dotted lines: Emission probability

Dashed lines: Observations: Failure

Hidden states transitions  [—>

as Mandelbug and timing error.
6.3.3 Timing failure

The service delivered may be either too early or late
and this failure is not encountered in this scenario.
6.3.4 Impact analysis on the system

All these encountered failures have an impact on the
performance of the entire system and this can be dis-
cussed in the view of reliability of the system. Reliability
is the probability that the system does not confront an
error state. The reliability can be estimated by a steady
state vector[ll. The steady state or equilibrium vector
helps to assess how the software error behavior affects the
overall system reliability[®2l. A finite Markov chain is a se-
quence of probability vectors mg, 71, 72, T3, ***, T, Where
my is the initial state vector. For our real time system
mo = (1 0 0 0), since the system starts its execution in the
error free state, then mi, ma, 73, *-, m, are calculated as,
m = Amy, my = Amy, -+, ™y = Amp1 and attains steady
state vectorl®2l. The steady state vector of the transition
matrix A is the unique probability vector that satisfies

the following equation,
., = Ame,,, where s = time of steady state  (2)

Observations

L~
Content failure

2 Content and timing
- failure

Fig. 11 HMM structure for faulty ABS system and its observations

Table 5 Performance measure

Class Sensitivity /True positive rate Precision/ Positive predictive value F-measure
Classl 0.99 0.99 0.99
Class2 1 0.97 0.98
Class3 0.75 0.75 0.75
Class4 1 0.88 0.94
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4
Reliabilityworst case =1 — Z ﬂ—(sl)

1=2

®3)

In (3), w(S;) is the steady state probability vector.
The reliability factor depends on the probability of being
in a failure at steady state tss. The Markov property as-
sumes that the probability of transition to the next state
at time t depends on the system at previous state at time
t—1 and is independent from its past history. Under this
assumption, the reliability is estimated on the probabil-
ity of being in a failure state and is independent of the
exclusive path(s) taken to reach the particular failure
statel52.

7 Result analysis

7.1 Unfolding software error states

The HMM model can capture various software error
states and allows us to make inferences about the per-
formance of the software at each instance. For example, a
logic fault in the design can lead to an erroneous compu-
tation for specific values of program variables Sy, Slip,
Wy, wy and T;. The software can use this incorrect result
internally for further computations, in which case the er-
ror propagation leads to additional errors. In the time
between the fault activation and the final failure occur-
rence, the system traverses different error states in its er-
ror propagation path. The various error states Ss, S3 and
Sy are visualized in the trellis diagram as presented in
Fig.12.

7.2 Estimation of failure and reliability

The failure prediction approach is designed in terms of
temporal behavior of error occurrence and its transforma-
tions. A failure occurs only when the system makes incor-
rect calculations due to some existing error or the actual
execution time is not matching the expected execution
time. In our experimental analysis, we found that two

International Journal of Automation and Computing 17(2), April 2020

types of failure occurred. At time t = 12.832s, content
failure occurred[?3 and this exists for 2ms. This is a tran-
sient in nature and it is detected by overlooking the cor-
responding error state Ss. Again, at ¢t = 12.958s due to
the error state Sy4, the system experiences a failure. When
the system encounters state Sz at ¢ = 13.712s, the ABS
system undergoes content and timing failure and it is a
permanent failure. Here, the relationship between fault,
error and failure is estimated as the worst-case reliability
of the system,

Steady state vector mss =

S1 So Ss Sa
[0.8610 0.1075 0.0088 0.0227]

Reliabilityyorst case = 0.861.

8 Threat to validity

The proposed framework might not be suitable for all
other safety critical systems that are not included under
the classification of automotive systems. The framework
SFELE evaluation is concerned with the specific vari-
ables Sg, wy, wy, Slip and T; only. Further evaluation
may be taken with other parameters also. There are oth-
er parameters also to be considered for precision in the
evaluation in future. The recommended model A with the
principle of hidden Markov approach is built for the se-
lected injected fault. The same model A might not be fit
for the same system with any other injected fault. The
behavior of the real time system with various injected
faults might not have maximum likelihood for the model
A

9 Conclusions

We presented a data driven framework SFELE for the
reliability estimation at the early design of the safety crit-
ical system. The framework is built extensively on an un-
supervised machine learning technique “hidden Markov
model”. The model is checked for its performance, which

Probability of being in Probability of being in
1 state S, at instant £ = ¢, y state S, at an instant1
4
0.999 640\ S 0.999
Output 74 7/1 1) 7 :/
symbols
g NQ0-999 5
A\ AGEY A }Q
NG P N LN
Start $ 0.006 1 1
&5 e( S / =S -
N T\ 7\ >
L 0.993 3 ,
SO 16 ENGE 6
/ \
0 1 1486 1495 1502 1557 1592
Instance Probability. of being in Probability. of being in
state S, at an instant ¢ = 7,5y, state S, at an instant ¢ = 7,5,
Fig. 12 Trellis: Error propagation path
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gives satisfactory results. The framework is built in such
a way that the outcomes are presented in a hierarchical
way. The first outcome gives the underlying various soft-
ware error states that the system is traversing within the
time period of activation of logic faults to failure occur-
rence. It is found that the interacting system compon-
ents propagates software errors namely logic error, Man-
delbugs and timing error. The results are presented in a
graphical representation called a Trellis diagram. The
second outcome is finding out the type and nature of fail-
ure occurrence and it is found that the system experi-

ences content, content & timing failure. The final out-
come is the reliability estimation under the worst-case
scenario, the ABS system with logic fault. Reliability es-
timation is not worthwhile if the estimation does not con-
tribute to improving the system dependability. We be-
lieve that the effort of estimating reliability at the early
design stage will help the software practitioners to build
reliable safety critical software in a cost-effective manner.
This approach helps in proactive fault management and
helps the design engineers for effective support for devel-
oping any safety critical system.

Appendix
Table A1 Example dataset for ABS with no fault
Time (s) Slip wy(m/s?) wy (m/s2) Sa(m) T;(N'm)
0.0000 0.0000 70.4000 70.4000 0.0000 0.0000
0.0979 0.0008 70.3987 70.3426 8.6123 3.2057
0.3979 0.0072 70.3397 69.8360 35.0039 28.8054
0.6979 0.0142 70.1751 69.1811 61.3538 56.9775
1.9879 0.0445 68.2293 65.1962 173.2128 178.8186
1.9979 0.0447 68.2064 65.1582 174.0655 179.7658
3.1979 0.0730 64.5708 59.8559 273.8671 293.7197
5.9867 0.2390 49.6970 37.8202 475.3702 494.9717
7.9763 0.2201 37.1916 29.0046 583.4208 498.7636
8.9009 0.1683 31.3400 26.0647 623.0249 493.2568
9.8034 0.2323 25.6759 19.7103 655.2089 496.3080
10.9186 0.1572 18.6763 15.7409 686.1050 489.8912
11.9876 0.1430 11.9294 10.2231 706.5381 475.8240
12.8390 0.2851 6.5904 4.7111 716.3943 485.6872
12.8490 0.2821 6.5282 4.6866 716.4763 486.3012
12.8590 0.2785 6.4659 4.6654 716.5576 487.0331
12.9544 0.2000 5.8637 4.6910 717.2926 502.8125
12.9679 0.1820 5.7774 4.7262 717.3907 497.3684
12.9932 0.1542 5.6177 4.7513 717.5710 489.0035
13.0032 0.1461 5.5555 4.7441 717.6408 480.9867
13.0132 0.1416 5.4944 4.7163 717.7098 473.3986
13.0232 0.1395 5.4341 4.6759 717.7781 469.8311
13.7039 1.0000 1.3542 0.0000 720.6203 351.9688
13.8939 1.0000 0.4982 0.0000 720.8402 351.9688
14.0039 1.0000 0.0026 0.0000 720.8747 351.9688
14.0045 1.0000 0.0000 0.0000 720.8747 351.9688
14.0045 1.0000 0.0000 0.0000 720.8747 351.9688
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Table A2 Example dataset for ABS with logic fault
Time (s) Slip wy(m/s?) wy (m/s?) Sa(m) T;(N-m)
0.0000 0.00 70.40 70.40 0.00 0.0000
1.2800 0.02 69.53 67.88 112.23 110.8606
3.9160 0.18 61.89 50.86 330.63 356.3574
5.9820 0.23 49.77 38.26 475.34 498.2446
7.9760 0.21 37.10 29.18 583.60 496.4340
8.9060 0.22 31.22 24.26 623.31 500.0544
9.9820 0.17 24.40 20.31 660.69 480.3883
10.9120 0.15 18.49 15.64 685.63 491.8359
11.9860 0.15 11.69 9.93 705.89 462.3852
12.8320 -0.01 6.46 6.51 715.51 499.8979
12.8340 -0.01 6.45 6.51 715.53 454.8094
12.8440 -0.01 6.39 6.43 715.61 454.8094
12.8540 0.00 6.33 6.35 715.69 454.8094
12.9580 0.51 5.88 2.91 716.48 -40.5181
12.9680 0.69 5.89 1.82 716.55 -40.5181
12.9949 1.00 5.90 0.00 716.75 -40.5181
13.0049 1.00 5.91 0.00 716.82 -40.5181
13.0149 1.00 5.91 0.00 716.90 —40.5181
13.0200 1.00 5.92 0.00 716.93 71.4510
13.7020 1.00 2.99 0.00 720.80 351.9688
13.7120 1.00 2.95 0.00 720.83 351.9688
14.3668 1.00 0.00 0.00 722.04 351.9688
14.3668 1.00 0.00 0.00 722.04 351.9688
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