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Abstract: This paper describes the development and modeling of a remotely operated scaled multi-wheeled combat vehicle (ROMW-
CV) using system identification methodology for heading angle tracking. The vehicle was developed at the vehicle dynamics and crash
research (VDCR) Lab at the University of Ontario Institute of Technology (UOIT) to analyze the characteristics of the full-size model.
For such vehicles, the development of controllers is considered the most crucial issue. In this paper, the ROMWCYV is developed first. An
experimental test was carried out to record and analyze the vehicle input/output signals in open loop system, which is considered a
multi-input-single-output (MISO) system. Subsequently, a fuzzy logic controller (FLC) was developed for heading angle tracking. The
experiments showed that it was feasible to represent the dynamic characteristics of the vehicle using the system identification technique.
The estimation and validation results demonstrated that the obtained identified model was able to explain 88.44% of the output vari-
ation. In addition, the developed FLC showed a good heading angle tracking.
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1 Introduction

The past decade has witnessed an unprecedented de-
velopment in the field of unmanned ground vehicles
(UGVs) including wide applications for both civilian and
military fields. Generally, an UGV is a self-driving vehicle
that has the capability to observe and understand the
surrounding environment. UGVs are used to replace hu-
mans in hazardous situations. Consequently, unmanned
combat vehicles have been receiving great attention in re-
cent research due to their important applications in the
military. Building such vehicles has drawn dramatic at-
tention which is one of the motivating topics in both ro-
botics and automotive engineering researchl!: 2,

The expected outcomes from applying autonomy to
such vehicles are set to increase the combat capability
and maintain soldier safety in different battlefield scenari-
os. Obtaining an accurate mathematical model of the
vehicle to be controlled is considered the main challenge.
For this purpose, system identification techniques are in-
troduced in order to solve such problems.

System identification methodology was introduced to
study the performance of a developed dynamic system
and estimate its mathematical model by observing input/
output signalsl3l. These signals consist of a mathematical
expression that precisely defines the input and output re-
lationship. System identification has a long history in

Manuscript received May 8, 2018; accepted October 8, 2018;
published online February 28, 2019
Recommended by Associate Editor Ding-Li Yu

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag Gmbh Germany, part of Springer Nature 2019

solving significant problems in the field of autonomous
systems and robotics. For example, system identification
has been used in the following kinematic problems: mod-
eling and calibration of robotic manipulators49, para-
meter identification and nonlinear modeling[10-13], adapt-
ive control and neural network-based system identifica-
tion[14-18] estimation of inertial parameters!!2l and the
prediction of the environment(22,

Eng et al.23 introduced online identification for an
autonomous underwater vehicle dynamics model using an
experimental test. This vehicle was commanded to ex-
ecute a compact set of maneuvers under doublet excita-
tion. In addition, Garg et al.[?4l discussed several model-
ing methods and types of models using system identifica-
tion such as black-box, gray-box, white-box, and para-
metric, non-parametric system identification. Lai and
Tril25] developed a system identification model to identify
the pitch, roll and yaw dynamic models for a small un-
manned helicopter, then a software-in-the-loop was de-
veloped for the estimated model.

Mendes and Medeiros[26l introduced an identification
model of a wheeled mobile robot with a differential drive.
The robot has been modeled by multiple input and single
output (MISO) Hammerstein systems with input dead
zones. The robot dynamic model is based on the traveled
distance increment instead of the robot coordinates, mak-
ing the model linear and allowing the application of clas-
sical methods of identification. Both parameters of linear
and nonlinear blocks are estimated simultaneously through
application of recursive least squares. Hasiewics et al.[27]
developed a system identification model for block-ori-
ented dynamic nonlinear systems. The Hammerstein and
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Wiener system has been investigated. In addition, the ad-
vantages of parametric and non-parametric identification
techniques were discussed.

The development of controllers for autonomous
vehicles has been widely studied by researchers around
the world. Fuzzy logic (FL) is a powerful controller for
use with complex systems based on expert human know-
ledge. FL algorithms are used to control autonomous sys-
tems in many engineering fields28-3l, Furthermore, the
main advantages of using FL include easy implementa-
tion, efficient computation and better performancel32,

Wang et al.33] developed a fuzzy logic controller for
autonomous bay parking. The authors investigated the
available parking space dimensions and the kinetic model
was set up for the case when the backward or forward
speed was low. Two fuzzy algorithms were developed.
The first controller was used to control the speed and the
other one was for steering control. Antonelli et al.34 in-
troduced a path-following algorithm based on a fuzzy lo-
gic controller. The proposed controller emulates human
driving behavior. The controller uses the information of
the curvature of the desired path ahead and the distance
between the vehicle and the next bend in order to drive
the vehicle safely. On the other hand, the controller out-
put is the maximum value of the linear velocity.

Sahoo et al.3% designed a controller for tracking the
desired heading angle for an unmanned ground vehicle
considering the limits on rotation of steering wheel and
steering motor rate. A two-degree-of-freedom vehicle
model is considered for the controller design.

In this paper, the main contribution is the develop-
ment and modelling of a remotely operated scaled multi-
wheeled combat vehicle using system identification tech-
niques in order to control the vehicle heading angle. The
main challenge of designing such control systems is to in-
dividually regulate the steering of the four front wheels in
the same order for obtaining the predefined heading angle
of the wvehicle. The developed vehicle is an electric-
powered 1: 6 scale model of an 8x8 full combat vehicle. It
has eight wheels that are all independently driven by
electric motors and can perform multiple steering meth-
ods, which can be controlled remotely using a radio con-
troller. First, the remotely operated scaled multi-wheeled
combat vehicle (ROMWCYV) is developed and the
input/output signals are recorded and analyzed on an
open loop system through the experimental test. The
vehicle dynamic model was identified by applying system
identification methods considering autoregressive exogen-
eous (ARX), autoregressive moving average exogeneous
(ARMAX), box-jenkins (BJ), output error (OE), state-
space (SS), and transfer function (TF) models. Sub-
sequently, a fuzzy logic controller (FLC) is applied to
control the identified vehicle model and follow the de-
sired heading angle. Several statistical analyses are ap-
plied, and the results are compared in order to identify
and control the suitable vehicle model.
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2 Remotely operated scaled multi-
wheeled combat vehicle

The complete remotely operated scaled multi-wheeled
combat vehicle system is shown in Fig.1(a), while the ac-
tual one is shown in Fig.1(b). This vehicle is developed
at the vehicle dynamics and crash research (VDCR)
Laboratory at the University of Ontario Institute of
Technology (UOIT)B6. The developed vehicle is a 1: 6
scale model of an 8x8 electric combat vehicle that can
perform multiple steering modes to meet situational needs.
In addition, all eight wheels are powered individually.

(b) Actual vehicle

Fig. 1 Multi-wheeled combat vehicle

The vehicle has three levels, the first level contains
the eight direct current (DC) motors and electronic speed
controllers (ESCs) as shown in Fig.2 (a). The middle level
is the steering layer as shown in Fig.2(b). This level con-
tains eight steering servos that are also connected by a
DB25 connector. At the top as shown in Fig.2(c), there
are 4 batteries that are connected to the scalable power
bus that all ESCs are connected. In addition, a microcon-
troller is used to connect the gateway board to the two
harnesses from the servos and ESCs. The inertial meas-
urement unit (IMU) is placed under the gateway board
enclosure as it should be as centered as possible.

2.1 Powertrain hardware architecture

In this section, the hardware architecture for the elec-
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tronic powertrains is discussed. There are two microcon-
trollers introduced in this design. The primary one is used
to control the vehicle by receiving the driver request via
the radio receiver. In addition, it is calculating the corres-
ponding outputs for the steering servo motors as well as
the driving DC motors as shown in Fig.3. The connec-
tion between the microcontroller and the motors is estab-
lished using a pulse width modulation (PWM) channel.
Each DC motor is individually controlled by an electron-
ic speed controller that draws its power from the power
system.

The second microcontroller is used to connect the
global positioning system (GPS) and IMU with the
primary controller and handles the data logging and pro-
cessing. The circuit diagram of the powertrain as seen
from above with each pin connection labeled is shown in
Fig. 4.

The complete ROWMCV system is represented in
Fig.5. Fig.5 provides an overview of the vehicle control
system, starting by sending the command signal from the
remote control to the radio receiver by the corresponding
vehicle action. The microprocessor receives the command
signal, then calculates the corresponding output for the
four front wheels in order to control and navigate the
vehicle in the desired direction.

2.2 Vehicle features

The features of the remotely operated scaled multi-
wheeled combat vehicle capabilities are as follows[36):

1) This vehicle is capable of forward and backward
movement where all eight wheels are powered individually.

2) Alternate between three unique steering configura-
tions.

3) Have the capability to operate under extreme con-
ditions such as summer heat waves, winter freezes.

4) Provide sufficient ground clearance to overcome
obstacles like large objects.

5) Capability to steer on multiple surfaces such as
sand, dirt, snow, mud and pavement.

6) High maneuverability to operate in confined areas.

7) Able to climb over steep terrain and reach moder-
ate speeds similar to that of the full model.

3 System identification (SI)

Generally, SI is the process of modelling system dy-
namics based on the measured input/output signals via
an experimental test. It has the capability to provide an
accurate mathematical model of the system dynamics.
The SI approach has five steps as shown in Fig.6: 1)
experimental design, 2) data retrieval, 3) parameter es-
timation algorithm and system identification model selec-
tion, 4) model validation, 5) model implementation. If the
model validation is not good enough to represent the ac-
tual model of the system dynamics, the first three steps
will be repeated again until the model validation achieves
the assigned level of accuracy.

System identification using parametric identification
techniques has a specific model structure. The paramet-
ers are estimated using the observation of the input/out-
put data. In addition, it is providing a large variety and
possibilities regarding different ways of describing the sys-
tem, where the output of system Y(Z) can be defined as
follows.

Y(2)=G(2) X (2) + M (2). (1)
Equation (1) can be rewritten as follows:

Y()= G()X(z)+H((2)E(2) =

N(2) A(z)
D (z) B~

X (2)+

where
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Y(z) is the ny output,

X(z) is the n, input,

E(z) is the transform of a white noise,

G(z) is the transfer function of the system,

H(z) is the stochastic behavior of noise.

The modeling of ROMWCYV will be considered by ap-
plying ARX, ARMAX, BJ, OE, SS and TF models. The
characteristics of each model were studied in [37].

The ARX model in (3) is considered the simplest es-
timation model as shown in Fig.7. The main weakness is

the disturbance model that comes with the system'’s

1
N(z)
poles. Consequently, an incorrect estimation of the sys-
tem dynamics can be accrued due to the term A in (2).
Accordingly, this issue can be avoided by the require-
ment of higher orders coefficients of terms A and B,

where the signal to noise ratio is acceptable.

E(z)

X(2) 1
N(z) DTZ)

g

Fig. 7  ARX model

D(2)Y (2) = N (2) X (2) + E (). (3)

The ARMAX model in (4) has the capability of hand-
ling the disturbance modeling compared with ARX mod-
el. For this purpose, ARMAX is considered the most pop-
ular model that can be used in many applications. The
block diagram of the ARMAX model is shown in Fig.8.

E(z)
A(2)
29 e I
(2)
Fig. 8 ARMAX model
D(2)Y (2) =N (2) X (2) + A(2) E(2). (4)

The OE models (5) and the block diagram of the OE
model is shown in Fig.9. This model is able to describe
the dynamics of the system separately. Meanwhile, there
are no wasted parameters on the disturbance model. The
main advantage of this model is that it is able to estim-
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Fig.9 OE model

Y (2) = [gg] X (2)+E(2). (5)

The disturbance properties of the BJ model are
modeled separately from the system dynamics. The block
diagram of the BJ model is shown in Fig. 10.

jE(z)

A@)
D(x)

X(z2) —» g 8 1)

Fig. 10 BJ model

Y (2) = {ggﬂ X (2)+ {ggg] B(). (6)

Using the SS model, the state-space form is the best
way to describe a linear system as described in (7).

= Az (t) + Bu(t)
y(t) = Cx (t) + Du (t) + v (t) (7

where the relationship between the input u(¢) and the
output y(t) is defined via the nz-dimensional state vector

z(t).
3.1 System identification algorithm

System identification starts by selecting a model
structure followed by the computation of an appropriate
model in the structure. The selected model will be evalu-
ated afterward. Fig.11 shows this process which can be
summarized as follows:

Step 1. Record the input/output signals to/from the
vehicle.

Step 2. Examine the data and select useful portions
of the original data.

Step 3. Estimate input delay to gain a better insight
into the dynamics via obtaining the impulse response of
the system.
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Step 4. Select and define the appropriate identifica-
tion model structure within which the model of the sys-
tem can be obtained.

Step 5. Choose the best model structure correspond-
ing to the input/output data and the given fit to estima-
tion criterion.

Step 6. Examine the obtained model’s properties
(pole-zero configurations).

Step 7. If the selected model is good enough to rep-
resent the identified system, then stop, otherwise go back
to the fourth step, to try another model set. Possibly also
try another estimation method in the fifth step or work
further on the input-output data obtained in first and
second steps.

3.2 Experimental setup

In this section, the experimental setup for recording
and analyzing the input/output signals will be discussed.
A tilt compensated magnetic compass (CMPS11) is used
to provide the vehicle Euler angles as shown in Fig.12. It
has three magnetometers, three gyros, and three accelero-
meters. The main advantage of this sensor is that it uses
a Kalman filter (KF). This KF is used to integrate the
gyro and accelerometer to avoid the errors that may be
accrued by printed circuit board (PCB) tilting. The
CMPS11 will be interfaced with an Arduino to save the
obtained input/output signals data on an secure digital
card (SD card) during the test as shown in Figs.13(a)
and 13 (b).

The road test of the ROMWCV was carried out on
pavement surface as shown in Fig.14, where the vehicle
heading angle is controlled in open loop test via the re-
mote control. In order to obtain reliable data, the vehicle
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Fig. 12  Tilt compensated magnetic compass (CMPS11)

(a) COMP11 connected to arduino

COMPSI11

A

(b) Sensors fitted to ROMWCV

Fig. 13 Experiment test

heading angle should be changed continuously during the
maneuver. This test was repeated for five times to make
sure that the recorded input/output signals is accurate
when applying the system identification technique.

4 Simulation and results

In this section, the ROMWCYV input/output data is
recorded and analyzed to deduce a model as shown in
Fig.15. The right and left wheels of the first axle are rep-
resented by R1 and L1, while R2 and L2 represent the
second axle.

Fig. 14 Road test

The system identification toolbox using Matlab soft-
ware will be used to develop the vehicle model. First, the
data is loaded on to a Matlab command window, the re-
corded inputs and output data are set, then the com-
mand “ident” opens the system identification toolbox in-
terface.

The step response of the ROMWCYV will be displayed
as shown in Fig. 16 which represent the vehicle input/out-
put relations.

The ARX, ARMAX, BJ, OE, SS and TF identifica-
tion models are applied as single input single output
(SISO) for each wheel individually. Each model will be
evaluated to choose the best one that can provide an ac-
curate model of the four wheels. The obtained validation
results with the unseen data for each wheel are shown in
Figs. 17-20.

Based on the obtained validation result, a comparison
between each model is proposed in Tables 1-6.

Tables 1-6 concluded that the TF model is able to
achieve the best validation result for the unseen data
compared with other models. Consequently, it will be ap-
plied to the vehicle system as MISO. By observing the
pole-zero configuration, the TF model can be tuned. The
obtained results demonstrate that the model is able to
achieve 88.44% of the output data as shown in Fig.21,
which is considered good enough to identify the vehicle
model.

Consequently, the obtained model will be as follows:

G(8)otar = Gr1 (8) urL + GRr2 (s) ura+
Gri(s)urt +Gra (s) ure

where

—3.453 5 — 0.694 6
s2+0.176 2 s + 0.132 3

Gri(s) = (8)
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Fig. 19 Fit to estimation result for the ST models for the L1

5 Fuzzy logic controller design

In this section, the controller design is based on the
Mamdani-fuzzy approach that allows the vehicle to fol-
low the desired heading angle as discussed. FLC is con-
sidered a new addition to control theory. Its design philo-
sophy deviates from all the previous methods by accom-
modating expert knowledge in controller design. The FLC
has three functional processes as follows: 1) fuzzification,
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Table 1 ARX model results

Table 6 SS model results

SS model Model parameterization Validation data

R1,R2, L1, L2 (A,B,C,D) 66.92%

ARX model Model parameterization Validation data
R1 (554) 50.3%
R2 (554) 45.27%
L1 (554) 49.9%
L2 (554) 47.67%
Table 2 ARMAX model results
ARMAX model Model parameterization Validation data
R1 (3332) 78.65%
R2 (3332) 78.22%
L1 (3332) 63.46%
L2 (3332) 78.32%
Table 3 BJ model results
BJ model Model parameterization Validation data
R1 (33322) 74.69%
R2 (33332) 78.59%
L1 (33332) 78.73%
L2 (33332) 78.64%
Table4 OE model results
OE model Model parameterization Validation data
R1 (332) 75.7%
R2 (332) 73.79%
L1 (332) 62.72%
L2 (332) 73.99%
Table 5 TF model results
TF model Model parameterization Validation data
R1 (43) 75.59%
R2 (43) 78.97%
L1 (43) 77.42%
L2 (43) 79.21%

Simulated response comparison

= Real (Yaw)

8 /\\ TF MISO moc'i}a{. 88.44A>ﬁ
P A
e MR A A\

NERWY A/

NI
N A

46 48 50 52 54 56 58 60
Time (s)

Fig. 21 Original heading angle and estimated response of the
identified model

2) rule evaluator, 3) defuzzification. These three pro-
cesses can be described as follows.

Fuzzification is the process of transforming the numer-
ical variable into a linguistic variable (fuzzy number).
This process can be achieved by using different types of
fuzzifiers (membership functions), such as triangular,
trapezoidal membership functions, etc. The rule evalu-
ation process is the step in which, using fuzzification, the
input process is mapped to conduct the fuzzy reasoning
process. Defuzzification is the reverse process of fuzzifica-
tion. The rules of the fuzzy controller generate appropri-
ate outputs as linguistic variables, then it is converted in-
to a crisp set in order to be applied to the real system.

Based on the obtained vehicle model transfer func-
tions as discussed above, the fuzzy logic feedback control
system is shown in Fig.22. Designing a FLC requires ob-
taining the proper fuzzy rules and membership functions
due to the vehicle behavior. Consequently, four FLCs are
developed to control the steering of the front four wheels
of the vehicle to follow the desired heading angle. The
vehicle heading angle error is the controller input, while
the PWM for the wheels is the controller output. The re-
corded input/output data shown in Fig.14 have the bene-
fit of defining the appropriate FLC rules.

Triangular and trapezoidal membership functions are
used to define the input/output variables. The input/out-
put variables for each controller are defined by five mem-
bership functions NB, N, Z, P and PB as shown in
Fig. 23.

The obtained result of the closed loop system re-
sponse is shown in Fig.24. The steady state error reaches
zero and the settling time is 0.03s with the uncontrolled
model. In addition, the peak time is 0.023s, rise time is
0.017s, and the steady state error is 0.004. In order to
evaluate the developed controller for tracking the desired
heading angle. First, a predefined heading angle man-
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Fig. 25 Heading angle tracking using FLC

euver will be proposed as an input to the system. Sub-
sequently, the developed FLCs based on the identified
model will calculate the appropriate control signal to
track the desired heading.

The obtained result shown in Fig.25 clarifies that the
proposed FLC has the capability to follow the desired
heading angle with a very small error compared with the
uncontrolled system.

6 Conclusions

This paper discussed the development and modeling of
a remotely operated scaled multi-wheeled combat vehicle
using system identification techniques. The vehicle was
developed to simulate and analyze the characteristics of
the full-size model. It is an electric-powered 1: 6 scale
model of an 8x8 combat vehicle. It has eight wheels
which are independently driven by electric motors. The
vehicle has the capability to steer on multiple surfaces
such as sand, dirt, snow, mud, and pavement.

An experimental test was carried out which was tested
on an open loop system for measuring the input/output
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signals. The input/output signals are recorded and ana-
lyzed. Several system identification models were applied
in terms of ARMAX, ARX, OE, BJ, SS and TF models.
The validation results revealed that the TF model
provided an accurate ROMWCV model. The fit to estim-
ation and validation process was verified using real data
which achieved 88.44% of the output data. Based on the
identified model, a FLC was applied to control the
vehicle heading angle by controlling the steering of the
front four wheels. The results of the simulations illus-
trate that the identified vehicle model and the developed
FLC are indeed effective and feasible, which has the cap-
ability to follow the desired heading angle.
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