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Abstract: The paper is devoted to H-optimization problems for linear time invariant (LTI) systems with scalar control, external

disturbance and measurement noise. All these problems can be numerically solved with the help of the well-known universal approaches

based on Riccati equations, linear matrix inequalities (LMI) or maximum entropy technique. Nevertheless, in our opinion there exists

a possibility to increase the computational efficiency of synthesis using a special spectral approach to the above mentioned problems in

frequency domain. Some relevant details are discussed and efficient numerical algorithms are proposed for the practical implementation

of spectral approach. One of its virtues is a possibility to present optimal solutions in a specific form, which is convenient for

investigation.
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1 Introduction

Practical demands of the automatic control systems de-

sign determine an urgent problem of optimal rejection of

external disturbances and measurement noises for various

feedback connections. These problems represent a vast area

of investigations in control theory and signal processing

since 1940s. Initially this direction included optimal fil-

tering and optimal control issues, which were initiated by

the pioneering works of A.N. Kolmogorov and N. Wiener

in the context of mean square optimization theory.

In the recent years, different variants of H-optimization

approaches have attracted considerable attention in con-

nection with an evident desire to suppress external distur-

bances impact to the controlled output of closed-loop sys-

tems.

The main objective of the H-optimal synthesis is to find

a stabilizing controller minimizing H2 or H∞ performance

indices for the closed-loop system[1−11]. Two computational

approaches are widely used for the practical solution of the

above mentioned problems. The first is based on algebraic

matrix Riccati equations (“2-Riccati” approach[1−11]), and

the second one is connected with linear matrix inequali-

ties (“LMI” technique[12]). Corresponding methods are suc-

cessfully implemented in Matlab package[4, 13]. In addition,

modern versions of this package include so called maximum

entropy technique for a solution of H-infinity control prob-

lem.

Nevertheless, in our opinion all the approaches mentioned

above are not fully efficient for a partial situation for single
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input single output (SISO)H-optimization problems, where

controlled plants have scalar controlling and disturbing in-

puts. Moreover, no traditional methods can be directly used

to obtain the optimal solutions for degenerated cases such

as the absence of the measurement noises.

Additional drawback is determined by the following rea-

son. Unfortunately, the global structure of obtained opti-

mal controllers using standard methods may be not so con-

venient for practical implementation. This can be caused by

the necessity to provide multipurpose orientation of the con-

trol law along with the aim supported by H-optimization.

Because of this drawback, the problems of H-optimization

taking into account various controllers′ structure restric-

tions become greatly important. To solve these problems,

it is possible to use two general ideas: the first is obvious

direct optimization on the sets of coefficients, taking into

account asymptotic stability requirement. The second one

is more refined and can be implemented for the cases where

H-optimal solution is non-unique. Here, we can take ad-

vantage of non-uniqueness and select such a solution which

has desirable structure.

To bypass all the mentioned obstacles, it is quite suitable

to use special spectral frequency methods based on a poly-

nomial factorization. Kwakernaak[14] proposed one of the

branches of this direction. Nevertheless, there exists a pos-

sibility of essentially raising the efficiency of synthesis for a

partial situation of SISO systems with a controlled plant,

having scalar control and disturbance inputs. For this case,

it is more effective to use special spectral methods in fre-

quency domain if the order of systems is not so large. Initial

theoretical background for efficient spectral approach was

proposed by the author in publications[15−21]. Here, we are

going to continue our discussion on this version of poly-

nomial approach, which seems to be very convenient and
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effective for analysis and synthesis of H-optimal controllers.

Note that the computational efficiency of the algorithms

for optimal synthesis is highly crucial issue for control sys-

tems with an adaptive changeover in real-time regime of

operating. Actually, the time length of calculations is not

so significant for laboratory conditions, but we cannot say

the same with respect to embedded systems or for onboard

control systems of autonomous moving robots. In this con-

nection, there is an urgent necessity to improve effective-

ness of H-synthesis on cardinal level. Unfortunately, there

do not exist many publications devoted to this problem. As

an example, the works[5, 8] can be pointed to.

In accordance with the mentioned circumstances, this pa-

per is devoted to development and generalization of the

spectral approach ideas presented in Veremey[15] for partic-

ular singular H-infinity control problem. This approach is

based on the original spectral form of the optimal controller

representation. In comparison with “2-Riccati” or “LMI”

approaches, the proposed algorithms make it possible to

improve the computational efficiency of synthesis. Some

advantages and disadvantages of the spectral approach are

discussed below with respect to the partial cases of optimal

synthesis such as H2-optimization, linear quadratic Gaus-

sian (LQG)-optimization and H∞-optimization problems.

In contrast to the papers[15−17] , the main attention in

this work is paid to the situations, which are degenerate or

irregular with respect to the standard requirements of H-

theory. This point of view allows solving practically signif-

icant optimization problems, which cannot be directly sup-

ported by the popular well-known theoretical approaches

and numerical instruments. Together with the increase of

computational effectiveness and analytical convenience, the

consideration of irregularities on the basis of special spec-

tral representation, in our opinion, leads to the creation of

a new advanced technique of linear time invariant (LTI)-

synthesis.

This paper is organized as follows. In the next section,

equations of a controlled plant are presented and the prob-

lems of H-optimal synthesis are posed, taking into account

both the degenerate case and the principal regular situation.

A special attention here is paid to the parameterization of

the admissible sets of controllers, which allows to simplify

synthesis, and transforming it to equivalent problems to be

solved. In Section 3, the spectral methods of a synthesis

are proposed for the degenerate cases of H-optimization

in the absence of measurement noises. As for the prob-

lem with H∞ performance index, the main issue is con-

nected with the possible irregularity, when the solution is

not unique. This non-uniqueness allows us to construct the

optimal controllers with a special multi-purpose structure,

providing additional benefit in dynamical features. All the

results presented in this section are accompanied by the cor-

respondent numerical examples. Section 4 is devoted to the

spectral methods of synthesis for the principal regular situ-

ations. Finally, Section 5 concludes this paper by discussing

the overall results of the investigation.

2 SISO problems of HHH-synthesis

Let us consider the problem of feedback control law syn-

thesis for LTI plants with mathematical models of the fol-

lowing tf-form:

y = Huy(s)u+Hdy(s)d+Hψy(s)ψ. (1)

Here y, u, d and ψ are the scalar variables: y is the measured

output, u is the control, d = d(t) and ψ = ψ(t) represent

external disturbances and measurement noises respectively.

The scalar transfer matrices Huy, Hdy, Hψy are given ra-

tional fractions in terms of Laplace variable s.

To compose a closed-loop connection, let us introduce

SISO LTI controller

u = W (s)y (2)

where W (s) ≡ W1(s)
W2(s)

; W1 and W2 are polynomials. Note

that the scalar nature of the mentioned variables allows us

to treat the closed-loop systems (1) and (2) as SISO one.

Let us also accept that the variable eee, to be controlled for

the systems (1) and (2), is as follows:

eee = (e1 e2)
T, e1 = y, e2 = c0u (3)

where c0 is a given constant, the upper index “T” means

transposition procedure.

It is a matter of simple calculations to verify that the

equation

eee =HHHe(s,W )(d ψ)T (4)

represents the closed-loop systems (1) and (2), having the

following transfer matrix:

HHHe(s,W ) =

(
H1
ed(s,W ) H1

eψ(s,W )

H2
ed(s,W ) H2

eψ(s,W )

)
=

(
Hy0(s,W )

c0Hu0(s,W )

)
(5)

where

Hy0(s,W ) =
(Hdy(s) Hψy(s))

(1 −Huy(s)W (s))

Hu0(s,W ) = Hy0(s,W )W (s).

Taking into accounts (4) and (5), let us introduce admis-

sible sets of the controllers (2) on the basis of the Hardy

spaces RH2 and RH∞[11], which are the subsets of the ra-

tional fractions set RL. The first one consists of strictly

proper fractions and the second space includes proper el-

ements both with Hurwitz denominators. In accordance

with these definitions, we arrive at the following admissible

sets:

Ω2 = {W : H1
ed, H

1
eψ, H

2
ed, H

2
eψ ∈ RH2}

Ω∞ = {W : H1
ed, H

1
eψ, H

2
ed, H

2
eψ ∈ RH∞}. (6)
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Now we can state the problems of SISO H-optimal syn-

thesis to be discussed below as follows:

I2(W ) = ‖HHHe(s,W )SSS1e(s)‖2
2 → min

W∈Ω2

I∞(W ) = ‖HHHe(s,W )SSS1e(s)‖2
∞ → min

W∈Ω∞
. (7)

Matrix norms, which are used in the problems (7) state-

ments, are widely used in modern mathematics: these

norms are determined by the following expressions[11]:

‖H̃HH‖2
2 =

1

π

∫ ∞

0

tr
(
H̃HH

T
(−jω)H̃HH(jω)

)
dω, H̃HH =HHHeSSS1e (8)

‖H̃HH‖2
∞ = sup

ω∈[0,∞)

σ2
m(ω) (9)

where SSS1e(s) is the weight multiplier with all rational el-

ements having Hurwitz denominators, σ2
m(ω) is the maxi-

mum eigenvalue of the Hermitian matrix H̃HH
T
(−jω)H̃HH(jω).

The statements of the problems (8) and (9) will be de-

fined in more details below. Nevertheless, here we only note

that there are two significant situations in the framework

of H-optimization theory: degenerate and principal cases.

The first one is a particular case with respect to the prin-

cipal situation: its degeneration is determined by the ab-

sence of the measurement noise in the model (1), i.e., we

have Hψy(s) ≡ 0 for this case. Let us note that from a

practical point of view such a situation is not meaningless:

in the first place, if the noise is sufficiently small, it can be

neglected. Secondly, considering the problems mentioned

above with no noise, it is possible to obtain simple lower

estimations for more complicated principal variants.

In view of the presented reason, let us consider both these

situations separately in details.

2.1 Degenerate case

Let us have LTI plant with mathematical model of the

following state space form:

ẋxx = AAAx+ bbbu+ pppd(t)

y = cccx

e1 = y, e2 = c0u (10)

where xxx ∈ Rn is the state vector, y, u, d, e1 and e2 are the

scalar values introduced earlier. All components of the ma-

trices A, b, p, cA, b, p, cA, b, p, c and parameter c0 are given constants. Let

us suppose that the pairs {A, bA, bA, b}, {A, cA, cA, c} are controllable

and observable respectively.

To obtain a feedback connection with the plant (10), we

shall use controller (2) introduced above. Respectively, the

model of the closed-loop systems (10) and (2) is as follows:

eee =HHHν(s,W )d (11)

where

HHHν(s,W ) = (Hν1 Hν2)
T

Hν1 = Hνy(s,W ), Hν2 = c0Hνu(s,W )

Hνy =
P

(A−BW )
, Hνu =

PW

(A−BW )
. (12)

Here we use the following additional notations:

A = A(s) = det(EEEs−AAA)

B = B(s) = A(s)ccc(EEEs−AAA)−1bbb

P = P (s) = A(s)(EEEs−AAA)−1ppp. (13)

Let us accept that the polynomial P (s) has no roots on the

imaginary axis.

Note that we shall also use below the alternative repre-

sentation of the closed-loop system by the equation

z = Fν(s,W )d (14)

where additional variable z and generalized transfer func-

tion Fν are determined as z2(t) = y2(t) + c20u
2(t) and

|Fν(jω,W )|2 ≡ |Hνy(jω,W )|2 + c20|Hνu(jω,W )|2. (15)

By analogy with (6), it is quite suitable to accept the

following admissible sets of controllers (2):

Ων2 = {W : Hνy, Hνu ∈ RH2}
Ων∞ = {W : Hνy , Hνu ∈ RH∞}. (16)

Based on the model (11), it is possible to refine the state-

ments of the problems (7) in the range of the degenerate

case, which is discussed here

Ĩ2(W ) = ‖HHHν(s,W )S1(s)‖2
2 → min

W∈Ων2

Ĩ∞(W ) = ‖HHHν(s,W )S1(s)‖2
∞ → min

W∈Ων∞
. (17)

As for the model (14), the analogous problems of the

following form can be posed

I2ν(W ) = ‖Fν(s,W )S1(s)‖2
2 → min

W∈Ων2
(18a)

I∞ν(W ) = ‖Fν(s,W )S1(s)‖2
∞ → min

W∈Ων∞
. (18b)

Using formulaes (8) and (9), one could easily check that

Ĩ2(W ) = I2ν(W ) =
1

π

∫ ∞

0

|Fν(jω,W )S1(jω)|2dω

Ĩ∞(W ) = I∞ν(W ) = sup
ω∈[0,∞)

|Fν(jω,W )S1(jω)|2 (19)

in other words, the problems (17) are identical with the

correspondent problems (18).

Let us make a special remark with respect to the scalar

weight multiplier S1(s). If we treat the external input d =

d(t) as the stationary random process, then this multiplier

represents its initially given rational spectral power density

of the form

Sd(ω) = S1(s)S1(−s)|s=jω, S1(s) ≡ N1(s)

T1(s)
(20)
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where N1 and T1 are Hurwitz polynomials with degrees pd
and qd correspondingly, pd ≤ qd.

To comment on the degenerate essence of the problems

in question, let us consider a standard scheme of the closed-

loop systems (10) and (2), presented in Fig. 1.

Fig. 1 Standard scheme of the closed-loop system

Here P (s) is the transfer matrix of a control plant, which

corresponds to its ss-representation (10). Introducing an

auxiliary equation

d = S1(s)γ (21)

of the shaping filter, where γ is Gaussian white noise, it is

convenient to rewrite the plant model as follows:(
ẋxx

ẋxxf

)
=

(
AAA pppcf

000qd×n AAAf

)(
xxx

xxxf

)
+

(
000n×1 bbb

bbbf 000qd×1

)(
γ

u

)
(

eee

y

)
=

(
CCCe 0002×qd

ccc 0001×qd

)(
xxx

xxxf

)
+

(
0002×1 ddde

0 0

)(
γ

u

)
. (22)

where [AAAf , bbbf , cccf , 0] = S1(s)

CCCe =

(
ccc

0001×n

)
, ddde =

(
0

c0

)
.

It is easy to verify that the following equalities

Ĩ2(W ) = ‖HHHν(s,W )S1(s)‖2
2 = ‖HHHγ(s,W )‖2

2

Ĩ∞(W ) = ‖HHHν(s,W )S1(s)‖2
∞ = ‖HHHγ(s,W )‖2

∞ (23)

are valid, where HHHγ(s,W ) is the transfer matrix of the

closed-loop systems (22) and (2) from γ to eee.

To minimize the norms (23) of the matrixHHHγ , in general,

it is possible to employ standard algorithms of “2-Riccati”

or “LMI” technique[1−4, 6, 11, 12, 14], which are efficiently im-

plemented in Matlab package[4, 13]. However, the following

two essential obstacles hamper this approach.

In the first place, the plant model (22) is irregular with

respect to the theory of H-optimization, since the matrix

coefficient, directly connecting output y and input γ, is zero.

As for nonsingular situation, this coefficient must have a

full column rank[1, 13]. Respectively, one cannot directly

use, for example, such popular Matlab functions as h2syn

or hinfsyn: it is required to make preliminary regularization

of the problem.

Secondly, the aforementioned standard approach allows

solving the following problems instead of (17):

Ĩ2(W ) = ‖HHHν(s,W )S1(s)‖2
2 =

‖HHHγ(s,W )‖2
2 → min

W∈Ω∗
ν2

Ĩ∞(W ) = ‖HHHν(s,W )S1(s)‖2
∞ =

‖HHHγ(s,W )‖2
∞ → min

W∈Ω∗
ν∞

(24)

with admissible sets

Ω∗
ν2 = {W : Ων2

⋂
RH2}

Ω∗
ν∞ = {W : Ων∞

⋂
RH∞}. (25)

In other words, the problems (24) are considered on the

essentially restricted sets than the problems (17).

As opposed to standard methods, there exists a possi-

bility to avoid the obstacles mentioned above, using special

spectral approach to the solution of the problems (18). This

is a matter of the subsequent discussion.

2.2 Principal situation

In contrast to the previous case, here we shall consider

controlled plant (1) with the following state space model,

including measurement noise:

ẋxx = AAAx+ bbbu+ pppd(t)

y = cccx+ ψ(t), ξ = cccx

e1 = ξ, e2 = c0u (26)

where all previous notations are used, and additional scalar

controlled variable ξ is introduced.

Note that external inputs d and ψ of the system (26) can

be treated as the outputs of additional systems

d = Sd1(s)i1, ψ = Sψ1(s)i2 (27)

correspondingly, where i1(t) and i2(t) are mutually inde-

pendent Gaussian white noises

Sd1(s) =
Nd(s)

Td(s)
, Sψ1(s) =

Nψ(s)

Tψ(s)
.

Here polynomials Nd, Td, Nψ, Tψ are Hurwitz. In other

words, external disturbances d(t) and ψ(t) are considered

as random stationary processes with given rational spectral

power densities

Sd(ω) = Sd1(s)Sd1(−s)|s=jω

Sψ(ω) = Sψ1(s)Sψ1(−s)|s=jω.

As before, let us accept that the controller to be designed

has a form (2). The transfer function W of this controller

should be found as a solution of the analytical synthesis

problem. If any, we obtain a closed-loop connection (26),

(2) presented in Fig. 2 by its block-scheme.
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Fig. 2 Closed-loop connection scheme

One can easily see that the mentioned closed-loop system

has the input iii = (i1 i2) and the output eee = (e1 e2) and its

mathematical model can be presented as

eee =HHH(s,W )iii

where HHH(s,W ) is a transfer matrix of the system.

Let us introduce auxiliary transfer functions of the sys-

tems (26) and (2) with respect to inner input variables d, ψ

and output variables ξ and u, taking into account (13):

Fdξ(s,W ) =
P

(A−BW )

Fψξ(s,W ) =
BW

(A−BW )

Fdu(s,W ) =
PW

(A−BW )

Fψu(s,W ) =
AW

(A−BW )
.

Using the introduced functions, we can represent the

transfer matrix HHH(s,W ) as follows:

HHH(s,W ) ≡
(

Fdξ(s) Fψξ(s)

c0Fdu(s) c0Fψu(s)

)(
Sd1(s) 0

0 Sψ1(s)

)
.

(28)

Finally, let us introduce the generalized weighted transfer

function Hw(s,W ) such that the following identity holds:

|Hw(jω,W )|2 ≡ [|Fdξ(jω,W )|2 + c20|Fdu(jω,W )|2]Sd(ω)+[|Fψξ(jω,W )|2 + k2|Fψu(jω,W )|2]Sψ(ω). (29)

The matter of H-optimal synthesis for this case is to find

solutions of the following control problems:

J2(W ) = ‖Hw(s,W )‖2
2 → min

W∈Ω2
(30)

J∞(W ) = ‖Hw(s,W )‖2
∞ → min

W∈Ω∞
(31)

where admissible sets Ω2 and Ω∞ are determined as

Ω2 = {W : Hw ∈ RH2}, Ω∞ = {W : Hw ∈ RH∞}.

The essence of the problems (30) and (31) is to suppress

input weighted noises as much as possible with respect to

controlled variable ξ and control u. Note that parameter

c0 can be treated as the weight multiplier governing the re-

lationship between the intensity of control action and the

achieved accuracy of suppression for the closed loop con-

nection.

Let us specially notice that the mentioned suppression

issue can be also formalized by another way, which is more

traditional nowadays in the framework of H-optimization

theory. Really, let us consider following optimization prob-

lems

J2h(W ) = ‖HHH(s,W )‖2
2 → min

W∈Ω2
(32)

J∞h(W ) = ‖HHH(s,W )‖2
∞ → min

W∈Ω∞
(33)

which have the same essence as (30) and (31). Here we use

the matrix norms in accordance with (8) and (9).

It is a matter of simple transformations to verify that the

following relations hold:

‖HHH(s,W )‖2 = ‖Hw(s,W )‖2

‖HHH(s,W )‖∞ ≤ ‖Hw(s,W )‖∞. (34)

The first of them allows claiming that the problem (30) is

equivalent to the standard problem (32) ofH2-optimization.

However, we cannot say the same with respect to the prob-

lem (31) and standard H∞-optimization problem (33). Ac-

tually, the minimum value of the functional J∞(W ) is an

upper bound for similar value of the functional J∞h(W ).

2.3 Parameterization of admissible sets

Now, let us address any aforementioned H-optimization

problem: one can easily observe that their direct solution

is appreciably obstructed by nonlinear dependency of the

presented functionals from the adjustable transfer function

W .

To avoid this difficulty, it is quite suitable to employ any

parameterization technique for the admissible controllers

set. The most popular Youla approach is based on the

results discussed in [10]. However, here we shall use another

method, first described in 1971, with modern interpretation

presented by Aliev and Larin[9].

In accordance with this method, let us introduce the ad-

justable function-parameter Φ as

Φ = L−1
Φ (W ) =

α+ βW

A−BW
⇒

W = LΦ(Φ) =
AΦ − α

BΦ + β
(35)

where α and β are any polynomials such that the polyno-

mial

Q(s) = A(s)β(s) +B(s)α(s) (36)

is Hurwitz. Formulae (35) allow us to express any transfer

function of the presented closed-loop systems as a function

depending not on W , but on Φ, for example:

Fdξ =
P (BΦ + β)

Q
, Fψξ =

B(AΦ − α)

Q

Fdu =
P (AΦ − α)

Q
, Fψu =

A(AΦ − α)

Q
. (37)

Taking into account (37), one can easily see that optimiza-

tion problems (30) and (31) are equivalent to the following

problems:

I2(Φ) = ‖H(s,Φ)‖2
2 → min

Φ∈ΩΦ
2

(38)
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I∞(Φ) = ‖H(s,Φ)‖2
∞ → min

Φ∈ΩΦ∞
(39)

where admissible sets ΩΦ
2 = L−1

Φ (Ω2), ΩΦ
∞ = L−1

Φ (Ω∞) in-

clude rational fractions Φ with Hurwitz denominators. The

function H = H(s,Φ) = Hw(s,LΦ(Φ)) satisfies (29):

H(Φ)H̄(Φ) ≡ (Fdξ(Φ)F̄dξ(Φ) + c20Fdu(Φ)F̄du(Φ)
)
Sd+(

Fψξ(Φ)F̄ψξ(Φ) + c20Fψu(Φ)F̄ψu(Φ)
)
Sψ (40)

where the notation ρ̄ = ρ̄(s) = ρ(−s) is used for any rational

fraction ρ(s), s = jω.

The sense of a transition from the problems (30) and

(31) to the problems (38) and (39) consists of an essential

simplification of these ones due to a linear dependency of

the transfer functions (37) on the function W .

Note that the presented parameterization φ will be de-

fined concretely for various cases in details below.

3 Synthesis for degenerate case

This section presents a special spectral approach to the

solution of the aforementioned irregular problems (18) of

H-optimization. Spectral approach is based on the pro-

posed Φ-parameterization (37). This allows us to construct

transfer matrices of optimal controllers in explicit form with

dependency only on the initial data of the problems to be

considered.

3.1 HHH2-optimization problem

Let us refer to the formulaes (10) to (14), and firstly con-

sider the problem (18a). To begin with, using these formu-

lae let us refine parameterization (35) to (37) for particular

case under study. As a result, we arrive at the expressions

Hνy = Hνy(Φ) =
P (BΦ + β)

Q

Hνu = Hνu(Φ) =
P (AΦ − α)

Q
(41)

instead of (37). Introducing admissible set ΩΦ
2 = L−1

Φ (Ων2)

of the rational functions-parameters Φ with Hurwitz de-

nominators, and obtain the following H2-problem:

I2(Φ) = ‖Fν(s,Φ)S1(s)‖2
2 → min

Φ∈ΩΦ
2

(42)

which is equivalent to (18a). Here the generalized transfer

function Fν satisfies the identity

Fν(Φ)F̄ν(Φ) ≡ Hνy(Φ)H̄νy(Φ) + c20Hνu(Φ)H̄νu(Φ) (43)

in accordance with (15).

Lemma 1. The identity (43) can be presented as follows:

Fν(Φ)F̄ν(Φ) ≡ PP̄
[
(T1 − T2Φ)(T̄1 − T̄2Φ̄) + T3

]
(44)

where the rational fractions T1(s) and T2(s) with Hurwitz

denominators and the function T3(s) ∈ RL are determined

by the expressions

T1 =
c20αĀ− βB̄

GQ
, T2 =

Ḡ

Q
, T3 =

c20
GḠ

. (45)

Here Hurwitz polynomial G(s) satisfies the following fac-

torization:

c20AĀ+BB̄ ≡ GḠ. (46)

Proof. After direct substitution (41) into (43) we obtain

Fν(Φ)F̄ν(Φ)

PP̄
≡ (c20AĀ+BB̄)ΦΦ̄ + (βB̄ − c20αĀ)Φ̄

QQ̄
+

(β̄B − c20ᾱA)Φ + c20αᾱ+ ββ̄

QQ̄
.

This identity, in comparison with the right part of (44),

provides that

T1T̄1 + T3 ≡ c20αᾱ+ ββ̄

QQ̄

T2T̄2 ≡ c20AĀ+BB̄

QQ̄

− T2T̄1 ≡ β̄B − c20ᾱA

QQ̄
.

It directly follows from the second identity here that T2 =
Ḡ
Q

. After substituting T2 to the third identity, obtain T1 =
c20αĀ−βB̄

GQ
. Finally, the first identity, taking into account

(36), gives us

T3 ≡ c20αᾱ+ ββ̄

QQ̄
− T1T̄1 =

c20Aβ(Āβ̄ + B̄ᾱ) + c20Bα(Āβ̄ + B̄ᾱ)

QQ̄GḠ
=

c20
GḠ

.

That is, we arrive at the formulae (45), and lemma is

proven. �
Note that Lemma 1 allows us to attract well-known idea

of the model matching for treatment of the presented prob-

lem (Doyle et al.[11]).

Theorem 1. Optimization H2-problem (42) with re-

spect to the norm of the generalized transfer function

Fν(s,Φ) is equivalent to the weighted model-matching issue

E2(Φ) = ‖(T1 − T2Φ)S∗
1‖2

2 → min
Φ∈ΩΦ

2

(47)

for the given model with the transfer matrix T1 (45) and

the weight S∗
1 ≡ S1(s)P1(s), where the polynomial P1 is a

Hurwitz result of the factorization.

P1(s)P1(−s) ≡ P (s)P (−s)
Proof. In accordance with Lemma 1 we have

I2(Φ) = ‖Fν(Φ)S1‖2
2 =

1

π

∫ ∞

0

|FνS1|2dω =

1

π

∫ ∞

0

[|T1 − T2Φ|2 + T3

]
Sd|P |2dω =

1

π

∫ ∞

0

|T1 − T2Φ|2Sd|P |2dω +
1

π

∫ ∞

0

T3Sd|P |2dω =

‖(T1 − T2Φ)S1P1‖2
2 + ‖T3S1P1‖2

2.

Observe that the second term here does not depend on

Φ, so a minimum value of I2 can be achieved if and only if

the first term reaches its minimum. �
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Corollary 1. The real value

Ia2 =
1

π

∫ ∞

0

T3Sd|P |2dω

is a lower bound for the minimum values of the functionals

I2ν(W ) and I2(Φ) for the problems (18a) and (42) corre-

spondingly:

I0
2ν = min

W∈Ων2
I2ν(W ) = min

Φ∈ΩΦ
2

I2(Φ) ≥ Ia2. (48)

Next let us consider the model-matching problem (47).

Theorem 2. There exists the unique function-parameter

Φ = Φ02 ∈ ΩΦ
2 providing a minimum of the functional

E2(Φ) in (47), which is determined by the formulae

Φ02 =
(c20αĀ− βB̄)S∗

1 −RQ

GḠS∗
1

(49)

R(s) =
n∑
i=1

G(−s)
gi − s

B(−gi)N(gi)

A(gi)T (gi)G′(−gi) (50)

where gi, i = 1, n are the roots of the polynomial G(−s)(for
simplicity, we assume that all these roots are distinct) S∗

1 ≡
N(s)
T (s)

, N(s) ≡ N1(s)P1(s), T (s) ≡ T1(s).

Proof. Let us consider an expression for the model

matching error in (47). After substituting of the formulae

(45), we obtain

E2(Φ) =

∥∥∥∥
(
c20αĀ− βB̄

QG
− Ḡ

Q
Φ

)
S∗

1

∥∥∥∥
2

2

. (51)

Note that there is no trivial solution of the problem on the

set ΩΦ
2 , which provides zero value of the matching error E2.

Really, assuming Φ = Φ̃ = k2αĀ−βB̄
GḠ

, we obtain E2(Φ̃) = 0,

however Φ̃ /∈ ΩΦ
2 , because the polynomial Ḡ is not Hurwitz.

Next, we can transform the equality (51) to the form

E2(Φ) = ‖(M − LΦ)S∗
1‖2

2 by dividing to the fraction

G0 = Ḡ
G

, taking into account that ‖G0‖2
2 = 1. Here

M =
c20αĀ−βB̄

QḠ
, L = G

Q
.

Now let us expand the fraction MS∗
1 ∈ RL2 to the sum

of orthogonal elements with the help of Toeplitz ΘM and

Hankel ΓM operators[11]:

E2(Φ) = ‖ΘM (S∗
1 ) + ΓM (S∗

1 ) − LΦS∗
1‖2

2 =

‖ΘM (S∗
1 ) − LΦS∗

1‖2
2 + ‖ΓM (S∗

1 )‖2
2. (52)

The last equality holds, because the relationships

ΓM (S∗
1 ) ∈ RH⊥

2 and (ΘM (S∗
1 ) − LΦS∗

1 ) ∈ RH2 provide

(ΘM (S∗
1 ) − LΦS∗

1 ) ⊥ ΓM (S∗
1 ).

To find projections ΘM (S∗
1 ) and ΓM (S∗

1 ) in explicit form,

let us separate the fraction M(s)S∗
1 (s):

MS∗
1 =

c20αĀ− βB̄

QḠ

N

T
≡ M1(s)

Q(s)T (s)
+

R(s)

G(−s) :

ΘM (S∗
1 ) =

M1(s)

[Q(s)T (s)]

ΓM (S∗
1 ) =

R(s)

G(−s) . (53)

Taking into accounts (36) and (46), it directly follows

from (53) that

R(gi) = −B(−gi)N(gi)

[A(gi)T (gi)]
, i = 1, n. (54)

One can easily observe that formula (54) allows us to

construct Lagrange interpolation polynomial R(s) (50).

Next, in accordance with (53) we have

ΘM (S∗
1 ) =

(
(c20αĀ− βB̄)

QḠ

)
S∗

1 − R

Ḡ

ΓM (S∗
1 ) =

R

Ḡ
(55)

assuming that the polynomial R(s) is known.

Note that the second term in the right part of (52) does

not depend on Φ, so the minimum of E2 can be achieved

only under condition ΘM (S∗
1 ) − LΦS∗

1 = 0 that is possi-

ble for the only variant Φ = Φ02 =
ΘM (S∗

1 )

LS∗
1

. Taking into

account (55), we obtain (49).

Observe that the polynomial R(s) (50) satisfies the equal-

ities (c20αĀ − βB̄)S1 − RQ = 0, if s = gi, i = 1, n in

accordance with the expression (54). This means that a

numerator of the fraction Φ02(s) is totally divided (without

remainder) by the polynomial G(−s). However, since the

polynomials G(s) and N(s) are Hurwitz, then a denomi-

nator of the function Φ02(s) is also Hurwitz polynomial.

Besides that, it is easy to verify that the functional E2 ac-

cepts a finite value, so H2-norm of Fν(s,Φ) is also finite,

i.e., Φ02 ∈ ΩΦ
2 and theorem is proven. �

Theorem 3. Controller (3) with the transfer function

W20(s) =

A(s)T (s)R(s) +B(−s)N(s)

G(−s)
B(s)T (s)R(s)− c20A(−s)N(s)

G(−s)
(56)

is the unique solution of the problem (18a). A division by

the polynomial G(−s) in (56) is realized totally (without

a remainder). Characteristic polynomial of the closed loop

systems (10) and (2) with transfer function W = W20 (56)

can be presented as

Δ20(s) = −N(s)G(s). (57)

Minimum I0
2ν = I2ν(W20) of the functional I2ν for the prob-

lem (18a) exceeds its lower bound Ia2 (48) on the value

ΔI2 =

∥∥∥∥RG
∥∥∥∥

2

2

. (58)

Proof. It directly follows from Theorem 2 that the trans-

fer function W20 = LΦ(Φ02) of the optimal controller repre-

sents the unique solution of the problem (18a). After sub-

stitution of the expression (49) into (35) and taking into

account (36), we obtain

W20 = LΦ(Φ02) =
AΦ02 − α

BΦ02 + β
=

−Q(ART + B̄N)

Ḡ
−Q(BRT − c20ĀN)

Ḡ
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i.e., the equality (56) holds. Observe that the function

W20(s) does not depend on the auxiliary polynomials α(s)

and β(s), this one is fully determined only by the initial

data of the problem (18a).

Divisibility by the polynomial G(−s) can be easily proven

on the basis of the formula (54). Representation (57) of

the characteristic polynomial for the optimal closed-loop

connection directly follows from the equality Δ0 = AW02 −
BW01 for the numerator W01 and denominator W02 of the

function W20(s).

Finally, on the basis of Corollary 1 from Theorem 1 and

in accordance with Theorem 2 we have

I0
2ν = min

W∈Ων2
I2ν(W ) = ‖Fν(s,Φ02)S

∗
1‖2

2 = E2(Φ02) + Ia2.

Denoting ΔI2 = E2(Φ02) and taking into accounts (49) and

(52), we obtain (58) that fully proves the theorem. �
As a result of the presented discussion, let us compose a

computational algorithm for the problem (18a)′s solution.

Algorithm 1. To search out a transfer function of the

optimal controller, we need to execute the following steps:

1) Implement factorizations

c20A(s)A(−s) +B(s)B(−s) ≡ G(s)G(−s)
P1(s)P1(−s) ≡ P (s)P (−s) (59)

and compose Hurwitz polynomials G(s), T (s) ≡
T1(s), N(s) ≡ N1(s)P1(s).

2) Construct the auxiliary polynomial

R(s) =
n∑
i=1

G(−s)
gi − s

B(−gi)N(gi)

A(gi)T (gi)G′(−gi)

where gi, i = 1, n are the distinct roots of G(−s).
3) Represent the transfer function of the optimal con-

troller

W20 =

A(s)T (s)R(s) +B(−s)N(s)

G(−s)
B(s)T (s)R(s)− c20A(−s)N(s)

G(−s)
where a division by the polynomial G(−s) is made totally.

To illustrate practical implementation of the presented

algorithm, let us consider the following numerical example.

Example 1. For the controlled plant (10) with given

matrices

AAA =

⎛
⎜⎝

2 1 −2

1 0 1

−1 0 1

⎞
⎟⎠ , bbb =

⎛
⎜⎝

−1

−1

0

⎞
⎟⎠

ppp =

⎛
⎜⎝

0.1

−0.1

0

⎞
⎟⎠ , ccc =

(
1 0 0

)
(60)

let us synthesize the optimal transfer function (56) for the

irregular case, accepting c20 = 1, S1(s) ≡ N1(s)
T1(s)

where

N1(s) = s+ 2, T1(s) = s2 + s+ 2.

As a result of factorizations (59), obtain the polynomials

G(s) = s3 + 4.92s2 + 6.08s + 2.24

P1(s) = 0.100s2 + 0.200s + 0.100, T (s) = s2 + s+ 2

N(s) = s3 + 0.400s2 + 0.500s + 0.200.

Then, construct R(s) = 2.20s2−7.51s+4.93 for the roots

g1,2 = 0.827± 0.035 5j, g3 = 3.26 of the polynomial G(−s).
Next, represent optimal transfer function (56):

W20(s) =
−2.20s4 + 1.10s3 + 3.33s2 + 11.0s + 8.90

2.10s3 + 4.31s2 + 6.44s + 4.23
.

In comparison with widely used state-of-the-art methods

realized in Matlab package, it is necessary to say that this

result cannot be achieved using design functions: the con-

troller u = W20(s)y is only a limit for the corresponding

minimizing sequences of the optimal stabilizing controllers.

Note that obtained controller cannot be directly imple-

mented due to degeneration of the problem: its transfer

function is not a strictly proper fraction. Nevertheless, this

result has a practical application as a limit point for the

various regularization procedures.

3.2 HHH∞-optimization problem

Now let us consider the problem (18b), based on the for-

mulaes (10) – (14). Using mentioned parameterization tech-

nique, let us take into account expressions (41) and obtain

the following H∞-optimization problem

I∞(Φ) = ‖Fν(s,Φ)S1(s)‖2
∞ → min

Φ∈ΩΦ∞
(61)

which is equivalent to (18b). Here, the generalized transfer

function Fν is determined by the identity (43). As before,

it is convenient to use Lemma 1 for presenting this identity

in the form (44).

It is a matter of simple calculations to prove the following

relationships on the basis of (44):

I∞(Φ) ≤ γ2, γ2 = Ja + ε, ε ≥ 0 (62)

where

Ja = max
ω∈[0,∞)

c20|S1P1|2
|G|2 =

c20|S1(jω0)P1(jω0)|2
|G(jω0)|2

ω0 = arg max
ω∈[0,∞)

c20|S1(jω)P1(jω)|2
|G(jω)|2 .

Definition 1. We say that the H∞-irregular situation

takes place with respect to the problem (61), if such a func-

tion Φ ∈ ΩΦ
∞ exists that the equality I∞(Φ) = Ja holds in

(62). Otherwise, we say that the situation is H∞-regular if

for any Φ ∈ ΩΩ
∞ we have I∞(Φ) > Ja.

Note that the mentioned H∞-regular situation is exhaus-

tively presented in [15, 18]: here let us restrict ourselves only

to the discussion of H∞-irregular issue.

Theorem 4. H∞-irregular situation takes place for the

problem (61) if and only if

qm ≥ 0 (63)
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where qm is the minimal eigenvalue of the Pick matrix

Π = {lij}, lij =
1 − did̄j
gi + ḡj

, di = −B(−gi)N(gi)

A(gi)Rs(gi)
. (64)

Here i, j = 1, n, Rs(s) is Hurwitz result of factorization:

JaGḠT T̄ − c20NN̄ ≡ RsR̄s. (65)

Proof. In accordance with Definition 1, and on the basis

of (61), for H∞-irregular case there exist such functions

Φ ∈ ΩΦ
∞ that

I∞(Φ) = sup
ω∈[0,∞)

|Fν(jω,Φ)S1(jω)|2 = Ja.

Taking into account (44), we obtain

sup
ω∈[0,∞)

{|P1S1|2
[
(T1 − T2Φ)(T̄1 − T̄2Φ̄) + T3

]}
= Ja

that is equivalent to the following relationships:

|P1S1|2
[
(T1 − T2Φ)(T̄1 − T̄2Φ̄) + T3

] ≤ Ja, ∀ω ∈ [0,∞) or

|P1S1(T1 − T2Φ)|2 ≤ Ja − T3|P1S1|2, ∀ω ∈ [0,∞). (66)

Accordingly, we have

Ja − T3|P1S1|2 ≥ 0, ∀ω ∈ [0,∞).

Therefore, there exists a rational fraction Ls(s) with Hur-

witz numerator and denominator such that the following

identity holds:

Ls(s)Ls(−s) ≡ Ja − T3P1(s)P1(−s)S1(s)S1(−s) ≡
JaGḠT T̄ − c20NN̄

GḠT T̄
≡ RsR̄s

GḠT T̄

i.e., Ls(s) ≡ Rs(s)

G(s)T (s)

in accordance with (65). As a result, we have the identity

Ja − T3|P1S1|2 ≡ | Rs
GT

|2, which transforms (66) to the form

|P1S1(T1 − T1Φ)|2 ≤ | Rs
GT

|2, ∀ω ∈ [0,∞). This is the same

as the following relationship:

‖(T1 − T1Φ)Z1‖2
∞ ≤ 1, where Z1(s) ≡ G(s)N(s)

Rs(s)
. (67)

Denoting D(s) ≡ [T1(s) − T2(s)Φ(s)]Z1(s), and using

(45), we have

D ≡ (c20αĀ− βB̄ −GḠΦ)N

(QRs)
(68)

and, taking into account (46) and (36), D(gi) = di, where

complex numbers di are determined by the formulae (64).

Hence, on the basis of (67) we can state that existence of the

function Φ ∈ ΩΦ
∞ with the feature I∞(Φ) = Ja is equivalent

to existence of solutions to the Nevanlinna-Pick approxima-

tion problem

‖D(s)‖2
∞ ≤ 1, D(gi) = di, i = 1, n. (69)

Because of Re (g)i > 0, the problem (69) is solvable if and

only if the Pick Hermitian matrix Π (64) is nonnegative[11]

that fully proves the theorem. �

Now let us suppose that the condition (63) is satisfied,

i.e., we deal with H∞-irregular situation. At the same

time, as it is specified in [11], we can find a solution of

the Nevanlinna-Pick problem (69), which has the following

representation:

D = Ds(s) ≡ ms1(s)

ms2(s)
(70)

where ms2(s) is Hurwitz polynomial.

Theorem 5. There exists a solution of optimization

problem (18b) for H∞-irregular situation, which is deter-

mined by the optimal transfer function

Ws(s) =

A(s)ms1(s)Rs(s) +B(−s)ms2(s)

G(−s)
B(s)ms1(s)Rs(s) − c20A(−s)ms2(s)

G(−s)
(71)

where a division by the polynomial G(−s) is made totally.

Proof. First, let us show that the fraction Ds (70)

uniquely determines the function-parameter Φ = Φ(s) ∈
ΩΦ

∞, which is a solution of the auxiliary optimization prob-

lem (61). To this end, we address the identity (68), and

obtain

Φs = −DsQ(s)Rs − c20αĀ+ βB̄

GḠ
. (72)

One can easily prove that this function belongs to the set

ΩΦ
∞. Actually, in accordance with the equalities D(gi) =

di, i = 1, n, taking into account (64), we have Φs(gi) = 0.

This means that the numerator of (72) can be divided by

G(−s) totally, i.e., the denominator of Φs contains only

Hurwitz polynomials G(s) and ms2(s). Moreover, the value

I∞(Φs) = Ja is finite, hence Φs ∈ ΩΦ
∞.

Next, using the connections (35), after substitution of

(72) with taking into account (36) we directly obtain

Ws =
AΦs − α

BΦs + β
=

−Q(Ams1Rs + B̄ms2)

Ḡ
−Q(Bms1Rs − c20Āms2)

Ḡ

(73)

i.e., we arrive at (71). As before, one can easily check that

total division by the polynomial G(−s) has a place here.�
Note that in accordance with the “all-pass” feature[11] of

the solutions to the Nevanlinna-Pick approximation prob-

lem (69), the following identity holds:

|Ds(jω)| ≡
∣∣∣ms1(jω)

ms2(jω)

∣∣∣ ≡ μ = const. (74)

In addition, if the Pick matrix Π = {lij} (64) is such

that qm = 0, then μ = 1, and the solution (71) of the

problem (18b) for H∞-irregular case is unique. On the con-

trary, if we have qm > 0, then μ < 1, and the solution is

nonunique: there exist a lot of controllers, providing the

equality I∞ν(W ) = Ja.

Taking into account aforementioned reasons, let us con-

sider the generalized transfer function Fν of the optimal
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closed-loop system. In conformity with (15), (12), (71),

(74) and (75) we have

|Fν(jω)|2 =
|ms1(jω)Rs(jω)|2 + c20|ms2(jω)|2

|ms2(jω)G(jω)|2 ⇔

|FsG|2 =

∣∣∣∣ms1

ms2
Rs

∣∣∣∣
2

+ c20 = μ2Ja|GT |2 − μ2c20|N |2 + c20

i.e., |Fν(jω)|2 =
μ2Ja|T |2 + c0

(
1 − μ2|N(jω)|2)

|G(jω)|2 . (75)

On the basis of (75), for particular case when N ≡ T ≡ 1,

we can make the following conclusions:

a) If qm = 0, i.e., μ = 1, we have |Fν(jω)|2 ≡ Ja; in

other words, as well as the solution of the Nevanlinna-Pick

problem, a generalized function of the optimal closed-loop

system is “all-pass”.

b) If qm > 0, i.e., μ < 1, then a generalized function is

not “all-pass”: this one has a maximum Ja, which coincides

with the maximum of T3(ω), which is reached on the same

frequency ω0.

Note that the solution of the problem (18b) for H∞-

regular situation is unique: this is proven in [15, 18]. As for

the H∞-irregular case, we have substantially other state-

ment.

Theorem 6. In addition to (71), the optimization prob-

lem (18b) has many solutions, and every transfer function

W = Wsu of the optimal controller (2) satisfies the follow-

ing equality:

Wsu(jω0) = − B(−jω0)

c20A(−jω0)
(76)

where the frequency ω0 is determined by (62).

Proof. Non-uniqueness of the solution for the problem

(18b), first of all, follows from non-uniqueness of the prob-

lem (69) solution as qm > 0 that is mentioned in [11].

Next, let us have any transfer function Wsu(s), different

from the fraction Ws(s) (71), of the controller (2), which is

optimal with respect to (18b). In accordance with (35), we

can find corresponding function-parameter

Φsu(s) = L−1
Φ (Wsu) =

α+ βWsu

A−BWsu
. (77)

As far as I∞(Φsu) = Ja, on the basis of (66) the following

relationship holds:

|P1S1(T1 − T2Φsu)|2 ≤ Ja − T3|P1S1|2
∀ω ∈ [0,∞). (78)

Additionally, in accordance with (45) and (62), we have

Ja = T3(jω0)|P1(jω0)S1(jω0)|2

and, taking into account (78), this leads to the equality

(T1 − T2Φsu)|s=jω0 = 0

or Φsu(jω0) =
T1(jω0)

T2(jω0)
.

Using formulae (45), we obtain

Φsu(jω0) =

[
(c20αĀ− βB̄)

(GḠ)

]
s=jω0

and, after substitution of Φsu to the second formula in (35)

subject to (36), we arrive at the expression (76). �
Corollary 2. Let some stabilizing controller (2) has a

transfer function Wsu(s), satisfying the equality (76) for

H∞-irregular case with qm > 0. If this function provides

the equality

sup
ω∈[0,∞)

|Fν(jω,Wsu)S1(jω)|2 = Ja (79)

then the mentioned controller, side by side with (71), is the

solution of the problem (18b).

Proof of this statement is obvious.

To summarize results of the investigation for H∞-

irregular case, let us compose a computational algorithm

for the solution of problem (18b).

Algorithm 2. To search out the transfer function (71) of

the optimal controller (2), we need to execute the following

steps:

1) Implement factorizations (59) and compose Hurwitz

polynomials G(s), T (s) ≡ T1(s), N(s) ≡ N1(s)P1(s), de-

noting by gi, i = 1, n the roots of the polynomial G(−s)
(for simplicity, we suppose that all of them are distinct).

2) Using formulae (62), determine the values

Ja = max
ω∈[0,∞)

T3(ω), T3(ω) =
c20|S1P1|2

|G|2
ω0 = arg max

ω∈[0,∞)
T3(ω).

3) Check that whether the H∞-irregular situation has

occurred: to this end, compose the Pick matrix Π (64) and

find its minimal eigenvalue qm. If qm ≥ 0, then we have

irregularity, otherwise the regular methods, presented in

[15, 18] should be implemented.

4) Implement factorization (65), composing Hurwitz

polynomial Rs(s).

5) Find a solution D = Ds(s) ≡ ms1(s)
ms2(s)

of the

Nevanlinna-Pick approximation problem (69), using any

numerical method presented in [11]. Recall that the poly-

nomial ms2(s) here is Hurwitz.

6) Represent transfer function (71) of the optimal con-

troller (71), where a division by the polynomial G(−s) is

made totally.

To illustrate practical implementation of the presented

algorithm, let us consider the following numerical example.

Example 2. Let us consider the controlled plant (10) of

2nd order, with the following matrices:

AAA =

(
−1 6.33

4 0

)
, bbb =

(
0.5

0

)

ppp =

(
0.5

0

)
, ccc =

(
0 0.5

)
. (80)
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As for the weight multipliers, let us accept that c0 =

0.05, N1(s) ≡ T1(s) ≡ 1.

For the matrices (80) we haveA(s) = s2+s+25.3, B(s) ≡
P (s) ≡ P1(s) ≡ 1, i.e., N(s) ≡ 1, T (s) ≡ 1. Besides, after

implementing (59) we obtain G(s) = 0.05s2 + 0.193s+ 1.61

with the roots g1,2 = 1.93± 5.34j of the polynomial G(−s).
In accordance with the Step 2, obtain Ja =

0.002 35, ω0 = 4.98: to illustrate this step, Fig. 3 represents

the graph of the function
√
T3(ω).

Fig. 3 Graph of the function M(ω) =
√

T3(ω)

To check the presence of the H∞-irregular situation, con-

struct the Pick matrix

Π =

(
0.107 3.58 × 10−3 + 0.038 2j

3.58 × 10−3 + 0.038 2j 0.107

)

having the following eigenvalues: q1 = 0.068 1, q2 = 0.145.

Since the minimum value among them is qm = q1 > 0, we

have H∞-irregular case.

The next step of the Algorithm 2 gives us the polynomial

Rs(s) = 2.34 × 10−3s2 + 0.060 0.

Finding a solution of the Nevanlinna-Pick problem with

initial data g1,2 = 1.93 ± 5.34j, d1,2 = 0.764 ± 0.071 6j,

obtain Ds(s) ≡ ms1(s)
ms2(s)

, ms2(s) = 3.06s + 0.862, ms1(s) =

0.794ms2(−s), i.e., μ = 0.794.

Finally, construct the transfer function of the optimal

controller:

Ws(s) =
−0.118s3 − 0.539s2 − 4.14s + 0.109

0.035 2s+ 0.059 3
. (81)

Correspondent frequency response of the closed-loop con-

nection is presented by the graph of its magnitude part

|Fν(jω,Ws)|2 in Fig. 4 (solid line).

Fig. 4 Graph of the functions |Fν(jω)|2

Similar to Example 1, the result of synthesis here can-

not be obtained by widely used state-of-the-art methods

realized in Matlab. Moreover, note that the transfer func-

tion (81) has an obvious disadvantage: this one is not a

proper rational fraction that generates a series of negative

outcomes. Nevertheless, this result, which is obtained with

the help of the simple Algorithm 2, can be used to con-

struct other optimal controller for the problem (18b), using

non-uniqueness of its solution.

Let us try to design the simplest version as PD-controller

with a transfer function of the form

Wsu(s) = k2s+ k1 (82)

selecting coefficients k1, k2 by such a way that guaran-

tees stability and fulfillment of the conditions (77) and

(79). It is a matter of simple calculations to check that

for the coefficients k1 = −7.99 and k2 = −79.6 the closed-

loop connection is asymptotically stable. Besides, we have

Wsu(jω0) = −7.99 − 79.6j = − B(−jω0)

c20A(−jω0)
, and, addition-

ally, the equality (79) holds that is also illustrated in Fig. 3,

where the graph of the function |Fν(jω,Wsu)|2 is presented

by the dash-dot line.

As a result, we have obtained the controller (2) with

transfer function (82), which provides the same value of

the functional I∞ as (81). Nevertheless, the function (82)

is, apparently, preferable in comparison with (81) at least

due to its simplicity.

3.3 H∞H∞H∞-optimal solutions with MP struc-
ture

Let us assume that we have the H∞-irregular situation

with no unique solution of the problems (18b), (61). As

it was shown on the base of the Example 2, this non-

uniqueness allows obtaining certain benefit in the sense

of structural and dynamical features of the optimal con-

trollers. Here we shall consider specialized control laws

with specific multipurpose structure (MP). These laws with
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different variants are presented in detail in [19–21], where

correspondent controllers are implemented for guidance and

control of marine vessels.

To present MP structure, let us consider LTI model (10)

of the controlled plant, adding the equation of actuator

u̇ = νu (83)

where additional variable νu ∈ R1 is treated as a new con-

trol signal, and u denotes rudder′s deflection.

The multipurpose structure of control laws is presented

by the following system:

żzz = AAAz + bu+ ggg(y − czczcz)

ξ = F (p)(y − czczcz), p =
d

dt

νu = μμμżzz + νy + ξ. (84)

One can easily see that the introduced structure consists

of three elements: the first equation presents an asymptotic

observer, the second one describes so called “dynamical cor-

rector” and the third equation composes a control signal for

rudder′s actuator[20]. Here zzz ∈ Rn is the state space vector

of asymptotic observer, ggg is the given column matrix such

that the matrix AAA − gcgcgc is Hurwitz. It is not a matter of

arduous calculations to observe that the equations (84) can

be transformed to the equivalent form

żzz = AAAz + bbbu+ ggg(y − cccz)

ξ = F (p)(y − cccz), p =
d

dt

νu = k̃kkzzz + k0u+ ν̃y + ξ (85)

where k̃kk = μμμ(AAA− gc), k0 = μμμbbb and ν̃ = μμμggg + ν. Let us

suppose that coefficients μμμ and ν in (84) are selected so

that the controller νu = kkkx + k0u stabilizes the plant (10)

with actuator (83), where kkk = k̃kk+ ν̃ccc = μμμA+νccc. Therefore,

we provide asymptotic stability of the state-driving closed-

loop system, i.e., all the eigenvalues of the matrix

AAAc =

(
AAA bbb

kkk k0

)

are located in the open left half plane.

The second term in the MP structure plays a crucial role

in the next discussion. The dynamical corrector with the

transfer function F (s) is aimed to provide desirable fea-

tures of the controllers (83) and (84) in the range of H-

optimization problems. To ensure stability of the closed-

loop connection, this function must have Hurwitz denomi-

nator.

As it is shown in [19, 20], a general design procedure for

the MP-controller tuning includes consequent numerical so-

lutions of the three following synthesis problems.

The first of them provides a choice of the parameters kkk

and k0 that uniquely determines the parameters μμμ and ν

in (84). This step allows to optimize eigen motion of the

closed-loop connection with no disturbances action.

The second one is directed to the search of the vector

ggg for the asymptotic observer. It is appropriate to note

that the controllers (84) and (85) provide an integral action

with respect to input d and output y for the closed-loop

system, if additional requirement F (0) = 0 holds. Taking

into account this action, the choice of the vector ggg is ori-

ented to the optimization of the motion under actions of

bias disturbances d(t) with low frequencies.

At last, the third synthesis problem is devoted to the

search of the transfer function F (s) of the corrector to pro-

vide desirable dynamics of the closed-loop system under ac-

tions of disturbances d(t) with relatively high frequencies.

If all these problems are successfully solved, we fully de-

termine the feedback (84): together with (83), this one

represents a particular case of the controller (2) with the

following transfer function:

W = Wmp(s) =
W 1
mp(s)

W 2
mp(s)

(86)

W 1
mp(s) =

∣∣∣∣∣ EEEs−AAA+ gggc −bbb
μμμ(((A− gc) − F (s)ccc −(s− μμμbbb)

∣∣∣∣∣
W 2
mp(s) =

∣∣∣∣∣ EEEs−AAA+ gggc ggg

μμμ(((A− gc) − F (s)ccc μμμggg + ν + F (s))

∣∣∣∣∣ .
Let us suppose that the parameters μμμ, ν and ggg in (84)

are initially determined by any way.

To implement the controllers (83) and (84) as a solution

of aforementioned H∞-irregular problem, let us address the

conditions (76) and (79), and formalize the aim of corrector

synthesis as a choice of the function F (s), which satisfies

these two conditions. The possibility to achieve this aim is

determined by the next statement.

Theorem 7. If the following conditions hold

T21(jω0) = 0

T12(jω0) + [r − T11(jω0)]T
−1
21 (jω0)T22(jω0) = 0

then there exists a transfer function F (s) with Hurwitz de-

nominator, additionally satisfying the equality F (0) = 0,

such that

Wmp(jω0, F ) = r =
−B(−jω0)

(c20A(−jω0))
. (87)

Here the transfer functions T11, T12, T21 and T22 are the

blocks of the transfer matrix

TTT (s) =

(
000 1

−ccc 000

)(
EEEn+1s−

(
AAA− gc bbb

k̃kk k0

))−1

·
(
ggg 000

ν̃ 1

)
+

(
0 0

1 0

)
≡
(

T11(s) T12(s)

T21(s) T22(s)

)
.

Proof of this statement is presented in detail in [21].

It is a matter of simple calculations to show that the

simplest variant of F (s), which can be used to provide (87),

is as follows: F (s) = (ψ1s
2+ψ2s)

(s2+ϕ1s+ϕ2)
, where ϕ1 > 0, ϕ2 > 0. If
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these values are given, parameters ψ1 and ψ2 are determined

uniquely from the equality (87).

Nevertheless, for a controller (83), and (84) to be a so-

lution of the problem (18b), it is additionally required to

satisfy the condition (79). This requirement can be satisfied

by the appropriate choice of the parameters ϕ1 and ϕ2.

Example 3. To illustrate the proposed approach, let us

consider an example of the course-keeping autopilot synthe-

sis for the transport ship with a displacement of approxi-

mately 6 000 t.

Assume that model (10) is given for the ship motion with

a constant speed V = 8m/s under a sea wave with intensity

5 Beaufort number. Let us present the matrices of this

model as follows:

AAA =

⎛
⎜⎝

−0.045 4 0.560 0

0.026 7 −0.408 0

0 1 0

⎞
⎟⎠ , bbb =

⎛
⎜⎝

−0.013 2

−0.007 42

0

⎞
⎟⎠

ppp =

⎛
⎜⎝

−1.82

−0.128

0

⎞
⎟⎠ , ccc =

(
0 0 1

)
.

The spectrum (20) is determined by the polynomials

T1(s) = 20s4 + 17.3s3 + 11.9s2 + 3.87s+ 1.08, and N1(s) =

0.216s3. Let us accept the value c0 = 0.03 in factorization

(59) and check that the irregular situation occurs. Using

the Algorithm 2 for direct implementation of the spectral

approach, we obtain the controller (2) with a transfer func-

tion Wsu, giving I∞ν(Wsu) = Ja = 2.95 × 10−4. However,

disadvantages of the obtained transfer function compel us

to apply the controller (84) with MP-structure.

Solving correspondent problems in the range of general

design procedure, we obtain the following parameters for

the system (84):

μμμ =
(

3.30 39.8 20.5
)
, ν = 1.22

ggg =
(

0.033 6 0.004 46 0.094 4
)T

.

Then, on the base of Theorem 7, we achieve the same

optimum value Ja with the help of a corrector, having the

following transfer function:

F (s) =
(16.5s2 − 16.0s)

(s2 + 1.40s + 0.490)
. (88)

Fig. 5 represents corresponding frequency responses of

the closed-loop connection by the graphs of its magnitude

parts: |Fν(jω,Wsu)|2 (solid line) and |Fν(jω,Wmp)|2 (dash-

dot line).

Note the following significant advantages of the designed

controllers (83) and(84):

1) This controller is one of the solutions for the optimiza-

tion problem (18b).

2) This controller provides integral action of the closed-

loop connection with respect to the input d and output y.

3) Structure of the model (84) is essentially more conve-

nient for practical implementation then the structure of the

standard controller with transfer function (71).

4) The correspondent closed-loop system possesses addi-

tional desirable dynamical properties with respect to the

low frequency bias disturbances and reference control sig-

nals.

5) The mentioned advantages favorable differ proposed

approach from widely used state-of-the-art methods, which

give the same value of the minimizing functional in (61).

Fig. 5 Functions |Fν(jω, Wsu)|2 and |Fν(jω, Wmp)|2

4 Synthesis for principal situation

Note that special spectral approach can be applied not

only to the degenerate problems, but also to the principal

regular situation. Such an application has the same aim: to

simplify both the analytical representation of the optimal

transfer function and the process of its numerical synthesis.

4.1 H2H2H2-optimization regular problem

In accordance with (30) and (32), the matter of H2-

optimal synthesis for this case is to find a solution of the

control optimization problem

J2(W ) = ‖Hw(s,W )‖2
2 = ‖HHH(s,W )‖2

2 → min
W∈Ω2

(89)

for the plant (26) with transfer functions (28) and (29).

Without replicating the detailed reasoning presented in

[16], which is based on parameterization (35) and is similar

to derivation of the Section 3.1, let us specify a computa-

tional algorithm for the problem (89)′s solution.

Algorithm 3. To obtain transfer function of the optimal

controller, it is necessary to execute the following steps of

numerical calculations:

1) Implement the following two factorizations

c20A(s)A(−s) +B(s)B(−s) ≡ G(s)G(−s)
Sψ(s)A(s)A(−s) + Sψ(s)P (s)P (−s) ≡ D(s)D(−s) (90)

and compose Hurwitz polynomial G(s) and fraction D(s) ≡
N(s)
T (s)

with Hurwitz polynomials T (s) and N(s).
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2) Construct the auxiliary polynomials

R(s) =
n∑
i=1

G(−s)
gi − s

B(−gi)N(gi)

A(gi)T (gi)G′(−gi)

where gi, i = 1, n are the distinct roots of G(−s)

P1(s) =

q∑
i=1

Tψ(s)

s− θi

A(−θi)B(−θi)Sψ1(−gi)
G(−θi)D(−θi)T ′

ψ(θi)

where θi, i = 1, q are the distinct roots of Tψ(s).

3) Shape a transfer function of the optimal controller

W20 =

Tψ(ATR+ B̄N)

Ḡ−AP1T

Tψ(BTR− c20ĀN)

Ḡ−BP1T

where a division by the polynomial G(−s) is made totally.

Let us illustrate applicability of the presented algorithm

for well known and widely used particular case of the

problem (89) under assumption that the spectral power

densities of the disturbances d(t) and ψ(t) are constants:

Sd(ω) ≡ 1, Sψ(ω) ≡ γ2.

One can easily see that this is traditional LQG-problem

with the scalar control and disturbances. For its solution,

the “2-Riccati” approach is usually applied, based on the

separation principle. In accordance with this approach, to

find the optimal controller (2) it is necessary to execute

three operations of the following algorithm.

Algorithm 4.

1) Find solutions of two Riccati equations with respect

to the matrices SSS and PPP correspondingly:

− SbbSbbSbb′SSS
c20

+AAA′SSS + SASASA+ ccc′ccc = 0

− Pc′cPPc′cPPc′cP
γ2

+APAPAP +PAPAPA′ + ppp′ppp = 0.

2) Compute two auxiliary matrices

mmm = −bbb
′SSS
c20
, lll =

PcPcPc′

γ2
.

3) Represent the optimal controller by the equations

żzz = (AAA+ bmbmbm− lclclc)zzz + llly

u =mzmzmz

that can be uniquely transformed to the form (2) with the

transfer function

W20(s) =mmm(Es−AAA− bmbmbm+ lclclc)−1lll.

Together with the mentioned classical scheme of the

LQG-problem solution, let us also consider the spectral

variant based on Algorithm 3 as its particular case.

Algorithm 5.

1) Execute factorizations of the following polynomials:

c20A(s)A(−s) +B(s)B(−s) ≡ G(s)G(−s)
γ2A(s)A(−s) + P (s)P (−s) ≡ N(s)N(−s)

determining Hurwitz polynomials G(s) and N(s).

2) Construct the auxiliary polynomial

R(s) =

n∑
i=1

G(−s)
gi − s

B(−gi)N(gi)

A(gi)G′(−gi) .

3) Represent the transfer function of the optimal con-

troller

W20 =

A(s)R(s) +B(−s)N(s)

G(−s)
B(s)R(s)− c20A(−s)N(s)

G(−s)
where a division by the polynomial G(−s) is made totally.

To illustrate applicability and effectiveness of the pro-

posed approach, let us consider the following numerical ex-

ample, using Algorithm 5.

Example 4. Assume that a model of the controlled plant

is presented by (26) with the following matrices:

AAA =

⎛
⎜⎝

−1 0 −1

2 −3 0

−1 −2 −4

⎞
⎟⎠ , bbb =

⎛
⎜⎝

0

1

0

⎞
⎟⎠

ppp =

⎛
⎜⎝

−2

1

1

⎞
⎟⎠ , ccc =

(
0 0 1

)
.

For the given values c0 = 1, γ = 1 of the parameters, we

obtain as a result of factorizations:

G(−s) = −s3 + 8.036s2 − 18.29s + 5.385

N(s) = s3 + 8.590s2 + 22.40s + 15.81

where the first polynomial has roots g1,2 = 3.846 ±
0.922 5j, g3 = 0.344 3.

Then, we construct an auxiliary polynomial

R(s) = 0.145 5s2 − 3.198s + 3.729

and represent the optimal transfer function

W20 =
0.145 5s2 + 1.135s + 2.410

s3 + 8.627s2 + 22.71s + 16.07
.

Naturally, the same transfer function can be also ob-

tained with the help of Algorithm 4.

Thus, both algorithms lead to the same controller, if we

use the same initial data for the LQG-problem. Neverthe-

less, for the spectral variant 5 computational time is essen-

tially less than for the classical Algorithm 4, which is based

on the state-of-the-art approach. This can be explained by

its comparatively more complex computational scheme.

Indeed, using “2-Riccati” based Algorithm 4, we need to

solve two algebraic Riccati equations. In turn, here can be

used Schur transformation, then we need to use the reorder-

ing of the Schur form eigenvalues.

As for the proposed spectral approach, it is based on a

polynomial representation of initial and temporary data.

Algorithm 5 of optimization does not require using any ini-

tial stabilizing controller. Instead of the Riccati equation
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solutions, polynomial factorizations are used that substan-

tially simplify the optimal synthesis.

From this point of view, the proposed approach can be

useful for practical situations where the computational con-

sumptions play crucial role. In the first place, this relates to

the system with adaptive tuning, particularly for embedded

systems or for onboard control systems of autonomous mov-

ing robots with essentially limited computational resources.

4.2 H∞H∞H∞-regular optimal synthesis

At last, let us address to the problem (31) for the prin-

cipal situation with the controlled plant (26). As distinct

from the H∞-irregular case, here we have different reason

to involve the spectral representation to computational pro-

cess of optimal synthesis.

Indeed, as follows from the relation (34), the solution of

the mentioned problem (31) can be used for the estima-

tion of the solution for standard H∞-optimization problem

(33). This statement, which is proven in [18], defines the

crucial role of the problem (31) as an auxiliary instrument

to support the solution of the problem (33). This can be

explained by the following way.

Numerical solution of the problem (33) with all com-

monly used methods (“2-Riccati” or “LMI”) uses a stan-

dard iteration technique to determine the optimal value

of the functional J∞h. Starting with high and low esti-

mates of the optimum, a bisection algorithm allows us to

find it as a minimum value Jm, for which the relationship

J∞h(W ) ≤ Jm can be satisfied by any W ∈ Ω∞. It is

evident that the overall running time of calculations essen-

tially depends on the choice of the mentioned estimates: the

less is the relative difference between them, the less running

time is.

A particular purpose of the problem (31) involvement

consists of determining the upper J∞u and lower J∞w es-

timates for the minimal value J∞0 = J∞h(W∞0) of the

functional J∞h for considered partial situation. These esti-

mates should reduce the number of iterations in a bisection

algorithm for the solution of a standard H∞-optimization

problem (33), using aforementioned techniques.

Indeed, in accordance with (34), the minimum value of

the functional J∞(W ) is an upper bound for similar value

of the functional J∞h(W ). Besides, it is a matter of simple

calculation to prove that the mentioned value Ja can be

accepted as the lower estimate for the mentioned value.

Taking into account all presented reasons let us consider

the following computational scheme, which is validated in

detail in [18].

Algorithm 6. To obtain the upper and lower estimates

for the minimal value J∞0 = J∞h(W∞0) of the functional

J∞h, it is necessary to execute the following steps of numer-

ical calculations in the range of the solution to the problem

(31):

1) Implement the factorizations (90) and compose Hur-

witz polynomial G(s) and fraction D(s) ≡ N(s)
T (s)

with Hur-

witz polynomials T (s) and N(s).

2) Construct the function

T3 =
NdN̄dPP̄ (k2NN̄ +NψN̄ψBB̄TdT̄d)

GḠNN̄TdT̄d

and find its maximum value

Ja = max
ω∈[0,∞)

T3(ω).

3) Prepare initial data for the numerical algorithm of

Nehari problem′s solution, using the auxiliary polynomials

T ′
1 = T1N̄

N
, T ′

2 = T2N̄
N

. These data consist of all the zeros

of the function T ′
2 which are gi, i = 1, n and νi, i = 1, p.

Besides, these data also include the following values:

d∗i = T ′
1(gi) = − B̄NdN̄dPP̄ T̄ψ

GATdN

∣∣∣∣
s=gi

, i = 1, n

c∗i = T ′
1(νi) =

NψN̄ψĀB̄T̄d
TψNG

∣∣∣∣
s=νi

, i = 1, p.

4) Solve Nehari problem

ε∗ = min
Φ∈ΩΦ

‖T ′
1 − T ′

2Φ‖2
∞

with the help of algorithm, based on two Lyapunov equa-

tions, presented in [11], using the mentioned initial data.

Determine the upper estimate ρ2
m = Ja + ε∗ for the mini-

mal value ρ2
0 of the functional J∞(W ).

5) Consider the segment ρ2 ∈ [Ja, ρ
2
m] and using bisec-

tional algorithm determine the minimal value ρ2 = ρ2
0 guar-

antying non-negative definiteness of the matrix Lh(ρ
2) =

{lij(ρ2)}, where

lij =
(1 − ζiζ̄j)

(ξi + ξ̄j)

ξi =

{
gi, if i ≤ n

νi−n, if n < i ≤ n+ p

ζi =

{
di, if i ≤ n

ci−n, if n < i ≤ n+ p

di = − B̄SdPP̄T T̄

ARρTψ

∣∣∣∣
s=gi

, i = 1, n

ci =
NψN̄ψĀB̄TdT̄d

RρTψ

∣∣∣∣
s=νi

, i = 1, p.

Here the polynomial Rρ(s) is a Hurwitz result of the fac-

torization

RρR̄ρ ≡ ρ2GḠNN̄TdT̄d−
NdN̄dPP̄ (k2NN̄ +NψN̄ψBB̄TdT̄d).

Taking into account the obtained value ρ2 = ρ2
0, refine

the lower estimate ρ2
0 > J̄a > Ja.

6) Accept the values J̄a and Jm0 = ρ2
0 as the lower and

upper estimates respectyvely for the minimum value J∞0 of

the functional J∞h(W ). Then, use any standard algorithm

to solve the problem (33) with accepted estimates.
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To illustrate the implementation of the last algorithm,

let us consider the following example.

Example 5. Address a model (26) of the controlled

plant, which is represented by the following matrices:

AAA =

⎛
⎜⎝

0 0 0.200

0.250 0 0.290

0 0.500 −1.15

⎞
⎟⎠ , bbb =

⎛
⎜⎝

−2.00

0

0.250

⎞
⎟⎠

ppp =

⎛
⎜⎝

2

0

0

⎞
⎟⎠ , ccc =

(
0 0 4

)
.

Let us also accept that c0 = 1 and Sd ≡ Sψ ≡ 1.

Here we have the following initial polynomials:

A(s) = s3 + 1.15s2 − 0.145s − 0.025 0, B(s) = s2 − 1

P (s) = 1, Td(s) = Tψ(s) = 1, Nd(s) = Nψ(s) = 1.

In accordance with Step 1, consequently obtain:

G(−s) = −s3 + 2.86s2 − 2.79s + 1

N(−s) = −s3 + 2.47s2 − 2.24s + 1.

These polynomials have the following roots

g1,2 = 0.770 ± 0.403j, g3 = 1.32

ν1,2 = 0.552 ± 0.655j, ν3 = 1.36

correspondingly.

Then we determine a lower estimate for the value ρ2
0:

Ja = max
ω∈[0,∞)

T3(ω) = 2.00.

Solving Nehari problem, obtain ε∗ = 24.78, and corre-

spondingly, the value ρ2
m = Ja + ε∗ = 26.78 of the upper

bound for the value ρ2
0.

At last, executing the Step 5 of Algorithm 6, we arrive at

the upper estimate Jm0 = ρ2
0 = 25.78 of the value ρ2

0. As a

result of the lower estimate defining, obtain J̄a = 0.95ρ2
0 =

24.49.

Using standard Matlab function hinfsyn[13], which is

based on the state-of-the-art approach, for the solution of

the problem (33), obtain the optimal transfer function

Wh∞(s) =
2 380s2 + 3 630s + 846

s3 + 472s2 + 416s + 3650

providing minimal value J∞0 = 25.716 of the functional

J∞h(W ). Note that the average running time of synthesis

for the default initial segment J∞0 ∈ [0, 88.9] is equal to

0.08 s . By using the estimates J̄a and Jm0 = ρ2
0 obtained

above, we can shrink initial segment, to J∞0 ∈ [0.95ρ2
0, ρ

2
0],

that reduces the running time more than twice.

5 Conclusions

The paper is presented to propose and to discuss par-

tial cases of H2-optimization and H∞-optimization prob-

lems for LTI controlled plants. These problems are consid-

ered in the framework of special spectral approach, which

is based on a polynomial representation of initial and tem-

porary data and on the special parameterization method

for stabilizing controllers set. Note that the final result of

optimization does not require using any initial stabilizing

controller. Instead of the Riccati equation (or linear matrix

inequalities) solutions, here polynomial factorizations are

used, that substantially simplify algorithms of the optimal

synthesis.

In the range of H-problems, spectral approach allows to

present a solution in a special polynomial form of the op-

timal controller transfer function. Such representation is

convenient both for various investigations and for practical

calculations. Moreover, as the degenerate essence of some

problems under consideration does not permit direct us-

age of the standard methods of synthesis, specific spectral

approach has an obvious advantage in practical implemen-

tation.

As for the regular cases, proposed approach essentially

reduces computational time of synthesis. In particular, the

solution of LQG-optimization problem can be presented in

the same manner as for general case of H2-optimization.

Naturally, this solution is equivalent to the result of well-

known “2-Riccati” approach implementation. Nevertheless,

the time length of calculations is significantly smaller for

the spectral approach. This is very important benefit with

respect to adaptive turning systems, particularly for embed-

ded systems or for onboard control systems of autonomous

moving robots with essentially limited computational re-

sources.

The proposed spectral approach is also implemented to

the H∞-problem statement, which differs from the com-

monly used standard variant. The mentioned difference al-

lows using the alternative problem and the algorithm of

its solving as an auxiliary instrument with respect to the

standard situation.

First, this instrument gives the initial estimates for the

minimum of standard H∞-norm that can essentially reduce

the running time of synthesis.

Second, the spectral approach is quite suitable to solve

the irregular problems with no measurement noise. This

situation is directly unsolvable by “2-Riccati” method, how-

ever the spectral approach allows us to overcome this dif-

ficulty which additionally reduces the running time of syn-

thesis.

Third, the spectral representation is convenient for vari-

ous investigations of the system features.

Especially note that the explored non-uniqueness of the

optimal solution for the H∞-irregular case allows synthesiz-

ing the optimal controllers with PM-structure. This essen-

tially expanded the feasibility of the closed-loop connection

with respect to different dynamical conditions of function-

ing.

The results of executed investigations presented above

can be expanded to take into account robust features of

the optimal controller, and to take into account transport
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delays both in input and output of a controlled plant.
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