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Abstract: This paper is concerned with the problem of system identification using expansions on generalized orthonormal bases

(GOB). Three algorithms are proposed to optimize the poles of such a basis. The first two algorithms determine a GOB with optimal

real poles while the third one determines a GOB with optimal real and complex poles. These algorithms are based on the estimation of

the dominant mode associated with a residual signal obtained by iteratively filtering the output of the process to be modelled. These

algorithms are iterative and based on the quadratic error between the linear process output and the GOB based model output. They

present the advantage to be very simple to implement. No numerical optimization technique is needed, and in consequence there is no

problem of local minima as is the case for other algorithms in the literature. The convergence of the proposed algorithms is proved by

demonstrating that the modeling quadratic error between the process output and the GOB based model is decreasing at each iteration

of the algorithm. The performance of the proposed pole selection algorithms are based on the quadratic error criteria and illustrated

by means of simulation results.
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1 Introduction

The use of series expansions for signal and system repre-

sentation goes back to the classical work of Wiener and Lee

on network synthesis during the 1930s. Recently, there has

been renewed in the use of orthonormal functions, partic-

ularly Laguerre functions and Kautz functions, for system

modeling. The Laguerre and Kautz functions that form

a complete orthonormal set respectively on L2[0, +∞] and

L2([0, +∞]×[0, +∞]), can be used to represent stable trans-

fer functions.

The representation of a system on a basis of orthogonal

functions has the advantage of writing linearly with respect

to its Fourier coefficients. Once the basis parameters (poles)

are fixed, this gives this mode of representation interesting

properties for system identification.

Any transfer function G(z) of a sampled linear system

can be expressed using a truncated expansion on a general-

ized orthonormal bases (GOB) as follows:

G(z) =

i∑

n=0

gnBn(z, ξ). (1)

Two cases are possible:

1) The basis is characterized by a real pole. We use a set

of Laguerre functions[1]

G(z) =
i∑

n=0

gnLn(z, ξ) (2)
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where

Ln(z) =

√
1 − ξ2

z − ξ

(
1 − ξz

z − ξ

)n

(3)

ξ is called the Laguerre pole and {gn}, n = 1, · · · , i, are

called the Fourier coefficients.

2) The basis is characterized by two complex conjugate

poles. Then, we use a set of Kautz functions[2]

G(z) =
i∑

n=0

g′
2n+1Ψ2n+1(z, b, c) + g′

2nΨ2n(z, b, c) (4)

where

Ψ2n+1(z, b, c) =

√
1 − c2(z − b)z

z2 + b(c − 1)z − c
×

[−cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c

]n

(5)

Ψ2n(z, b, c) =

√
(1 − c2)(1 − b2)z

z2 + b(c − 1)z − c
×

[−cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c

]n

(6)

b and c are the parameters depending on the two Kautz

complex conjugate poles and g′
i are the Fourier coefficients.

In practice, truncated Laguerre or Kautz series expansion

is used. For a given system, the truncation error depends

on the number of used filters and the chosen Laguerre or

Kautz poles. For a fixed number of filters, there exist op-

timal Laguerre or optimal Kautz parameters b and c that

minimize the truncation error. However, the use of these

orthonormal functions bases is not adequate for modeling
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high order systems characterized by several modes[3, 4]. For

example, Heuberger et al.[5] proposed a new model by de-

composing an autoregressive exogenous (ARX) model on

Laguerre orthonormal bases.

Another way suitable for the several mode linear sys-

tems is to use an expansion on a generalized orthonor-

mal bases, which allows to significantly decrease the trunca-

tion order and consequently the identification complexity[6].

When using a GOB, we have to optimize several poles. Den

Brinker and Belt[7] developed an algorithm to recursively

determine GOB real poles. Malti et al.[8] used the gra-

dient algorithm and Gauss-Newton algorithm to minimize

the output quadratic error. These algorithms guarantee

only convergence to local minima and if the step size of the

gradient algorithm is not well chosen, the convergence can

be slow, oscillating or not guaranteed. Another exhaustive

algorithm to determine real GOB poles was proposed in

[9]. Mbarek et al.[10] have studied the topic and estimated

the optimal GOB poles by solving a set of nonlinear equa-

tions. These algorithms cited above were also developed in

the nonlinear case especially to optimize the Volterra ker-

nels expansions on Laguerre or Kautz bases functions[11, 12]

or GOB functions[13−16]. Other techniques were also de-

veloped in the nonlinear case as the crosscumulant based

approaches[17] and the multimodel approach[18].

In this work, we are interested in the GOB poles op-

timization using three new algorithms. The first two al-

gorithms concern the GOB with optimal real poles while

the third one optimizes both real and complex GOB poles.

These algorithms present the advantage to be very simple to

implement. No numerical optimization technique is needed,

and in consequence there is no problem of local minima as

is the case for certain other techniques[8]. These algorithms

are iterative and are composed of two steps at each itera-

tion:

1) Determination of the dominant pole of a residual sig-

nal.

2) Generation of the residual signals using an iterative

filtering.

The convergence of the proposed algorithms is proved in

this work. It is based on the estimation of the dominant

mode associated with a residual signal obtained by itera-

tively filtering the output of the process to be modeled. A

quadratic error criterion is used to show the performance

of the proposed pole selection algorithms.

The organization of the paper is as follows. In Section 2,

the principle of linear model expansion on GOB functions

is recalled and the new iterative optimization algorithms

are proposed. The first two algorithms are to iteratively

determine a GOB with real poles and the third one deter-

mines a GOB with real and complex poles. In Section 3,

we demonstrate the convergence of the proposed GOB pole

estimation algorithm. In Section 4, the performance of the

proposed algorithms is illustrated by means of simulation

results before concluding in Section 5.

2 GOB pole estimation

Ninness and Gustafsson[19] showed that the development

of an absolutely summable function using a GOB can be

written as follows:

G(z) =

i∑

n=0

gnBn(z) (7)

with

B0(z) =

√
1 − |ξ0|2
z − ξ0

(8)

Bn(z) =

√
1 − |ξn|2
z − ξn

n−1∏

k=0

(
1 − ξ∗kz

z − ξk

)
. (9)

Such a GOB depends on several poles. In this section, we

propose three algorithms for determining the real and com-

plex poles of a GOB. All these poles are determined from

the output measurements of a given system to be modeled.

2.1 GOB real poles estimation

A real pole GOB based model is caratcterized by N real

poles {ξi}i=1,··· ,N , all in [−1, 1]. To estimate these poles

two algorithms are proposed in this section. These algo-

rithms are iterative and estimate the N real poles of the

GOB based proposed model. They are are based on a filter-

ing process of the measured outputs. The first alogorithm

uses the Fu and Dumont technique to estimate a single real

Laguerre pole and the second one minimizes the quadratic

error between the outputs of the system and the GOB based

model.

2.1.1 Laguerre poles optimization

The bases of Laguerre functions are typically used to

model linear systems with single or dominant dynamic.

They are characterized by a single real pole ξ ∈ [−1, 1],

as shown in Fig. 1.

Fig. 1 Laguerre based model

Fu and Dumont′s algorithm[20, 21] allows to find analyti-

cally the optimal Laguerre pole by minimizing the following

cost function:

J =

∞∑

k=0

kh2(k) (10)

where {h(k)} represents the impulse response of the system

to be modeled. If the system is of first order, the Laguerre
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pole coincides with the true pole. When the system is of

higher order, the Laguerre pole approaches the dominant

mode of the system.

The optimal Laguerre pole is given by

ξopt =
2M1 − 1 − M2

2M1 − 1 +
√

4M1M2 − M2
2 − 2M2

(11)

with

‖h‖2 =
∞∑

k=0

h2(k) (12)

M1 =
1

‖h‖2

∞∑

k=0

kh2(k) (13)

M2 =
1

‖h‖2

∞∑

k=0

k [h(k + 1) − h(k)]2. (14)

Another algorithm to analytically determine the optimal

Laguerre pole was proposed in [22] It uses the system im-

pulse response and minimizes another cost function.

2.1.2 Algorithms 1 and 2

Both proposed algorithms to determine the poles of a

GOB are iterative. At each step i(i = 1, · · · , N), the pro-

cedure is composed of two substeps:

1) Determination of the dominant mode ξi,opt of the

residual output νi−1(k) obtained at step (i−1), where ν0(k)

is:

a) The impulse response of the system to be modeled

for the first algorithm.

b) The system output in response to any input in the

case of the second algorithm.

2) Filtering of the residual output νi−1(k) by means of

the following filter Fi(q
−1) = 1−ξi,optq

−1 to get the residual

output νi(k).

This procedure is repeated until the residual signal be-

comes negligible. Once the poles of the GOB have been

determined, the Fourier coefficients of the system impulse

response expansion on this GOB are estimated by applying

the least squares (LS) technique.

The two algorithms differ from each other in the way to

determine the estimated dominant poles. With the first al-

gorithm, the poles determination is carried out by applying

the Fu and Dumont′s algorithm cited in the previous para-

graph. This algorithm uses the system impulse response. It

is illustrated in Fig. 2.

In the case of the second algorithm:

1) The model order is initialized to N using the system

a-priori information.

2) Then, the parameter interval [−1; 1] associated with

stable discrete time poles is discretized to lead to P possi-

ble values pj (j = 1, · · · , P ). This operation is illustrated

in Fig 3.

3) At the (i+1)-th step of the pole estimation algorithm,

we first, decrement the order of the Laguerre model. Then,

the optimal pole ξi+1,opt is chosen as the value pj that

minimizes the quadratic error QE(pj) defined by (14) be-

tween the residual output νi(k) and the output ν̂i(k, pj) =∑L
τ=1 fi(τ, pj)ν̂i−1(k−τ ) of the P 2 different Laguerre mod-

els with order (N − i), each one being characterized by

ξi = pj (j = 1, · · · , P ), where fi(τ, pj) is the inverse z-

transform of Fi(q
−1, pj).

QE(pj) =
1

L

L∑

k=1

(νi(k) − ν̂i(k, pj))
2 (15)

where L represents the number of measured outputs used

for the identification. Thus, we have

ξopt = Arg min
pj

(QE(pj)); j = 1, · · · , P. (16)

This second algorithm is illustrated in Fig. 3.

Fig. 2 Determination of the system modes by the first algorithm

Fig. 3 Determination of the system modes by the second algorithm
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2.2 GOB complex poles estimation

In the general case, a GOB based model is character-

ized by N real and complex poles {ξi}i=1,··· ,N . To estimate

these poles, another algorithm is proposed in this section.

This algorithm is also iterative and estimates at each it-

eration, either a real pole {ξi} or two complex conjugate

poles characterized by a couple of parameters {(bi, ci)}. It

is based on a filtering process of the measured outputs and

minimizes the quadratic error between the outputs of the

system and the GOB based model.

2.2.1 Kautz complex poles optimization

The bases of Kautz functions are typically used to model

linear oscillating systems. They are characterized by two

complex conjugate poles ξ and ξ∗ as shown in Fig. 4.

Wahlberg[2] proposed a new definition of the Kautz func-

tions by defining a couple of parameters (p, q) ∈ [−1; 1]2 as-

sociated with the Kautz complex poles ξ and ξ∗ as follows:

p =
ξ + ξ∗

1 + ξξ∗
(17)

q = −ξξ∗. (18)

Kautz functions are defined by

Ψ2p(z, pj , qm) =

√
1 − q2

m(z − pj)

z2 + pj(qm − 1)z − qm
×

[−qmz2 + pj(qm − 1)z + 1

z2 + pj(qm − 1)z − qm

]p−1

(19)

Ψ2p+1(z, pj , qm) =

√
(1 − p2

j)(1 − q2
m)

z2 + pj(qm − 1)z − qm
×

[−qmz2 + pj(qm − 1)z + 1

z2 + pj(qm − 1)z − qm

]p−1

. (20)

2.2.2 Algorithm 3

Algorithm 3 can be extended to determine complex poles

for GOBs using the definition of Kautz functions bases given

by Wahlberg[2].

We proceed as with the second algorithm by discretizing

the two-dimensional space [−1; 1]2 associated with the two

parameters pj and qm, j, m = 1, · · · , P , that characterize a

pair of conjugate complex poles ξl and ξ∗l .

At the i-th step of the identification algorithm, the resid-

ual output νi−1(k) is filtered by

1) a first-order filter given by

Fi(q
−1, ξi,opt) = 1 − ξi,optq

−1 (21)

in the case of a real pole, or
2) a second-order filter given by

Hi(q
−1, bi,opt, ci,opt) = 1 + bi,opt(ci,opt − 1)q−1 − ci,optq

−2

(22)

for conjugate complex poles, where bi,opt and ci,opt are de-

fined in (22).

To deliver the residual output νi(k), the selected filter is

the one which gives the least quadratic error.

At the (i+1)-th step, we first decrease by one or by

two the order of the model (one if the filter used in the

i-th iteration is of first order or two if it is of second or-

der). Then, we proceed as with the second algorithm to

determine either the optimal real pole ξi+1,opt or the op-

timal parameters bi+1,opt and ci+1,opt which are chosen as

the values pj and qm that minimize the quadratic error

QE(pj, qm) between the residual output νi(k) and the out-

put ν̂i(k, pj , qm) =
∑L

τ=1 hi(τ, pj , qm)ν̂i−1(k − τ ) of the P 2

different Kautz models, each one being characterized by the

pair of parameters (bi+1, ci+1) = (pj , qm), j, m = 1, · · · , P ,

as illustrated in Fig 5, where hi(τ, pj , qm) is the inverse z-

transform of Hi(q
−1, pj , qm). Thus, we have

(bi+1,opt, ci+1,opt) = Arg min(pj ,qm)(QE(pj, qm))

j, m = 1, · · · , P. (23)

This algorithm is illustrated in Fig. 5.

3 Convergence of GOB pole estimation

algorithms

All the algorithms presented in the previous section are

iterative. We present here the proof of their convergence.

Fig. 4 Kautz based model
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Fig. 5 Determination of the system modes – general case

The output of a GOB based model with i poles as shown

in Fig 6 is written as follows:

Ŷ = XiGi (24)

Fig. 6 Generalized orthonormal basis filter network

where

Xi =

⎡

⎢⎢⎣

x0(1) · · · xi(1)
...

...

x0(L) · · · xi(L)

⎤

⎥⎥⎦ =

[
Xi−1 xi

]
(25)

and

Ŷ =

⎡

⎢⎢⎣

ŷ(1)
...

ŷ(L)

⎤

⎥⎥⎦ and Gi =

⎡

⎢⎢⎣

g0

...

gi

⎤

⎥⎥⎦ (26)

where {xl}l=0,··· ,i represent the GOB function outputs,

{gl}l=0,··· ,i are the Fourier coefficients of the GOB expan-

sion and L is the number of the measured outputs.

The square error between the system output and the out-

put of the i-pole based GOB model is written as follows:

E2
i = (Y − Ŷ )T(Y − Ŷ ) =

(Y − XiGi)
T(Y − XGi) (27)

and the least square solution is given by

Gi,opt =
(
XT

i Xi

)−1

XT
i Y. (28)

The minimum squares error is

E2
min,i =(Y − XiGi,opt)

T (Y − XiGi,opt) =
(
Y − Xi(X

T
i Xi)

−1XT
i Y
)T

×
(
Y − Xi(X

T
i Xi)

−1XT
i Y
)

=

Y TY − 2Y TXi(X
T
i Xi)

−1XT
i Y +

Y TXi (XT
i Xi)

−1XT
i Xi︸ ︷︷ ︸

Ii

(XT
i Xi)

−1XT
i Y =

Y TY − Y TXi(X
T
i Xi)

−1XT
i Y. (29)

To verify the convergence of the proposed GOB pole se-

lection algorithms, we calculate

E2
min,i − E2

min,i+1 =Y T
[
Xi+1(X

T
i+1Xi+1)

−1XT
i+1−

Xi(X
T
i Xi)

−1XT
i

]
Y. (30)

By defining

Ξi+1 =
(
XT

i+1Xi+1

)−1

(31)

and the projection matrix

P⊥
i = I − XiΞiX

T
i (32)

and using the formula of the partitioned matrix

inversion[23], we can write

Ξi+1 =

⎡

⎢⎣
Ξi +

ΞiXT
i xi+1xT

i+1XiΞi

xT
i+1P⊥

i
xi+1

ΞiXT
i xi+1

xT
i+1P⊥

i
xi+1

xT
i+1XiΞi

xT
i+1P⊥

i
xi+1

1

xT
i+1P⊥

i
xi+1

⎤

⎥⎦ (33)
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and

Xi+1(X
T
i+1Xi+1)

−1XT
i+1 =

Xi+1

[
Ξi 0

0 0

]
XT

i+1+

Xi+1

⎡

⎢⎢⎢⎣

ΞiXT
i xi+1xT

i+1XiΞi

xT
i+1P⊥

i xi+1

ΞiXT
i xi+1

xT
i+1P⊥

i xi+1

xT
i+1XiΞi

xT
i+1P⊥

i
xi+1

1
xT

i+1P⊥
i

xi+1

⎤

⎥⎥⎥⎦XT
i+1 =

Xi(X
T
i Xi)

−1XT
i +

Xi+1

⎡

⎢⎢⎣

ΞiXT
i xi+1xT

i+1XiΞi

xT
i+1P⊥

i
xi+1

ΞiXT
i xi+1

xT
i+1P⊥

i
xi+1

xT
i+1XiΞi

xT
i+1P⊥

i xi+1

1

xT
i+1P⊥

i xi+1

⎤

⎥⎥⎦XT
i+1.

(34)

Equation (34) becomes

E2
min,i−E2

min,i+1 =
1

xT
i+1P

⊥
i xi+1

Y T×
(

Xi+1

[
ΞiX

T
i xi+1

1

])
×

⎛

⎝
[

ΞiX
T
i xi+1

1

]T

XT
i+1

⎞

⎠ Y ≥ 0. (35)

So, we prove that the quadratic error obtained with a

(i+1)-th order GOB model is smaller than the quadratic

error obtained with a i-th order GOB model characterized

by the first i poles. We can then conclude that the iterative

algorithms for GOB pole selection converge.

4 Simulation results

Three systems are simulated in this section. The first two

systems are numerical defined by their respective transfer

functions G1(z) and G2(z) and the third simulated system

is a 2nd order electrical linear system. The input signal u(t)

is a Gaussian white noise sequence with zero mean and unit

variance. The signal to noise ratio (SNR) is fixed to 20 dB.

The simulations results are obtained using the Monte Carlo

technique with 50 different additive noise sequences.

The performance of the proposed identification algo-

rithms is also evaluated in terms of the normalized mean

square error (NMSE) as follows:

NMSE =
1

50

50∑

m=1

⎛

⎜⎜⎝
1

L

L∑
k=1

(y(k) − ŷ(k))2

L∑
k=1

(y(k))2

⎞

⎟⎟⎠ (36)

where y(k) is the output of the system, ŷ(k) is the corre-

sponding output of the identified model based on a GOB

expansion and L = 103 represents the number of output

measurements used for the identification.

4.1 System 1

The first system is defined by the following transfer func-

tion G1(z). The truncation order is fixed to i = 3.

G1(z) = 0.0017×
z−1(1 + 0.673z−1)

(1 − 0.368z−1)(1 − 0.819z−1)(1 − 0.995z−1)
. (37)

In Table 2, we give the corresponding QE values defined

by (37) between the system output and the GOB based

corresponding model output.

The performance of the two first proposed identification

algorithms are compared in terms of the identified poles.

In Table 1, we give for the first simulated system the true

poles and the poles identified by the two algorithms, with

their corresponding standard deviations σ. These poles are

plotted in Fig. 7.

Fig. 7 True system poles compared to GOB poles identified by

the two algorithms for system 1

By analyzing the results of Table 1 and Fig. 7, we can

conclude that both algorithm′s estimated values are close

to the true poles of the system.

Table 1 Identified GOB real poles for system 1

True poles Algorithm 1 Algorithm 2

ξ1 0.995 0.876 0.817

σ(ξ1) 2.32 × 10−3 6.58 × 10−3

ξ2 0.819 0.754 0.663

σ(ξ2) 1.75 × 10−2 8.01 × 10−3

ξ3 0.368 0.213 0.377

σ(ξ3) 2.12 × 10−2 7.57 × 10−3

ξ4 0 0.155 0.098

σ(ξ4) 1.02 × 10−2 9.17 × 10−3

ξ5 0 0.065 0.045

σ(ξ5) 1.35 × 10−2 8.32 × 10−3

In Table 2, we present the QE values between the system

output and the GOB based models respectively identified

by Algorithms 1 and 2. The two algorithms give satisfac-

tory results.
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As we can see in Table 3, Algorithm 1 is much faster than

Algorithm 2. To determine one pole of the GOB, the com-

puting time (in seconds) of the Fu and Dumont′s algorithm

is shorter than that of the technique used in Algorithm 2.

However, we have noticed that, with Algorithm 2 the sys-

tem impulse response is not required to determine the GOB

poles while it is the case with Algorithm 1. This is an ad-

vantage when the system impulse response is difficult to

obtain.

Table 2 Quadratic errors obtained with different GOB

expansions

NMSE

Algorithm 1 estimated poles 7.93 × 10−3

Algorithm 2 estimated poles 2.95 × 10−3

Table 3 Computing times in seconds of the two algorithms

Computing time

Algorithm 1 6.19 × 10−3

Algorithm 2 8.22

Generally, Algorithm 1 based on the use of analytical for-

mulae, gives satisfactory results for systems whose modes

are close to each other. However, the more the system

modes are distant from each other (or the system is un-

derdamped), the less satisfactory the identification results

will be, and Algorithm 2 becomes more useful and precise to

determine the poles. With regards to numerical complexity,

Algorithm 1 is easier to implement than Algorithm 2 that

needs more calculations.

4.2 System 2

The simulated system is 5-th -order defined by its trans-

fer function G2(z). The truncation order of the GOB based

model is fixed to i = 5.

G2(z) =
b1(z)b2(z)

(z − 0.5) [a(z)]2
(38)

with

a(z) = z2 − 2r cos(ϕ)z + r2 (39)

b1(z) = z2 − 2r cos(ϕ + Δϕ)z + r2 (40)

b2(z) = z2 − 2r cos(ϕ − Δϕ)z + r2 (41)

where ϕ =
1.3π

4
, Δϕ =

0.2π

4
, r = 0.8 and K is chosen such

that the static gain of System 2 is equal to one.

Figs. 8 and 9 represent the quadratic error E2
min,i −

E2
min, i+1(j = 1, · · · , N) between the residual output νi and

respectively the Laguerre based model ŷi and the Kautz

based model. This leads to an optimal Laguerre pole ξi or

an optimal (pi, qi) optimal Kautz parameters.

In Table 4, we give for the second simulated system, the

real system parameters and the corresponding estimated

real poles ξi and parameters pi and qi using the 3rd algo-

rithm provided with their standard deviations.

Fig. 8 Determination of ξi,opt minimizing the quadratic error

Fig. 9 Determination of bi,opt and cj,opt minimizing QE

Fig. 10 True system poles and parameters compared to GOB

poles and parameters for System 2

By analyzing the results of Table 4 and Fig. 10, we can

conclude that Algorithm 3 estimates the poles ξi and the

parameters (bi, ci) of the GOB based model that are close

to those of the simulated system 2.

The evaluation of the performance of Algorithm 3 in

terms of quadratic error is calculated as for the Algorithms

1 and 2. The results are satisfactory and given in Table 5.
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Table 4 Identified GOB poles ξi or parameters (bi, ci)

parameters for System 2

True parameters Estimated parameters

ξ1 0.5 0.611

σ(ξ1) 1.54 × 10−3

(p2, q2) (0.507,−0.642) (0.594,−0.724)

(σ(p2), σ(q2)) (2.12 × 10−2, 3.02 × 10−2)

(p3, q3) (0.512,−0.638) (0.553,−0.739)

(σ(p3), σ(q3)) (2.04 × 10−2, 4.32 × 10−2)

Table 5 Normalized mean square error (NMSE) obtained

with different GOB expansions

NMSE

GOB expansion (true poles) 7.32 × 10−6

GOB expansion (Algorithm 3 poles) 1.30 × 10−2

4.3 System 3

Let us consider a 2nd-order electrical linear system rep-

resented by the following circuit, where

C1 = 10 nF, C′ = 0.205 μF and R = R1 = R2 = 68kΩ

This system is defined by the following transfer function:

Gc(s) =
R2

RR1R2C1C′s2 + RR1C1s + R2
=

Kω2
0

s2 + 2mω0s + ω2
0

(42)

such as

1) K = 1 is the static gain,

2) ω0 =
√

1
RR1C1C′ = 324.8 rad.s−1 is the natural fre-

quency,

3) m = 1
2R2

√
RR1C1

C′ = 0.110 4 is the damping ratio.

The numerical transfer function is then equal to

Gc(s) =
105.5 × 103

s2 + 71.72 s + 105.5 × 103
. (43)

Thus, the two system complex conjugate poles are

ξ = −35.86 + 322.81 j

ξ∗ = −35.86 − 322.81 j

and the real Kautz parameters b and c defined by (17) and

(18) are in Table 6.

Table 6 Identified GOB parameters (bi, ci) for System 3

True parameters Estimated parameters

(p1, q1) (−6.79×10−4,−1.05×105) (−7.26×10−4,−0.89×105)

(σ(p1), σ(q1)) (3.51×10−6, 5.72×102)

Five hundred input/output observations were collected

from the process at a sampling time of 0.01 s. The volt-

age input u(k) ranges from 1V to 3.3 V which is a pseudo-

random sequence and the obtained output y(k) are illus-

trated in Figs. 12 and 13.

Fig. 12 Pseudo random input sequence u(t)

Fig. 13 The 2nd-order electrical linear system output sequence

y(t)

To estimate the GOB based model parameters,

Algorithm 3 converges to the results in Table 6 where the

real system parameters are close to those estimated by Al-

gorithm 3 with relatively small standard deviation.

Fig. 14 System output and the GOB based model output
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We illustrate in Fig. 14, the evolution of the outputs

of the electrical system and the GOB based corresponding

model. It resorts that the proposed GOB based model han-

dles the process perfectly with relatively small NMSE as

presented in Table 7.

Table 7 Normalized mean square error (NMSE) obtained

with different GOB expansions

NMSE

GOB expansion (True poles) 1.58 × 10−7

GOB expansion (Algorithm 3 poles) 7.95 × 10−3

5 Conclusions

In this paper, we have presented three algorithms for op-

timizing the poles of a GOB in the context of linear system

modeling. The first two algorithms concern the GOB with

optimal real poles. They are based on on a stage of deter-

mination of the dominant Laguerre pole of a residual signal,

followed by a stage of generation of the residual signals by

an iterative filtering, at each iteration.

The third algorithm is dedicated to more complex linear

systems with several dynamics. It optimizes both real and

complex GOB poles. It is based on on a stage of deter-

mination of the dominant Laguerre real pole or of the two

complex conjugate Kautz poles of a residual signal, followed

by a stage of generation of the residual signal by an iterative

filtering, at each iteration.

These algorithms are iterative and based on the quadratic

error between the linear process output and the GOB based

model output. They present the advantage to be very sim-

ple to implement. No numerical optimization technique is

needed, and in consequence there is no problem of local

minima as is the case for other algorithms in the literature.

We have also analyzed the convergence of the pro-

posed GOB pole selection algorithms by proving that the

quadratic error obtained with the (i+1)-th order GOB

based model is smaller than the quadratic error obtained

with the i-th order GOB based model characterized by the

first i poles.

The proposed algorithms are validated in simulations us-

ing three analytical systems. We first compare the real

parameters of the numerical simulated systems with the es-

timated parameters of the proposed GOB based models.

The performance of the algorithms in terms of mean square

error is satisfactory since the quadratic error criterion be-

tween the simulated systems outputs and the optimal GOB

based models outputs are relatively small in noisy condi-

tions.

An extension of this work is the extension of the proposed

GOB pole estimation algorithms to nonlinear systems.

References

[1] B. Wahlberg. System identification using Laguerre mod-
els, IEEE Transactions on Automatic Control, vol. 36, no. 5,
pp. 551−562, 1991.

[2] B. Wahlberg. System identification using Kautz models,
IEEE Transactions on Automatic Control, vol. 39, no. 6,
pp. 1276−1282, 1994.

[3] K. Bouzrara, T. Garna, J. Ragot, H. Messaoud. Decom-
position of an ARX model on Laguerre orthonormal bases,
ISA Transactions, vol. 51, no. 6, pp. 848−860, 2012.

[4] N. Saidi, H. Messaoud. Supervised equalization of a lin-
ear communication channel using generalized orthogonal
basis (GOB), In Proceedings of the 6th International
Multi-Conference on Systems, Signals and Devices, Jerba,
Tunisia, 2009.

[5] P. S. C. Heuberger. P. M. J. Van den Hof, O. H. Bosgra,
A generalized orthonormal basis for linear dynamical sys-
tems, IEEE Transactions on Automatic Control, vol. 40,
no. 3, pp. 451−465, 1995.

[6] K. Bouzrara, T. Garna, J. Ragot and H. Messaoud, Decom-
position of an ARX model on Laguerre orthonormal bases.
ISA Transactions, vol. 51, no. 6, pp. 848−860, 2012.

[7] A. C. den Brinker, H. J. Belt. Model reduction by
orthogonalized exponential sequences. In Proceedings of
PRORIS/IEEE Workshop on Circuits, System and Signal
Processing, Mierlo, Netherlands, pp. 77–82, 1996.

[8] R. Malti, D. Maquin, J. Ragot. Optimality conditions for
the truncated network of the generalized discrete orthonor-
mal basis having real poles, In Proceedings of IEEE Con-
ference on Decision and Control, Tampa, Florida, USA,
pp. 2189−2194, 1998.

[9] A. Kibangou, G. Favier, M. M. Hassani. A growing ap-
proach for selecting generalized orthonormal basis functions
in the context of system modeling, In Proceedings of IEEE-
EURASIP Workshop on Nonlinear Signal and Image Pro-
cessing, IEEE, Grado, Italy, 2003.

[10] A. Mbarek, K. Bouzrara, H. Messaoud, Optimal expan-
sion of linear system using generalized orthogonal basis. In
Proceedings of International Conference on Electrical En-
gineering and Software Applications, Hammamet, Tunisia,
2013.

[11] A. da Rosa, R.J.G.B. Campello, W.C. Amaral. An opti-
mal expansion of Volterra models using independent Kautz
bases for each kernel dimension, International Journal of
Control, vol. 81, no. 6, pp. 962−975, 2008.

[12] T. Garna, K. Bouzrara, J. Ragot, H. Messaoud. Nonlinear
system modeling based on bilinear Laguerre orthonormal
bases, ISA Transactions, vol. 51, no. 6, pp. 848−860, 2012.

[13] A. Kibangou, G. Favier, M. M. Hassani. Iterative opti-
mization method of GOB-volterra filters. In Proceedings
of the 16th IFAC World Congress, Prague, Czech Republic,
vol. 38, no. 1, pp. 773−778, 2005.

[14] A. Kibangou, G. Favier, M. M. Hassani. Selection of gener-
alized orthonormal bases for second-order Volterra filters,
Signal Processing, vol. 85, no. 12, pp. 2371−2385, 2005.

[15] A. da Rosa et al. Robust expansion of uncertain Volterra
kernels into orthonormal series, In Proceedings of the Amer-
ican Control Conference, Marriott Waterfront, Baltimore,
MD, USA, pp. 5465−5470, 2010.



A. Khouaja and H. Messaoud / Iterative Selection of GOB Poles in the Context of System Modeling 111

[16] A. da Rosa, R. J. G. B. Campello, W. C. Amaral. Ex-
act search directions for optimization of linear and non-
linear models based on generalized orthonormal functions.
IEEE Transactions on Automatic Control, vol. 54, no. 12,
pp. 2757−2772, 2009.

[17] H. Mathlouthi, K. Abederrahim, F. Msahli and G. Favier.
Crosscumulants based approaches for the structure identifi-
cation of Volterra models, International Journal of Automa-
tion and Computing, vol. 6, no. 4, pp. 420−430, 2009.

[18] M. Ltaief, A. Messaoud and R. Ben Abdennour. Optimal
systematic determination of models base for multimodel
representation: real time application, International Journal
of Automation and Computing, vol. 11, no. 6, pp. 644−652,
2014.

[19] B. Ninness, F. Gustafsson. A unifying construction of or-
thonormal bases for system identification, IEEE Transac-
tions on Automatic Control, vol. 42, no. 4, pp. 515−521,
1997.

[20] G. A. Dumont, Y. Fu, Non-linear adaptive control via La-
guerre expansion of Volterra kernels. Int. J. Adaptive Con-
trol and Signal Processing, vol. 7, pp. 367−382, 1993.

[21] Y. Fu, G. A. Dumont. An optimum time scale for discrete
Laguerre network. IEEE Transactions on Automatic Con-
trol, vol. 38, no. 6, pp. 934−938, 1993.

[22] N. Tanguy, R. Morvan, P. Vilb, C. Calvez. Online opti-
mization of the time scale in adaptive Laguerre based fil-
ters, IEEE Transactions on Signal Processing, vol. 48, no. 4,
pp. 1184−1187, 2002.

[23] M. Guglielmi. Signaux Aleatoires, Modelisation, Estima-
tion, Detection. Paris, France : Editions Hermes Science,
2004.

Anis Khouaja recieved the B.Eng. de-
gree from the National Engineering School
of Monastir (ENIM), Tunisia in 2000. He
received the M. Sc. and Ph.D. degrees from
the University of Nice Sophia Antipolis,
France in 2001 and 2005, respectively. Cur-
rently, he is an assistant professor in Elec-
trical Engineering Department, High Insti-
tute of Applied Science and Technology of

Sousse, Tunisia. He is also with the LARATSI Laboratory of the
Engineering National School of Monastir in Tunisia.

His research interests include system modeling and identifica-
tion, nonlinear system theory and robust predictive control.

E-mail: anis.khouaja@issatso.rnu.tn (Corresponding author)
ORCID iD: 0000-0002-5759-2612

Hassani Messaoud is a full professor
with the Electrical Engineering Depart-
ment of the National School of Engineers
of Monastir, Tunisia. He is also the head
of the LARATSI Laboratory in the same
school.

His research interests include system
modeling and identification, nonlinear sys-
tem theory, robust predictive control, diag-

nostic and digital channel equalization.
E-mail: hassani.messaoud@enim.rnu.tn


