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Abstract: The use of the multiscale generalized radial basis function (MSRBF) neural networks for image feature extraction and med-
ical image analysis and classification is proposed for the first time in this work. The MSRBF networks hold a simple and flexible archi-
tecture that has been successfully used in forecasting and model structure detection of input-output nonlinear systems. In this work in-
stead, MSRBF networks are part of an integrated computer-aided diagnosis (CAD) framework for breast cancer detection, which holds
three stages: an input-output model is obtained from the image, followed by a high-level image feature extraction from the model and a
classification module aimed at predicting breast cancer. In the first stage, the image data is rendered into a multiple-input-single-output
(MISO) system. In order to improve the characterisation, the nonlinear autoregressive with exogenous inputs (NARX) model is intro-
duced to rearrange the available input-output data in a nonlinear way. The forward regression orthogonal least squares (FROLS) al-
gorithm is then used to take advantage of the previous arrangement by solving the system as a model structure detection problem and
finding the output layer weights of the NARX-MSRBF network. In the second stage, once the network model is available, the feature ex-
traction takes place by stimulating the input to produce output signals to be compressed by the discrete cosine transform (DCT). In the
third stage, we leverage the extracted features by using a clustering algorithm for classification to integrate a CAD system for breast
cancer detection. To test the method performance, three different and well-known public image repositories were used: the mini-MIAS
and the MMSD for mammography, and the BreaKHis for histopathology images. A comparison exercise was also made between differ-
ent database partitions to understand the mammogram breast density effect in the performance since there are few remarks in the liter-
ature on this factor. Classification results show that the new CAD method reached an accuracy of 93.5% in mini-Mammo graphic image
analysis society (mini-MIAS), 93.99% in digital database for screening mammography (DDSM) and 86.7% in the BreaKHis. We found
that the MSRBF networks are able to build tailored and precise image models and, combined with the DCT, to extract high-quality fea-
tures from both black and white and coloured images.

Keywords: Nonlinear system identification, image processing, discrete cosine transform, radial basis functions, computer-aided
diagnosis, neural networks.

1 Introduction knowledge of its inner structure. Such pattern recogni-

tion capability is what makes system identification mod-
Digital image processing and computer vision tech- els highly appealing in image processing. Computer-aided
niques encompass an increasing variety of approaches to diagnosis (CAD) is another field of intense development

real-life problems. When it comes to image classification, that bridges image processing and computer vision discip-

image processing methods aim at recognising both visible
and hidden patterns to enable a subsequent statistical in-
ference process, oriented in the first place to extract fea-
ture values to feed such analytic process(ll. Among the
last ones, there is increasing acceptance in the literature
on system identification approaches, which are mainly fo-
cused on building models only based on the historical re-
cord of the system'’s inputs and outputs(24. These mod-
els are also capable of recognising and reproducing beha-
vioural patterns from a system's behaviour without prior
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lines to the medical field, especially in visualisation and
diagnostic tasks. CAD has made the most of the current
advances in intelligent systems. Examples are software
supporting platforms for radiologists in decision-makingl5: 6.
One of the most popular system identification ap-
proaches in CAD systems is represented by artificial
neural networks (ANN) given their excellent modelling
capacity. Moreover, many experts in CAD systems rely
more frequently on the use of multi-layered ANN with
the intent of obtaining even better approximations.
However, the more the hidden layers are included in the
network, the slower and more complex the model map-
ping becomes. Conversely, single hidden-layer networks,
as radial basis functions, are known to be sufficient to es-
timate any continuous function, independently of the lin-
earity degreel 3, 7. Radial basis functions networks
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(RBF) are popular kernel-based networks which repres-
ent a particular class of ANN. Kernels are mathematical
functions contributing together to simulate a higher di-
mensional space from another one of a lower dimension to
ease the setting up of relationships between the data by
expressing it in a new way. RBF networks are efficient at
solving nonlinear system identification problems in spite
they hold a linearly weighted structure that eases the
training and discards complex nonlinear procedures in the
solution algorithm[” 8]. Concerning nonlinear analysis, it is
increasingly important for the study of real-life systems.
As for digital image processing, its relevance has in-
creased thanks to the proliferation of image usage in sev-
eral application fields, the improvement of storage capa-
cities and faster data transference speeds. An example of
nonlinear analysis in image processing is that exclusively
linear procedures in images may lead to poor operational
results regarding edges, non-Gaussian noise and other
random distortions, factors that can be especially ineffect-
ive when a high accuracy analysis is usually required®-11].

Notwithstanding that RBF networks sound like a
good choice due to their power of modelling and solving
simplicity, the approximations they produce may lack the
flexibility to model highly dynamic or rapid changing sys-
tems. An alternative to overcome such a limitation is the
multiscale version of RBF, termed as generalized
multiscale RBF networks, that provide a balance between
the simplicity of modelling of RBF networks and the ad-
vantages provided by more complex networks[12-14],

Until the presentation of this work, MSRBF networks
have not been used in image processing techniques nor in
CAD systems. In this work, MSRBF networks are adop-
ted and combined with the discrete cosine transform
(DCT) to extract high-quality information from images
with classification purposes. A basic outline of the pro-
posed CAD system within the context of machine learn-
ing is shown in Fig.1, where as detailed further in Sec-
tion 3, training and testing phases converge into classific-
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Fig.1 Role of the MSRBF-DCT into a classification-based
CAD system
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ation to produce a computer-aided diagnosis using a clus-
tering algorithm named k-means++. Also, a nolinear
autoregressive with exogenous inputs based (NARX-
based) input-output mapping of digital images is presen-
ted with the aim of making the digital image information
consistent with nonlinear system identification problems.
Tests results show that the new method is highly consist-
ent as a CAD system in breast cancer image detection, an
important and challenging public health problem, both in
X-ray mammography and microscopy instances.

In terms of application, RBF networks have been used
in a wide number of different real-world applications such
as the modelling of complex systems(l?], prediction of
near-earth geomagnetic field['6], face recognitionll? 18],
modelling and identification of dynamical systems[!9],
three-dimensional object recognition[2°l, and motor systems
control?ll and in CAD systems involving pathological
brain detection[®? and breast cancer detection/23-27),

This work puts forward a novel image processing
framework for feature extraction based on an improved
version of RBF networks. We add to this framework the
advantages of the DCT to compress information. Finally,
we successfully adapt the MSRBF methodology to CAD
systems for breast cancer detection.

The rest of this paper is organised as follows: Section 2
provides preliminaries while Section 3 describes the pro-
posed methodology for the classification and detection of
breast cancer. In Section 4, experiments and results are
presented, where Section 5 discusses the performance pro-
duced by the proposed methodology. Finally, Section 6
draws the conclusions.

2 Preliminaries

In this section, a review of background material is
briefly reviewed.

2.1 Traditional RBF and 2D MSRBF
neural networks

Traditional RBF networks are known to be straight-
forwardly structured, but with a considerable power to
identify a whole range of systems, including those with ir-
regular datal® 29, However, single-scale RBF networks
may have modest generalisation qualitiesl'2, MSRBF net-
works provide a favourable trade-off between easy to
solve traditional RBF networks and the modelling ad-
vantages of multi-layer networks, which more than often
include various hidden layers and involve nonlinear op-
timisation steps in the solution process!'2. MSRBF net-
works are multiscale because on the one hand, the kernel
function included is Gaussian, and on the other, such
Gaussian function has several widths or scales.

As mentioned, the present work includes the Gaussi-
an kernel, for it allows to easily use centres and widths
for an added modelling flexibility, as it enables the struc-
ture detection algorithm to choose from more options for
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a better representation. Fig. 2 exemplifies how the Gaussi-
an neuron-function processes the x input data according
to the p and o parameters (mean or kernel centres and
standard deviations, widths or scales, respectively) gener-
ating a bell-shaped distribution curve in the output.

S

c X

Fig.2 Shape of the Gaussian function contained in the RBF
kernel

The Gaussian kernel is known to be a multidimension-
al universal approximator of functions converting a di-
mensional space into another corresponding one, but with
different dimension (usually longer) that helps to linearly
separate any type of input data with non-linear depend-
encies (like most of the real-life problems) to make fea-
tures or information easier to extract and interpret by
machine learning algorithms. RBF networks base their ef-
fectiveness on such advantage and approximate the un-
known nonlinear function f utilising a weighted sum of
Gaussian radial functions. Fig.3 shows the typical archi-
tecture of RBF networks.

Radial basis
hidden layer Output layer
]

1

r 1 r 1 r Ll

Input layer
1

Fig. 3 Multiple-input single-output architecture of a Gaussian
RBFNN

The RBF structure consists of three layers, where the
first one represents the input data linked to the independ-
ent variables x1,--- ,ZTm. The first layer is fully connec-
ted to the second intermediate layer, formed by the
Gaussian neurons ¢i,--- ,¢,. The second intermediate
layer is in turn fully connected to the third layer or out-
put layer, employing the kernel weights wi,--- ,wn,
which are part of the result of the network training. Note
that in the context of the neural network, the Gaussian
functions parameters c¢; for the centres and u,; for the
widths are not given in the problem and thus must be
computed automatically from data. For this reason, RBF

networks are nonparametric methods. The general formu-
lation of the standard RBF for a one-dimensional system
is the following:

f(@@) = Zem(f'(t); Fi,C) (1)

where ¢; is the i-th neuron or Gaussian kernel, subindex
denotes the neuron number, Af is the total number of
neurons or kernels, Z(¢) is the vector of independent
variables (which in the NARX model are rather
regressors), & = [o1,-++ ,0n] is the vector of parameters
of the scales (or widths) and & = [c1,- -+ , cyn] is the vector
of parameters of the kernel centres. In such a way, the
Gaussian kernel function for a one-dimensional system is

stated as follows:

61 (5(t); 51, @) = exp[z (%)] (2)

o
b=1 g

where d = n, + ny, Ny, ny are the maximum lags for the
system input and output, and b is an auxiliary value for
indexing the regressive variables contained in Z(t).

2.1.1 2D MSRBF neural networks

The MSRBF network implemented in this framework
adopts the multiscale approach as a primal contribution
along with the 2D perspective to attack the image pro-
cessing problem. The multiscale extension to RBF, as the
name suggests, multiplies the scales or widths of each ker-
nel function with the aim of expanding the flexibility of
the single hidden-layer neural network and better ap-
proaching the non-linear function f .

Fig.4 describes the structure of MSRBF neural net-
works, where the vectors of the input layer are fully con-
nnected to the Gaussian kernel functions ¢p q,m (defined
originally in traditional RBF networks as ¢;). The num-
ber of functions represents the number of kernel centres
¢m. The hidden-layer neurons are fully connected to the

Extended

Input layer hjdden layer Output layer
| 1 1

— /- =
Regular . { N ¢ y
RBF - “ W,
' ;

Fig. 4 Increase in the number of RBF neurons produced by the
multiscale approach
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output layer by means of a series of weights wp,q,m cor-
responding to the model parameters 6, 4,m stated below
in (3). The 2D MSRBF version replaces the vector of re-
gressors Z(t) in (2) by the two-dimensional vector Z(i, )
in (4).

The 2D MSRBF network implemented in this work
presents the following mathematical structure, which is
an adaptation of a definition presented in [12].

P Q NC

y(i, j) = ZZ Z Opa,mBp,am (E(i, 5); Fre 3 Em) - (3)

i=0 j=0 m=1

where (i, j) is defined as f(Z(i, 7)) as the system output,
Z(4,7) is the vector of bi-dimensional regressors composed

of lagged inputs and outputs, o

are the scales, ¢, are
the candidate centres with N, representing their quantity
in the network, ¢ 4,m are the basis functions and 0 ¢,m
are the model weights to be estimated during training. In
that way, the basis functions previously defined in
traditional RBFs (in (2)), are defined in the 2D MSRBF
network as:

(=] o

Bp,q,m (ZT(,5); &»7(5&)7 Cm ) =exp|—
(p,q)
1 Um,b

b

where in the same fashion, ¢, 4,m is the general Gaussian

kernel, aﬁf{’q)

are the Gaussian multiscales, c¢,, are the
Gaussian centres, b is an auxiliary value indexing the
variables contained in vector Z(i,j) and d = ny + nu +
Ny2 + Mu3, Nul, Nu2, N3 and n, are the regressive
variables of the multiple-input-single-output (MISO)
network design suggested in this paper. However, special
attention must be paid in the determination of the
Gaussian parameters.

2.1.2 Discrete cosine transform

The discrete cosine transform(3Yl is a function that
computes a sequence of discrete values out of a first se-
quence. The resulting coefficients are calculated by sum-
ming cosine functions valued at various frequencies, pro-
ducing an oscillating effect in the resulting numbers. A
relevant contribution of the DCT is the data compres-
sion capability for audio and image processing applica-
tions, including pattern recognition(!].

A simple way to explain the DCT is to imagine a vec-
tor of a certain length and the DCT as a transformation
matrix so that the product of the first two results in a
second vector of the same length but with the energy con-
centrated in fewer coefficients. Because of this quality, it
is easy to reorder and leave out the less important values.
More formally, the DCT for a data sequence X(i),
i1=0,1,---,(N—1)1is:

%gzﬁyxm,ﬁuzﬂ

N Do X(i)cos N
ifu=1,2- (N—-1)

Fy(u) =

@ Springer

where F(u) is the i-th DCT coefficient and u is a vector
of values to be compressed.

3 Methodology

In this section, the proposed generalized multiscale
RBF network using a discrete cosine transform (MSRBF-
DCT) for the classification of breast cancer images is de-
scribed.

3.1 MSRBF-DCT methodology

The MSRBF-DCT feature value extraction method
bases its logic on four main algorithms: conversion of the
image data into the NARX format, the multiscale ver-
sion of RBF networks, the forward regression orthogonal
least squares (FROLS) algorithm and the discrete cosine
transform. Fig.5 shows the MSRBF network information
flow within the new methodology.

ROI image
I

| Input-output system data transformation |

[ Centres l-»/ Multiscales |

_ MSRBF candidate terms |

| FROLS model structure detection |
Y

Model weights estimation |
]

_ Y ._
C_ MSRBF model of ROI

Fig. 5 MSRBF model approximation flowchart

The adaptation of the proposed methodology into the
CAD point of view involved the image partition into
subimages or regions of interest (ROIs) in the first place.
In this work, ROIs are regarded here as the standard pro-
cessing units, where a 64 x 64 pixel-size was assigned to
better enclose the ROIs such as tumours and microcalci-
fications including the surrounding regions. Besides, a
splitting process was included to deepen the analysis
scope of this work as for the objects’ position detection in
the ROI area and to produce a two-fold and parallel char-
acterisation, where a complete subimage is observed on
the left side, followed by its dual partition on the right.
The functional objective of this conversion is to diversify
the features contained within the resulting vector, espe-
cially when the objects are out of the image centre.
Please note that after the feature extraction of individual
partitions, the values must form a single vector represent-
ing the original ROL.

As for the subject of the image processing, each ROI
split is read and stored according to the input-output sys-
tem format at first. Then, such data must be processed to
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derive a convenient number of data centres. The referred
centres represent artificial neurons or functions contained
in the singleton hidden network layer. In this paper, the
mathematical structure of each neuron-function is the
standard Gaussian function, defined alongside the com-
plete processing in Section 3.3.

At the end of the image modelling process, the struc-
ture selection algorithm FROLS comes into play to as-
sess the candidate neurons and include the most repres-
entative terms into the model.

Once the model is available, a set of input signals is
used to excite the model and generate a corresponding
output signal series, whose values are processed via the
DCT and assembled to obtain a set of feature vectors. As
illustrated in Fig.6, this process of feature extraction is
repeated over all the mammogram's ROIs to compare the
final vectors to pre-tagged samples corresponding to
healthy, benign or malignant class utilising a distant-
based classification algorithm.

@SRBF system identiﬁcatio)

Response signal 4
Response signal B

Response signal

Image
math
model

Fixed input signal B
Fixed input signal N

Fig. 6 MSRBF model stimulation procedure
3.2 Discrete-time system structuring

At this stage, the new method aims to scan the image
data similarly to a time series, where instead of discrete
time periods, adjacent pixel neighbourhoods without over-
lap lay distributed along the image (Fig.7).

Time period -1

Time period ¢

Fig. 7 2D pixel-level equivalence of time domain input-output
variables in the new framework

From the input-output systems perspective, the way
of representing such data must be congruent with the fol-

lowing equation:

y(t) = f(x(1) +e(t) (6)

in which the output y(¢) is explained by a nonlinear

function f and an error sequence e(t). In the case of the
RBF, the nonlinear function can be conveniently
represented as linear-in-the-parameters as follows:

f@@1) = Zei(bi(‘f(t);&iygi) (7)

where ¢; is the Gaussian function (defined later in
Section 3.3.2), Z(t) is the vector of independent variables
(also known as regressors), d; = [o1, -+ ,0n] is the vector
of parameters of the scales or widths and & = [c1,- -, ¢n]
is the vector of parameters of the kernel centres. Based
on the 2D-NARX model describing a single-input-single-
output (SISO) system, the nonlinear function is
compound together by a list of input-output regressors as
follows(2: 31];

y(t) =fly(t — 1), y(t —2),- -, y(t —ny),
u(t —d),u(t —d—1), - u(t —d —nu)] +e(t) (8)

where f is an unknown nonlinear function, y(t) is the
sequence of the system output, u(t) is the sequence of the
system input, n, and n, are the maximum lags for the
system inputs and output (in this work fixed at 1), and d
is a time delay auxiliary value, set here to d = 1. Based
on more complex NARX representations for a MISO
system that aim at producing a richer feature extraction,
the vector Z(t) = [z1(t), - - ,z4(t)]T is defined as a set of

regressors in the following ways:

y(t —b), if1<b<mny
Tp(t) = 9)
u(t —(b—ny)), ifn,+1<b<ny+n,

where n, and n, are the maximum lags for the input w
and the output y respectively and b is an auxiliary value.
In the following, the presentation given by (9) is extended
to the 2D case by replacing the single index t with two
indices (4, j) to enable the NARX model to address the
bi-dimensional image processing problem usually present
in the field of medical image processing, compared to the
simpler time series problem that depends on a single
variable. Please note that Section 3.2.2 details the 2D
modelling of this process. With this in mind, (10) defines
the set of regressors of as follows:

w(i—1,j—1-20b-1)), if2<b<2

By = 0=1) (10)
uz(i— 1,5 — 2(b—2)), if3<b<3
us(i,j — 1 —2(b—3)), if4<b<4

where the maximum lags ny, nu1, nu2, nus were fixed in 1
and b is an auxiliary value, following the actual model set
up to be seen in Section 4.1.
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3.3 Parameter estimation for the MSRBF
networks

As described in Fig.8, the new framework takes ad-
vantage of the MSRBF networks efficiency to build im-
age models from which functional feature vectors are ex-
tracted with the help of the DCT. The vectors are then
included in the training matrix of the CAD system. It is
noted here that the training of the MSRBF networks and
the CAD system are separate but consecutive processes.
While the kind of learning of the former is unsupervised,
the latter is supervised. Unlike multilayer networks,
where habitually all parameters are simultaneously op-
timised via backpropagation (which is slow and can get
stuck in local minima), RBF networks can take in many
other training schemesl? 32, In this work, the parameter
estimation of the MSRBF networks consists of three sep-
arate steps: 1) centres estimation, 2) widths estimation
and 3) output layer weights estimation. In the last step,
we used a popular OLS-based training strategy (detailed
in Section 3.4) that uses a linear-in-the-parameters rep-
resentation of the network that makes it easy to solvel2.

Estimate initial kernel centres
using sum of squares
and k-means++

!

(Multi-scales estimation: expand\
the number of RBF units by
determining multiple widths using
\ 14-719) J

¢

i A

Model reduction and output
weight estimation using the
L FROLS algorithm )

'

Fig. 8 Flowchart for the MSRBF parameter identification

3.3.1 Kernel centres estimation

The proposed method includes the implementation of
an adaptive algorithm to determine the number of centres
N. (and therefore, the number of Gaussian functions in
the hidden layer), taken from the work of [12] and [33]. In
the first place, the sum-of-squares clustering algorithm
acts as a criterion for estimating the number of centres.
The algorithm includes the following steps:

1) The input data, composed of N rows and p
columns, is divided into an arbitrary number of k initial
groups G1,- - ,Gg.

2) The geometry centre (centroid) ¢; of each group G;
is obtained.

3) The variability d; per group is estimated by sum-
ming all distances of Z; with respect to the centroid ¢j:

di=2)_ |z -gl’ (11)

i€l
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where the vector 2; is the i-th row of input data
belonging to the group Gj.

4) The variability function of k, Wy, is estimated by
summing the d; of all groups.

5) The process is repeated from step 1 to 4 using dif-
ferent k values to estimate their variability function Wj.

6) The difference in the variability function of k val-
ues involves the following formula:

2 2
DIFF(k) = (k—1)PWi_1 — kP Wy (12)

7) The following equation helps to compute the effect-
iveness of each k by comparing the values obtained in
step 6:

(13)

E(k):’ DIFF(k) ’

DIFF(k+1)

8) Finally, the recommended k value, or number of
centres Ng, is that one maximising the function E(k).

After the estimation of the number of kernel centres,
the k-means++ algorithml34 is used to compute a corres-
ponding number of centroids from the N X p size input
data matrix.
3.3.2 Multi-scales estimation

As for the scales or kernel widths, a two stage process
was carried out according to the strategy recommended
in [12]. The idea behind aims at estimating a single scale
by basis function ¢; in the first place followed in turn by
the computation of the quantiles (points taken at regular
intervals) resulting from the first scale. Thus, the equa-
tions below define the first single scales.

oy = maz{y(i,j)} — min{y(i j)} (14)

ou, = max{ur(i,7)} — min{u-(¢,5)} (15)

where oy is the initial scale for the output and o, are the
initial scales for the inputs u, = [u1,--- ,ur] of the MISO
system. For the calculation of the multiple final scales,
the following formula is used to expand oy, and o,:

At = diag [ (03)", - (03) % (082)", -+ (010m)]

output y

(16)

where m connotes the kernel centre, Aﬁ,’Z*C‘) are the
covariance matrices for the values p=0,---,P and
q=0,---,Q, u, are the system inputs and alf,f’y)n =2"Pg,
and aq(flr),m =2"90,, are the quantiles linked to the
output and input initial scales. In this work, the values of
P and @ were fixed in 1 and the number of system
inputs, R, was fixed in 3. Therefore, the scales contained
in (16) can be disaggregated as follows:
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Oy

: )2], vm (17)

o = [(0,2°, (0,27 = [(0)

o = (00,2 (0,27 = [(0,)%, (%22) ), vm
(18)

where u, = [u1,u2,us] corresponds to the system inputs,
oy and oy, are the initial scales obtained in (14) and (15)
and m indicates the kernel centre. With the above
definitions, a more explicit representation of the
multiscale radial basis functions expressed in (7) is:

ny

Sy, =(p, - l‘b(i,j)_cm,b 2
Gp.q.m (Z(4, 5); o, Cm) = exp |: - Z(T) B

b=1 Oy,m
i Z(mb(zv.]) - Cm»b)2:|
(a)

b=ny+1r=1 Ouy,m

(19)

where d = ny + nu1 + nu2 + nu3 and R = 3 is the number
of system inputs. After the kernels’ definition and esti-
mation, a matrix of resulting values is built to allow the
FROLS algorithm to detect the model structure and ease
the output weights estimation.
3.3.3 Output-layer weights estimation

After the calculation of the Gaussian functions, the as-
sociated firing strengths are taken as candidates during
the parameter estimation of the weights connecting the
hidden and the output layers. The estimation starts with
the selection of the candidate neurons contributing most
to explain the system output y(¢) by means of the
FROLS algorithm (Section 3.4) so that a much smaller
subset of candidate neurons remains available. Thanks to
the linear-in-the-parameters representation of the RBF
defined in (7), the vector of weights is easily obtained by
solving the problem as a system of linear equations for 8:

ho =1y (20)

where h, 8 and y are the vectors of firing strengths,
weights and system output observations respectively.

3.4 Model structure detection

Following up the definitions in Section 3.3.2, the num-
ber of scales or RBF widths for an MISO system is
N, = (P +1)(Q + 1)®. The proposed model was set up at
P=@Q =1 and R =3, so the initial number of Gaussian
centres k was scaled up N, = (2)(2)® = 16 times in the
MSRBF network, in a similar fashion to the architecture
expansion shown earlier in Fig.4. The final number of Af
candidate neurons of the MSRBF network is M = N.Nj,
where N. is equal to the number of initial centres k re-
commended by the sum-of-squares algorithm (Section
3.3.1).

The listing of the candidate neurons M gains import-

ance in the structure detection algorithm since it makes
use of a D dictionary containing M candidate functions,
from which the selection process is carried out. The D
dictionary enlists the basis functions in the following
manner:

D:{qﬁm(-);m:l,---,M} (21)
where ¢m € qbp,q,m(g&ﬁf’q%cﬂm); p=0,---,P; ¢q=0,--,
Q; m=1,---,N.. The FROLS algorithml33 is designed
to build, term by term, the best and most concise models
from D, the pool of candidate terms. It bases initially on
the original OLS estimatorB6l, which iteratively looks for
the candidate terms that best minimise the error
respecting the model output y(t) by using the error
reduction ratio (ERR) estimator. The orthogonalisation
algorithm helps to exclude from selecting the candidate
terms which content is redundant to that already
included in the model.

However, the ERR estimator in the OLS is biased to-
wards the inclusion of terms sorted first in the model
equation. The FROLS algorithm contributes to remov-
ing that shortcoming by adding a reordering of the can-
didate terms within the equation, leaving out biases of
any kind in the inclusion of the most significant candid-
ates. The stop-criterion of the FROLS algorithm changed
to an IF function to limit the number of terms. Thus, the
model detection ends up when the error tolerance is satis-
fied or when the model is long enough.

3.5 Feature extraction and the DCT

The feature extraction module of this framework
works out from the image models estimated by the MS-
RBF network. In this work, a finite number of fixed sig-
nals are used to obtain responses from the MSRBF mod-
el. However, unlike the 2D NARX model, the featuring
process of the model's response signal includes the dis-
crete cosine transform (DCT) to improve the representat-
iveness of the image values concerning the quality and
the quantity. This improvement is because the featuring
of the model’s output response signal takes place through
a direct data transformation instead of external measures
based on statistical measures, which can be useful but
can ignore information when measuring from the outside.
Section 2.1.6 and Section 3.1 on explain the basics of the
DCT algorithm.

Fig.9 shows a scheme of the MSRBF-based image pro-
cessing method, where the stimulus of the image model
and the DCT play essential roles to produce feature val-
ues. Another advantage behind using the DCT is the ease
to obtain even-sized feature vectors given that it allows
the choice of an identical number of coefficients per image.

3.6 Classification and detection
The classification module is the connection between
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Fig. 9 Flowchart of MSRBF-based image processing for
feature extraction

the feature extraction process and CAD systems. It links
the feature vectors from the supervised, pre-labelling task
with the unlabelled feature vectors of the image to classi-
fy according to the case study’s classes. Fig.1, shown in
the first section, aims to ease the information flow visual-
isation of the proposed framework, where we observe two
separate parallel processes of image data extraction con-
verging into the detection/diagnosis module, based on
classification. The difference between -classification and
diagnosis is that the first one associates the input vector
with a class. The diagnosis module uses the classification
results to interpret the patient’s condition and displays a
message easy to understand.

For classification, the distance-based k-means++ al-
gorithm was selected34. The standard algorithm k-means
inspired this technique. However, k-means++ holds the
advantage of using an improved seeding method to choose
centres, producing an efficient classification up to 70%
faster[34,

4 Experiments and results

In this section, we evaluated the proposed MSRBF-
DCT framework performance through three popular med-
ical image data sets: two consisting of X-ray mammo-
grams (mini-MIAS and DDSM) and one made up from
histopathological (microscopy-level) samples (BreaKHis).
The reason for choosing the first two case studies follows
that both mini-MIAS and DDSM are high quality bench-
marks that are also public and have been widely used,
which facilitated comparison with previous work. The
foregoing is also relevant because there are quite a few
methods in the literature for breast cancer detection that
claim interesting results but use databases that are not
publicly available. Despite the advantages, we note that
mini-MIAS and DDSM are not recent, so we included a
recently published database related to breast cancer
which could allow us to test our method both with non-
mammographic and non-grayscale images at once to
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broaden the experimental scope. Thus, we incorporated
the BreakHis database to our tests. As for the experi-
mental conditions, all programs were coded in Matlab
R2014b 64-bit and executed in a computer running in
Windows 7 Professional operating system with an Intel
(R) Core (TM) i5-4590 processor at 3.30GHz speed, run-
ning Matlab 2014b.

4.1 The mini-MIAS database

The assessment of the MSRBF-DCT method started
with the mini-MIAS database of mammograms37, a pub-
lic repository including 322 high-quality grayscale X-ray
films of 1024 x 1024 pixels of the medio-lateral oblique
view of the breast in PGM format. In spite of the high-
quality database, numerous artefacts and scanning imper-
fections within images were present, as unknown breast
position and orientation (left nor right), duct tapes, ori-
entation tags, low-intensity labels and scanning artefacts.
The evaluation goal was to assess the quality of the fea-
ture extraction method by evaluating its classification
quality for a defined set of mammograms with informa-
tion attached to them regarding the medical condition
class and the background tissue type.

The database distribution regarding the breast tissue
type is detailed in Table 1. A randomised data-splitting
of the 322 breast scans of the database was made, follow-
ing a 65% to 35% ratio for training and testing with the
aim of reducing the chance of attaining biased perform-
ance metrics. Furthermore, to counteract the high image
variability regarding the breast tissue type, n =4 differ-
ent training and testing scenarios with different tissue
background composition were carried out aimed at, on
the one hand leaving in evidence potential differences in
the classification results and on the other to get a set of
final performance measures with minimal bias. In that
way, the global accuracy for a n number of training and

testing scenarios is defined by Accuracy, = average
(Accuracy(i)), where i=1,--- ,n, symbolises the i-th
test.

Table 1 mini-MIAS database breast-type distribution[37]

Fatty Fatty-glandular Dense Total
Cases 106 104 112 322
Percentage (%)  32.92 32.3 34.78 100

Given the high image resolution and the reduced di-
mension of several ROIs, we decided to make the pro-
cessing at the subimage (namely ROI) level. During train-
ing, we assembled a matrix of 21637 feature vectors,
which data labelling produced 95.5% of these belonging to
normal and 4.5% to abnormal, from which 2.29% be-
longed to benign and 2.21% to malign. The error toler-
ance of the ERR stop-criterion was 0.15%, and the max-
imum number of terms was 2.
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After the partitioning of mammograms (divide and
conquer strategy), the ROI feature extraction and the la-
belling of the complete database by following the data-
base documentation, the construction of a training mat-
rix for a specific training-testing partition made only ne-
cessary to generate a subset of the full training matrix by
removing from it the mammogram-related vectors selec-
ted for testing. The initial evaluation aimed at judging
the ability of the model to fit the observational data.
Fig. 10 shows the example of a dense tissue-type sub-im-
age or ROI, its subdivisions (for a two-fold characterisa-
tion) and the error reduction ratio (ERR) of the models
concerning the data of each case. The table also includes
a plot overlying the fit of both models versus the original
data. It is possible to observe from the chart that the
model adjustment is reliable in both cases since the
curves of the predicted output and the original data over-
lap each other in both pairs of curves.

ROI  Image split ERR Legend
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Fig. 10 Two pairs of fit-to-data curves and ERR values, ROl is
from [37]

After this point, the assessment of the feature extrac-
tion included the consistency tracking regarding the dis-
tance between the feature vectors. This relationship was
directly proportional to the visual image similarity.

The overall performance numbers of this study are
presented in Table 2. It is noticeable that values of sens-
itivity, positive predictive value (PPV) and lesion distinc-
tion are not as high as expected, possibly because of the
high similitude of dense-healthy and glandular-healthy
tissue with many abnormal tumours. Among all the val-
ues, it stands out that the tumour distinction was the
lowest value of all the registered ones. This difference is
due on the one hand to the relative scarcity of abnormal
samples, which represented only 4.5% of the total of the
labelled samples and on the other to the fact that ma-
chine learning methods are generally more efficient to a
more significant number of samples available for training[38].

The experimental performance results of the four tests

Table 2 Classification results in mini-MIAS databasel37]

Statistical measure Average result (%)

Accuracy 93.57
Sensitivity 87.05
Specificity 96.97

PPV 93.79
NPV 93.50
Lesion distinctinon 78.35

from different partitions of the database are described in
Table 3-6. In the first place, the percentages by mammo-
gram-type included in each one of the tests are displayed.
The overall results are quite encouraging in the four tests,
especially regarding accuracy, specificity and negative
predictive value (NPV).

As assumed, it is possible to note that the composi-
tion of the elements in the test impacts in a visible man-
ner the classification results. The latter is an interesting
point to take into account as this factor may well lead
various breast cancer classification studies to confusing
results.

To ease the analysis of the resulting variations of the
classification concerning the mammogram-type composi-
tion in the testing set, exciting trends in the results were
found and plotted. Fig.11 shows a negative relationship
found between the presence of dense mammograms in the
test set and the classification accuracy. Such divergence
can be the result of that dense-healthy images are visu-
ally similar to tumours of high density, producing false
detections.

95.0

945 1
94.0
935 r
93.0

925 - -
—e— Diagnosis accuracy

Diagnosis accuracy (%)

92.0

915 1 1 1 1 1
24 26 28 30 32

Dense tissue-type in testing (%)

Fig. 11 Accuracy as a function of the presence of dense
mammograms in the test set

On the other hand, Fig.12 suggests that there was a
lessening ability to distinguish the abnormality class with
the increase of fatty mammograms presence in the test,
which was opposite to the expected result, given that
fatty tissue tends to have translucence, which would
make the classification procedures easier.

However, and in favour of the latter hypothesis, the
change of the sensitivity values in the different set com-
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Fig. 12  Sensitivity and lesion distinction accuracy as functions
of the presence of fatty mammograms in the test

positions suggested a positive trend between fatty tests
sets and the effective detection of any abnormalities (be-
nign or malign). The last point, together with the accur-
acy decrease in denser compositions, led to finding a pos-
itive relationship between the MSRFB DCT classifica-
tion accuracy with fatty mammograms and a negative re-
lationship with dense mammograms. Although these res-
ults may seem intuitive, it is necessary to carry out more
discriminative studies of this type in the future, espe-
cially with other methods of featuring and classification
to draw more generalised conclusions regarding the breast
cancer detection.

As for the variation of the presence of glandular mam-
mograms in the testing set, Fig. 13 shows a very light dir-
ect relation of specificity and NPV with the presence of
glandular tissue. Although the trend was not significant
enough to be taken into account, it was expected,
however, that the presence of glandular tissue, on the
contrary, would actively impede the quality of the classi-
fication results.
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Fig. 13  Specificity and NPV as functions of the presence of
glandular mammograms in testing

4.2 The DDSM database

The second database used for evaluation is the digital
database for screening mammography (DDSM)B9 which
together with mini-MIAS, is one of the best-known
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Table 3 MSRBF-DCT performance results by breast-tissue-
type ratio (mini-MIAS Databasel37))

Test 1 Test 1 Test 1 Test 4

Fatty (%) 31.86 31.86 38.05 34.51

Ratio Dense (%) 29.20 31.86 28.32 23.89
Glandular (%) 38.94 36.28 33.63 41.59
Accuracy (%) 93.81 91.96 93.81 94.69
Sensitivity (%) 85.00 87.50 87.80 87.88

Specificity (%) 98.63 94.52 97.22 97.50

Measure

PPV (%) 97.14 89.74 94.74 93.55
NPV (%) 92.31 93.24 93.33 95.12
Pathology

identification (%) 81.97 80.88 74.55 76.00

Table 4 DDSM breast-type distribution of converted images

Dens.1 Dens.2 Dens.3 Dens.4 Total

Cases 429 511 420 423 1,783

Percentage (%) 24.05 28.64 23.58 23.73 100

Table 5 Classification results in the DDSM databasel39]

Statistical measure Average result (%)

Accuracy 93.99%
Sensitivity 92.65%
Specificity 94.35%
PPV 81.97%

NPV 97.90%
Pathology identif 85.72%

sources of images in the development of breast cancer de-
tection methods. This repository of the University of
Florida contains 2620 clinical cases, where each one
presents two mediolateral oblique views (MLO) and two
caudal cranial to total 10480 mammograms.

The collection provides more precisely the density of
the breast tissue, defined in breast imaging-reporting and
data system (BI-RADS) categories of density ranging
from one to four. To improve the comparison with previ-
ous databases, we decided to consider only images with
the MLO view. We also used the CBIS-DDSMI% collec-
tion, which is a curated version of DDSM and verified by
medical experts, containing only benign and malignant
cases of masses and calcifications.

In the CBIS-DDSM data, images are split into train-
ing and testing sets and by type of abnormality, where
images of the ROIs are included to help the user to loc-
ate tumours. As for the healthy images, we used the util-
ity provided in [41] to convert images from the DDSM
native format (LJPEG) to a format readable by Matlab.
With the above conditions, we obtained a set of 1783
mammograms randomly divided into 65% training and
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Table 6 MSRBF-DCT performance results by breast-tissue-
type ratio (DDSM databasel39])

Test 1 Test 1 Test 1 Test 4

Density 1 (%) 29.11 21.52 23.42 21.52

Density 2 (%) 27.85 35.44 27.22 24.05

Ratio

Density 3 (%) 22.78 20.89 25.95 24.68
Density 4 (%) 20.25 21.52 23.42 29.75
Accuracy (%) 96.84 94.94 93.04 91.14
Sensitivity (%)  97.06 94.12 91.18 88.24
Specificity (%)  96.77 95.16 93.55 91.94
Measure PPV (%) 89.19 84.21 79.49 75.00
NPV (%) 99.17 98.33 97.48 96.61

Pathology

identification (%) 87.88 81.25 87.10 86.67

35% testing, where 38776 ROIs and feature vectors were
extracted. Note that the original distribution of DDSM
regarding breast-type is displayed in Table 7. All ROIs
with some pathology obtained during training were in-
creased in number through image rotations, flips and shift
positioning around the ROI. Similarly to the previous
study, we chose to split the set of tests into four equal
segments, although with a different BI-RADS distribu-
tion of breast density. Although the increase in the di-
mension of the images of DDSM contributed to obtain-
ing more ROIs for training, this factor played against the
processing time per mammogram, which extended 30% on
average.

Table 7 Comparison of MSRBF-DCT with previous work in
mammography databases

versely proportional to the presence of dense samples in
the testing partition (see Fig.14), confirming the import-
ance of tissue-type distribution in mammogram classifica-
tion problems.

Table 8 BreaKHis database distribution by magnification
factor and class

Ben. Mal. Total
40X 625 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total 2480 5429 7909

Table 9 Comparison of depicting features with methods
described in [42] that use the BreaKHis database

Method No. of features
CLBP 1352
GLCM 13
LBP 10
LPQ 256
ORB 32
PFTAS 162
MSRBF-DCT-3-channels 150

Model Image set Accuracy (%)Specificity (%)Sensitivity (%)

2D-NARXBU mini-MIAS  91.00 93.00 89.50
ELMP3  mini-MIAS ~ 91.00 90.00 98.00
GLCME24  mini-MIAS  93.90 97.20 91.50
ICA-RBF[2% mini-MIAS 88.20 N/A N/A
LDA-ANN[ mini-MIAS  93.10 99.00 83.00
GPZMEP7  mini-MIAS  89.30 83.50 93.40
GPZM[27] DDSM 87.27 82.51 90.33
MSRBF-DCTmini-MIAS  93.50 87.00 96.90
MSRBF-DCT DDSM 93.99 92.65 94.35

In the case of microcalcifications, an exhaustive train-
ing was required, since their detection during early stages
of training is very limited, especially when the tissue is
dense and the appearance of microcalcifications seems to
be higher.

The average results for all tests are reflected in Table 8,
while the results by test also including pathology identi-
fication are shown in Table 9. Similarly to the mini-MI-
AS study case, the diagnosis accuracy in DDSM was in-
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Fig. 14 Accuracy as a function of the presence of high-density
mammograms in the test (DDSM databasel39)

Likewise, there was a notable increase in sensitivity
and specificity regarding the absence of dense images in
the test partition (Fig.15). For this reason, the MSRBF-
DCT-based CAD system, which has shown to be quite
credible with all kinds of samples, is highly reliable when
fewer dense mammograms are present in the test set.

We also noticed that although DDSM provides a high-
er number of samples for training, there was no notable
improvement in the statistical measures concerning the
mini-MIAS experiment. It is possible that this is due to a
much more significant presence of calcifications in the
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Fig. 15  Sensitivity and specificity as a function of the presence
of low-density mammograms in the test (DDSM databasel39)

DDSM repository.

A comparison of the new method with previous work
is presented in Table 10. In general, the new method is
competitive but did not reach such a high sensitivity as
some other approaches. The authors believe that this im-
perfection is the product of the training strategy carried
out, since to avoid a high occurrence of false positives
caused by the resemblance between healthy dense tissue
and some types of a tumour, it was necessary to increase
the number of dense samples in the training database.

Table 10 MSRBF-DCT accuracy results by test and
magnification factor (BreaKHis databasel42])

Class 40 X 100 X 200 X 400 X
B 0.83 0.87 0.80 0.80

Test 1
0.86 0.87 0.84 0.82
B 0.85 0.83 0.87 0.82

Test 2
M 0.85 0.86 0.82 0.80
B 0.88 0.84 0.83 0.82

Test 3
M 0.88 0.86 0.85 0.83
B 0.86 0.89 0.82 0.83

Test 4
M 0.86 0.88 0.82 0.83
B 0.82 0.86 0.85 0.78

Test 5
M 0.86 0.87 0.83 0.83

4.3 The BreaKHis dataset

The last image set for assessment of the new CAD
system is the BreakHis datasetl*?), a more recent public
repository (2015) for breast cancer image classification,
which unlike the collections previously utilised in the
manuscript, images are available at the cellular (histo-
pathological) levell3].
BreaKHis images are in colour and only benign and ma-

Unlike X-ray mammography,

lignant images are presented, so the tests in this study
case are centred in the ability of the framework to do an
adequate binary classification.

The images were acquired from samples (histology
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slides) obtained by the P&D Lab, Brazil, using open sur-
gical biopsy. The final diagnoses were made by expert
pathologists. The samples were shot with an Olympus
BX-50 microscope and a Samsung SCC-131AN digital
colour camera to obtain 3-channel RGB images in True-
Color (image composed by pixels defined by three
values)[42 4. The samples are distributed into four mag-
nification factors: 40 x, 100 x, 200 X and 400 X, summing
7909 items. The BreaKHis image distribution is shown in
Table 8.

As for image feature extraction, a first challenge was
to make the MSRBF to extract features from a 3-chan-
nel RGB colour space, so we chose to preprocess colour
images by dividing them into three channels (R,G,B) to
make the MSRBF-based feature extraction work at the
channel level (Fig.16).

3-channel RGB subimage

B channel

G channel

R channel

Separate MSRBF feature extraction

( Concatenated vector )

Fig. 16 Colour image decomposition into 3 channels. ROI is
from [42]

Hence, the features extracted per channel were joined
back to derive an expanded feature vector representing
the colour space image. We found that such a shift did
not affect considerably the computational time in any of
the method stages. With the adjustment from one to
three channels, the number of features describing the im-
age was increased in the same relation from 50 to 150 fea-
tures. Table 9 represents this attribute and compares it
with other methods presented in [42] also using the study
case of this section. The training in the BreaKHis data-
base aimed at reducing the effect of the high image resol-
ution and the great number of samples into the computa-
tional burden and training time. At the same time, we
followed a strategy similar to that of previous work for
favouring the comparability of results. Similarly to the
work presented in [42, 44] and to the evaluations of MS-
RBF-DCT with mammography databases, we followed a
70% and 30% ratio to break apart at random the samples
into training and testing respectively into each of the two
classes and four magnification factors. In that way, four
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different random partitions were made, from which the
average accuracy by class and magnification factor was
estimated.

In favour of reducing the computational load, we
chose to reduce the dimension of the original images by
50%, without this significantly affecting the fitting capa-
city of the model, as has been reported in [43, 44]. In our
case, the image reduction went from 700x400 to
350 x 200 pixels by using bicubic interpolation as a resiz-
ing procedure, for it gives a good balance of output qual-
ity and execution time. As with the X-ray images, the di-
vide and conquer scheme produced per image 15 subim-
ages, without overlap, of 64 x 64 pixels. To determine
what class an image belongs to, it suffices that 8 of 15
subimages fall into the same class.

Taking into account the number of divisions per im-
age (15), the learning-testing partition ratio (0.7 and 0.3)
and the total number of mutually exclusive images per
benign and malignant class in Table 8 (2480 and 5429),
we obtained 26040 and 57000 images for training and
11116 and 24435 images for testing throughout each ran-
dom partition.

Concerning the performance evaluation after the five
random database partitions, the training data was presen-
ted to the CAD system, so that it could gather the fea-
tures related to images from each class. Table 13 sum-
marizes the classification results of the CAD framework
of 5 tests using different random partitions.

Table 11 reflects the average results of the five tests
performed with different partitions. It is noteworthy that
the magnification factor that obtained the highest accur-
acy was 100 X, while the most difficult to predict was
that of 40 x. This trend is also reflected in the previous
work shown in Table 12. The comparison shows that our
CAD system separated remarkably well benign and ma-
lignant samples, compared to most existing methods, in-
cluding convolutional neural networks like DeCAF and
AlexNet. However, our method, along with the rest, was
clearly surpassed by a more recent convolutional network
called class structure-based deep convolutional neural

Table 11 MSRBF-DCT average accuracy and standard
deviations per magnification factor

Magnification factor

Class

40 X 100 X 200 X 400 X
Benign 84.6 £2.5 85.9t2.4 83.5+2.6 81.1+1.8
Malign 86.3£1.0 87.0£1.0 83.4+1.1 82.1+1.3

network (CSDCNN). Despite this, we noticed that the
MSRBF-DCT networks are generally speaking a reliable
method. According to our observations, the above is due
to the fact that the histology slides of the samples with
the smaller zoom (40 x) have more distinctive features
such as nuance, texture and colour between classes, while
those of greater zoom (200x and 400x) show more
defined morphological features like shapes and dark pat-
terns, but these are quite similar between the two classes
in many instances. An example of the visual parallelism
between high magnification samples is that of Fig.17, in
which a benign image of a phyllodes tumor 1) fell
wrongly into the malignant class thanks to samples be-
longing to a mucinosis carcinoma malign image 2) stored
in the training set. It is visible that, although the hue is
different, the morphological similarity between 1) and 2)
is relevant.

5 Conclusions

The proposed methodology presents a convenient
neural network-based modelling framework, originally de-
signed to approximate nonlinear observational input-out-
put series, as a novel contribution to digital image fea-
ture extraction and CAD system. Furthermore, the dis-
crete cosine transform algorithm was successfully incor-
porated to make the most of the MSRBF networks.

The experiments aimed at appraising the tumour de-
tection in X-ray mammograms and histopathological im-
ages for three different public databases showed up that
the method is competitive compared to well-known previ-
ous CAD systems for breast cancer based on system iden-

Table 12 Comparison of the MSRBF-DCT method with previous work using the BreaKHis databasel4?]

Magnification factor

Method

40 X 100 X 200 X 400 X
PFTAS-QDAM2] 83.8t4.1 82.1+£4.9 84.2+4.1 82.0t5.9
PFTAS-SVMH2] 81.6+3.0 79.9+5.4 85.1+3.1 82.3+3.8
PFTAS-RF142] 81.8+2.0 81.3+2.8 83.5+2.3 81.0+3.8
GLCM-1-NN[42] 74.7%£1.0 76.8 2.1 83.4+3.3 81.7+3.3
AlexNet44] 85.6 4.8 83.5+3.9 83.1+1.9 80.8+3.0
DeCAF13] 84.6+2.9 84.8+4.2 84.2+1.7 81.6+3.7
CSDCNNL9] 95.8+3.1 96.9+1.9 96.7+2.0 94.9+2.8
MSRBF-DCT-3-Channels 85.8+2.0 86.7+1.8 83.4+1.9 81.8+1.6
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(@ (b)

Fig. 17 Example of a benign sample (a) that wrongly fell into
the malign class by cause of sample. (b) Images from the
BreaKHis dataset[42.

tification and artificial neural networks. Among other
performance values, the proposed method reached a clas-
sification accuracy above 93% in the two mammography
databases and 86.7% in BreaKHis. While the MSRBF-
DCT method is not perfect, some below-average metrics
results may be also explained by an imperfect data la-
belling strategy. The improvement in the training
strategy from the first database to the second can be ap-
preciated in more balanced statistical measures. On the
other hand, a null incidence of identical feature vectors
for a multitude of visually similar images (except from
the totally black or white samples) in the three data-
bases lead us to think that the two-fold ROI characteriza-
tion coupled with the DCT increased the model ability to
extract both size and object position features from the
image effectively, information which otherwise could be
lost.

As regards the comparative performance between the
two mammography databases, more similarities than dif-
ferences were found. Although the DDSM includes more
data for a proper training, the increase in accuracy was
not significant (less than 1%) compared to mini-MIAS,
perhaps because DDSM also presents a higher proportion
of microcalcifications, which are difficult to diagnose. As
for the statistical measures, there were notable improve-
ments from the first to the second study, especially in
sensitivity (5%), PPV (11%) and pathology-type identi-
fication (7%). These differences may be due to several
factors, such as a better documentation on the pathology
localization, thanks to the CBIS-DDSM repository.

Regarding the breast density in mammograms, sever-
al machine learning studies for breast cancer detection do
not report the proportion of dense samples in their exper-
iments, which is to the best of our knowledge a central
factor that is capable of producing changes in the global
performance. In relation to comparisons with previous
work, the CAD system performance showed to rise to the
challenge in most cases.

Concerning the BreaKHis, subimage level analysis al-
lowed high-resolution images to be processed by dividing
the computational load into smaller processes as with
mammograms repositories. Regarding colour images, we
noticed that 150 feature vectors, derived through MS-
RBF-DCT, are efficient to represent 3-channel images.
We realized that higher magnification factors like 200 x
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and 400 x produced more classification errors. We attrib-
uted this trend to the fact that numerous samples
between classes are morphologically similar at that level.
We also observed that the benign class produced more er-
rors, possibly because it had fewer samples to train com-
pared to the malignant class and because certain types of
tumours were easier to be misclassified. For instance, we
found that phyllodes tumours, from benign, were mis-
taken several times because of their strong similitude to
specific malignant subclasses such as mucinosis car-
cinoma.

In databases two and three (DDSM and BreaKHis),
the comparison of the model performing with different
training-testing compositions led the writers to infer that
getting results with a single partition in heterogeneous
databases is undesirable as it may generate unwanted
trends in dependence on the percentage of challenging ele-
ments.

Future work includes the use of a receiver operating
characteristic (ROC) curve to determine the best de-
cision threshold regarding the training strategy to best
balance sensitivity and specificity. The transfer of the re-
commended methodology to other medical study areas
such as brain diseases and lung cancer detection is desir-
able. Also, the successful expansion of the characteriza-
tion method to colour images enables the use of the MS-
RBF-DCT approach to case studies involving real-world
object detection or skin and face recognition. Finally, we
could couple the present feature extraction procedure
with more advanced classifiers in order to enhance the in-
tegration of MSRBF networks with CAD systems.
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