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Abstract: The choice of fulcrums for control of socio-economic systems represented by directed weighted signed graphs is a topic of
current interest. This article proposes a new method for identifying nodes of impact and influential nodes, which will provide a guaran-
teed positive system response over the growth model. The task is posed as an optimization problem to maximize the ratio of the norms of
the accumulated increments of the growth vector and the exogenous impact vector. The algorithm is reduced to solving a quadratic pro-
gramming problem with nonlinear restrictions. The selection of the most effective vertices is based on the cumulative gains of the com-
ponent projections onto the solution vector. Numerical examples are provided to illustrate the effectiveness of the proposed method.
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1 Introduction

Management decisions in complex systems are imple-
mented through the application of control impacts with
the expectation of achieving maximum results. The choice
of fulcrums for control impacts is a complex topic of cur-
rent interest.

Socio-economic systems are poorly formalized. The
representation of complex systems in the form of graphs
helps to formalize the relationships between actors in the
system. Because of the complexity of both the actors and
the links between them, simple methods for determining
the major factors of the system in decision support prob-
lems are not applicable. The most significant properties of
socio-economic systems that distinguish them from social
systems are 1) the multiplicity and complexity of the
links, 2) the directed and coercive nature of the links
between factors, and 3) heterogeneity of factors (usually
not having cognate parameters).

Much research has been devoted to the identification
of influential nodes in social networks using various mod-
els of information spread (diffusionl!l, entropyl?, etc.). It
is assumed that the availability of information may be of
interest to the user and may prompt the user to take cer-
tain actions, for example, to persuade a buyer to make a
purchase or a voter to vote for a particular candidate. In
this case, the spread of information is not aimed at indu-
cing the action of a particular individual; rather it tar-
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gets a wide range of individuals. In addition, relation-
ships in social networks are based on equality. Therefore,
traditional methods for determining influential nodes in
social networks are based, in essence, on various topolo-
gical characteristics of networks expressed through vari-
ous metrics (centrality, etc.).

As noted in survey articles [1, 3], the current scientif-
ic research in the field pertaining to identification of in-
fluential nodes on graphs is “in its infant stage”(3l. The
main research in this area seeks solutions to problems re-
lated to undirected unweighted graphs that represent re-
lationships in social networks. Some solutions, e.g., [4-7],
take into account the weight on a graph's edge, which is a
specially computed metric that reflects the characterist-
ics of the node (e.g., the total number of node links and
number of input or output node links). Studies in the
area of identifying influential nodes on directed signed
weighted graphs are in the rudimentary stage of positing
the problem. Simplified techniques using known al-
gorithms (the directionality and weight on the edges are
simply ignored) do not provide satisfactory results since
some of the underlying definitional semantics are not re-
tained.

Control theory, solves the problem of selecting pin-
ning nodes and allows complete control of the whole net-
work so that it can be directed towards a desired goall®l.
The model is based on controlling the behavior of the sys-
tem. Therefore, there must be a fundamental understand-
ing of the system's operation, including knowledge of the
general form of the equation that describes the behavior
of the system. In addition, the system should operate ac-
cording to the concept of Kalman state controllability
which presumes the stability of the system. For socio-eco-
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nomic systems, such stable conditions are not possible.

In addition, a solution of the problem of identifying
qualifying factors that can be used in the socio-economic
system was proposed and made use of the theory of fuzzy
cognitive maps[®1l. The basis of this approach is the sys-
tem stationary state model, which implies that the sys-
tem is in a certain achieved state space, wherein the main
characteristics of the system do not change with time or
change insignificantly. For models considered in fuzzy
cognitive map theory, a stationary solution exists but is
trivial. Namely, the problem of conserving the stationary
(previously achieved) state of the system is solved. There-
fore, the factors of the system obtained as a result of solv-
ing such a problem, although significant, are only re-
sponsible for maintaining the achieved state of the system.

The evolution of a system requires leaving the station-
ary state. To do this, it is necessary to develop another
control model that will represent the future direction of
the progress of the system and will also spur the develop-
ment of new algorithms. These evolutionary reasons and
considerations have motivated this paper’s proposal of a
new algorithm that uses the control model (the growth
model and barrier-breakthrough model).

Influence in socio-economic systems, unlike influence
in social networks, is a compelling factor for particular
actors within the system. For example, the issuance of an
executive order is mandatory and must be executed.
However, it does not guarantee the expected result (e.g.,
a sharp increase in labor productivity). Thus, the task of
choosing an object of control impact is important to en-
sure the efficiency of the system. It is assumed that when
a control impact is applied to such an object (objects), we
will get the specified response. The main issues to be ad-
dressed are 1) the choice of the appropriate model, 2)
ranking of the impact and influence factors, and 3) the
choice of factors of the directed control impact providing
a certain guaranteed result. To determine and select the
key factors presented in the form of graph vertices, two
models are considered most characteristic for the transfer
of control impacts: a delay model and a growth model.
To ensure the achievement of the guaranteed result, an
effectiveness control model has been developed with some
restrictions to the model factors.

The primary contribution of this paper is the propos-
al of a new algorithm based on maximizing the spread of
influence. This algorithm identifies influential factors in
socio-economic systems that act as effective fulcrums for
control impacts. Socio-economic systems are represented
by a directed weighted signed graph with cause-and-ef-
fect links on the edges. The proposed algorithm operates
in novel way by taking into account the direction of edges
in computing the influence metric.

In this article, we present a solution (for the growth
model) by restricting the non-negativity of the resulting
factor, which is the system'’s response. The task is posed
as an optimization problem to maximize the ratio of the
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norms (or the ratio of the squared norms) of accumu-
lated increments of the growth vector and the exogenous
impact vector. At the same time, within the barrier-
breakthrough model under consideration, it is necessary
to maintain high increments of the vertex indices in the
next step (or several subsequent steps). For the graph of
socio-economic systems, the formulated task is to find the
vector of control actions, which leads to the maximum
growth of the indices of the target factors under the re-
striction of non-negativity. The control factors and tar-
get factors are not set by the decision-makers (experts)
but are determined by solving a system of linear equa-
tions (SLE). In the experiments, we demonstrate the abil-
ity of the proposed algorithm to determine effective con-
trols through the use of examples of real-world graph
models that simulate management tasks in a socio-eco-
nomic system.

2 Related work

The task of identifying the most influential nodes has
been the focus of many studies. It is possible to single out
two distinct directions for solving such tasks. The first
one is based on information distribution models, while the
second one is based on control theory models. The former
is widely used to solve the problem of spreading influ-
ence in social networks. Their action is generally aimed at
the breadth of reach of the audience. The latter is used in
technical systems where stability and controllability are
necessary conditions for operation. We consider both
areas of research because these methods can be used to
solve the problems encountered in the use of control mod-
els for socio-economic systems.

We considered articles® 12715 for ways of representing
the first direction. In their fundamental work, Kempe et.
al.ll approached the task of maximizing influence as a
problem of combinatorial optimization. They proposed to
solve the problem using a standard greedy algorithm. In
subsequent studies, other researchers considered the solu-
tion to this problem using various methods, including
heuristic algorithms, with various modifications to the
models proposed in [4] and using different strategies(!4 15].
The models considered in [4, 12-15] are based on diffu-
sion-type propagation processes. In these processes, de-
termining a precise solution is impossible, the space of
high gradients is smoothed out. In all models, a station-
ary solution is determined, which in the case of the mod-
els presented in [12, 13] requires the fulfilment of the sta-
bility condition. If stochastic matrices are used, the sta-
bility conditions are satisfied. However, stochasticity re-
stricts these approaches. In [14, 15], the model used is
similar to the concept of Markov chains, and the task of
determining the minimum number of vertices for counter-
influence is solved. The system's response here means the
activation of a subset of nodes without taking into ac-
count the accumulation of information and the power of
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influence. In contrast to this approach, in the effective-
ness models, only a few vertices with the maximum in-
crease in the state index are determined, instead of the
maximum coverage of the vertices. In [12, 13], the model
can be classified as a control model. The model in [12] is
reduced to an optimization problem, where the objective
function depends on both the control vector and the state
vector. In the problem, restrictions are expressed as in-
equalities. In addition, in the study [12], the sum of the
squared norms of the influence and response vectors is
minimized, reduced to solutions such as the uniform dis-
tribution of the response over the vertices. This is the op-
posite of the task of finding the few vertices that are most
effective in their response.

The studies [8, 16-19] were considered to represent
the second direction (solving the problem of identifying
the most influential nodes), which is based on control
theory models. This approach uses an evolution equation
to obtain a stationary solution when the stability condi-
tions are fulfilled, its own functions are determined. The
control involves impulse actions during the few first steps
over a small number of vertices. The impact itself is pro-
portional to the difference between the achieved state and
the desired stationary state. If the maximum eigenvalues
of the matrices have very large values (~ 10® <+ 10°), this
approach is not applicable. The model in question is de-
signed to identify the minimum number of driver nodes
to achieve complete control over system dynamics. At the
same time, such a model allows for the problem formula-
tion in the form of minimizing the norm of the control
impact over a given norm of the output response. In this
case, it is necessary that the stability conditions of the
adjacency matrix be satisfied, while the network must
satisfy Kalman's controllability rank criterion. The re-
quirement that the stability conditions for this model be
fulfilled is of crucial importance, which makes applying
this approach to barrier-breakthrough models or effective-
ness models impossible.

In [20], the classical control system represented by the
graph model is considered. The study compares two ap-
proaches: the search for a stationary autonomous solu-
tion and the search for the response of system & under
the exogenous impact €. The authors note that although
the vector € can be an arbitrary impact, in this study a
single impact vector is assigned to all vertices of the net-
work. For the task of searching for the few most influen-
tial vertices, the exogenous assignment of vector € can
degenerate into a problem of exponential complexity that
reduces to taking a brute force approach.

In our study, we present a new control approach for a
complex domain system, based on the growth model un-
der restrictions to the resulting increments. The pro-
posed approach provides the maximum increments of the
resultant indices in one or several steps. In this setting,
the stationary solution is of no interest, since it may not
exist. As a consequence, stability conditions are not re-

quired. The problem mathematically defined here can be
mapped as quadratic programming problems with non-
linear restrictions. The solutions of these problems con-
tain pairs of control and response vectors with respect to
the maximum ratio of the norms. The rest of this article
is organized as follows. Section 3 presents the main res-
ults describing effectiveness control models by directed
weighted signed graphs, and the proposed methods for
solving the resulting optimization problems. Section 4
presents the experimental results. Section 5 provides an
analysis of the results that were obtained. Section 6 com-
pletes the work by drawing conclusions and outlining dir-
ections for further work.

3 Methods

3.1 Models of the spread of influence in so-
cio-economic systems

Allowing for the above considerations, we believe that
the most appropriate approach to building models that
take into account the specifics of the environment of so-
cio-economic systems are cognitive maps. A socio-eco-
nomic system is represented by an oriented signed
weighted graph having cycles that represent cause-effect
relationships. The vertices correspond to the factors of
the system that have certain parameters. The indices of
the vertices can be both externally and internally influ-
enced. It is assumed that the external influence on a ver-
tex parameter does not change the parameter itself, it
only causes a change in the indices of the connected ver-
tices. The spread of internal influences is determined by
the weights of the arcs, which can be positive and negat-
ive.

To solve management problems in a socio-economic
system, two models can be considered:

1) A growth model (model 1), which is presented in
the following form:

n
Ty = Uj +5 E Aij T4

=1

where x; is the increment value of the vertex index vj, u;
is the control impact to vertex w;, J is the damping
factor, a;; is the weight of the arc from the vertex v; to
vertex v; on the interval —1<a;; <1, x; is the
increment value of the vertex index v;.

2) An after-effect model (model 2), described by the
following equation:

n n
Tj = E a;j | ui+9 E AkiTk
i=1 k=1

where z; is the increment value of the vertex index vj, a;;
is the weight of the arc from the vertex v; to vertex v; on
the interval —1 < a;; <1, u; is the control impact to
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vertex v;, § is the damping factor, ay; is the weight of the
arc from the vertex v, to vertex v; on the interval
—1<ak; <1, wr is the increment value of the vertex
index vj.

A graphical interpretation of these models is con-
sidered for a simple model consisting of 3 vertices (model
factors) and two arcs (cause-effect relationships) connect-
ing the vertices in series and is shown in Figs.1(a) and
1(b), respectively. The following notations are used in
Figs.1(a) and 1(b): t are the instants of time for the
states of the model, x are the increments of the vertex in-
dices at time ¢, u are the control impacts to the vertex, a
is the weight of the arc of the connecting vertex, the sub-
script indicates the vertex number, and the superscript
indicates the time ¢. The relevant computed parameter
values for the vertices are shown in Tables 1 and 2.

The graphical interpretation above shows that for
these models, two types of influences are taken into ac-
count: a) direct impacts to the factors of the model
(graph vertices) and b) the cause-effect influence exerted
by one factor on another, spread along the graph arcs.
Let us consider the behaviour of the models at the corres-
ponding instants of time. Under model 1, the perfect im-
pact on the i-th factor at time ¢y is taken into account
directly in the computation of the increment of the i-th
factor at time ¢1, the impact at ¢; is taken into account at
t2, etc. Under model 2, the implemented impact to the -
th factor at ¢o is taken into account indirectly through
the arc weight in computing the increment of the j-th
factor index at time t;. The change in the vertex index
through the cause-effect relationship (the second type of
influence) is taken into account in a different way. Under
model 1, the change in the i-th vertex index at time ¢; is
taken into account as the indirect increment of the index

N
.

-------- »Impacts that are not taken into account at time #
— Impacts taken into account at time £

of the preceding vertex k by the weight of the connected
arc at time to. Under model 2, the change in the i-th ver-
tex index at time ¢, is taken into account as the indirect
increment of the index of the preceding vertex k — 1 by
the weights of the arcs connected in series at to. Thus,
under the second model, the spread of influence of both
types is delayed by one step in comparison with the first
model.

Based on the description of the models, the following
conclusions can be made regarding their application to so-
cio-economic systems:

1) Model 1 can be used in responding to emergencies
or in controlling production processes. The second model
is more amenable to socio-economic systems and can be
used more frequently for management decision making.

2) The models describe increments in factor (vertex)

Table 1 Solution for the growth model

to t1 ta t3
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va m(QU) mél) = u(QU) —+ alzmio) m(zz) = ugl) + aum(ll) m§3> = uéz) —+ aum?)
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Table 2 Solution for after-effect model

to t1 to t3
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Uzwéo) wgl) = amu(lo) w;z) = a12u§1> w?) = amu(lz)
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R - P
N7 u% 5
% ; : '
a a
0 12 0 23 0
z N z
~u ~ ~
| \ 0 \
i \ ) \ L S
a,u Qs
h 1241 1 23U 1
& ), ©
- U2 ) Y
' M W e ul. 5
u \ 2 \
\ . ' lug.___ v
t ) apy N a3ty 1
G (Dt

U . \ 0 U3
2
8 %! aplhy X1 Aplhy _@

ax(xiap) J
— —

-------- »Impacts that are not taken into account at time #
— Impacts taken into account at time #

—— — Influences (cause-and-effect) taken into account at time £, — — Influences (cause-and-effect) taken into account at time

(a) For the growth model

(b) For the after-effect model

Fig.1 Graphical interpretation for the growth model (a) and after-effect model (b)
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indices x, not absolute values of factors (vertices). There-
fore, the incremental values can be either positive or neg-
ative. The restriction of z > 0 for the resulting increment
lies in the need to achieve only positive index increments.

3.2 Problem formulation

Definition 1. The system model is represented by a
graph (network) consisting of nodes {vi,v2, -+ ,v;}, in a
certain activated state at time instants {ti,t2, - ,¢;},
and of directed arcs having weights a;; and connecting
node i with node j.

Here, the weight of directed arc a;; is defined on the
interval —1 < a;; <1 and represents a causal relation-
ship from node i to node j, where node i is the cause, and
the node j is the effect.

Remark 1. Control impacts {ui,uz, -+ ,u;} denote
the time-dependent control signals of the nodes
{v1,v2, -
to the vertex indices.

,v;} over the graph and additional increments

Remark 2. The changes (increments) to the indices
of the nodes state {z1,z2, - - ,z;}, called the system re-
sponse, occur under the influence of the control impacts
{ui, uz, -

graph and are defined by equation:

,u;}, spread along the directed arcs over the

D(E+01A+60:A*+---+0,A") D 'z =
D (¢oE + g1 A+ oA’ + - + ¢, A u

where D is the mapping matrix and E is the identity
,0p and ¢o, P1,--- , g are the coeffi-
cients of the increment components of indices & and of

matrix, 6p,01,- -

control impacts u, A is the transpose of the adjacency
matrix, and p and ¢ are finite orders for aftereffect.

Definition 2. The optimal control impact is the nor-
malized control vector w that ensures the maximum re-
sponse of the system. It is necessary to determine the dir-
ection of the change of the vertex indices allowing max-
imum amplification and to determine the control impact
providing this maximum amplification at least at the
next step or at several subsequent steps.

Mathematically, optimal control {wi,us, - ,u;} max-
imizes the ratio of norms (or ratios of squared norms) of
the vector of accumulated growth of the increments of
vertex indices and the external influence vector:

(z,z)
(u, u)

—r Imax.

Remark 3. The optimal control impact with restric-
tions to the non-negativity of its components is the vec-
tor of control impacts which produces the maximum
growth of indices of the target factors under the restric-
tion w > 0.

Remark 4. The optimal control vector {ui,usz,---,
u;} is an ordered set of absolute values of control vector

components that maximizes the absolute values of the
components of the response vector {z1,z2, - ,x;}.

Remark 5. The optimal system response {z1,z2, -+,
z;} forms an ordered set of absolute values of the re-
sponse vector components generated by the optimal con-
trol vector {u1,uz, - ,u;}.

Remark 6. The conditions for selecting optimal con-
trol and optimal response vectors for the system are
formed based on an analysis of the solution obtained and
are expressed by the addition of restrictions to the com-
ponents.

3.3 The proposed algorithm for managing
of control impacts under restrictions

The task is to find a vector (vectors) of external influ-
ences that maximizes the cumulative growth of the ver-
tex indices. In this formulation, the task is connected to
the problem of determining the resonant properties of the
system represented by the adjacency matrix for an ori-
ented weighted signed graph, namely, finding the eigen-
values and eigenvectors of the adjacency matrix. In the
general case, one should expect complex eigenvalues and
complex eigenvectors components. If the elements of the
adjacency matrix are real numbers, then the eigenvalues
and eigenvectors decompose into pairs of complex ad-
joint numbers and pairs of vectors with complex adjoint
components. This makes it difficult to interpret the res-
ults as indices of the socio-economic system.

The proposed approach is as follows. To evaluate the
maximization of the vector value (the accumulated
growth of the vertex indices), let us introduce a certain
vector norm. Then, the main task is posed as maximiz-
ing the ratio of norms (or ratio of squared norms) of the
accumulated increments of the growth vector and exogen-
ous impact vector. Such a scalar formulation reduces to
symmetrization of the matrix with respect to the base
quadratic form. The eigenvalues and components of the
eigenvectors of this symmetric matrix are real numbers.
Moreover, the eigenvectors of a symmetric matrix corres-
ponding to different eigenvalues are orthogonal.

The statement of the problem allows for a generaliza-
tion of conditional optimization, i.e., it requires finding a
solution that satisfies certain restrictions. However, since
vectors differing by only a multiplicative factor have the
same direction, the restrictions should not express condi-
tions on the components of the desired vectors, but at-
tribute the required vector to a certain (linear) spectrum
generated by a set of given vectors. We propose to invest-
igate the possibility of constructing an algorithm for solv-
ing the problem of conditional optimization, which is as
efficient as the acceleration of the Gram-Schmidt ortho-
gonalization process(2l. This is in comparison with the
solution of a quadratic programming problem with non-
linear restrictions. Since the directions of interest are of-
ten those corresponding to first several eigenvalues with
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the largest values, acceptable accuracy of the solution of
the problem can be achieved.

Consider the graph G = (V, E) for the socio-economic
system, where V = {Vi,Va,--- ,Vn} is a set of vertices
and F € V xV is a set of arcs. The graph is determined
by the adjacency matrix AT =|| a;; ||n, where a;; is the
weight of the arc from vertex V; to vertex V; on the inter-
val -1 <a;; <1

Let the socio-economic system at time to,¢1, - ,t;, -
be characterized by an increment of indices (), 2™, ... |
2 ... and have control impacts ©(®,u® ... w@ ...
Let the value of the index increment z(® be determined

by control impact w(%:

@ = OcoDu<0)7 (1)

the value of index z(!) is determined by control impacts

u® and u™M:
P =D (a0u<1) + alAu(O)) , (2)

the value of index #® is determined by control impacts

u(0>, u™ and u®:
z® =D (aou(z) + oelAu(1> + ozzAAu((])) , (3)

etc., where D is the mapping matrix and a1, a2,
-, o are constant attenuation coefficients. In general,

¥ =D (aou(j) + a1 AuY Y 4 AP 4
+ajAju(O)> . (4)

If D is nonsingular and « # 0, then (1) — (4) are in-
vertible. Substituting vector w(®) from (1) in (2), we get

=M - aglalDAD71m<0> = alDum. (5)
Substituting vectors u(® and u(") from (1) and (5) in

(3), we get

2?2 paD~! (m(l) - ﬂDAD‘lm(O’) -
(e 7)) (&%)

% DAAD 'z = oo Du® ,
0

etc. In general:

e 48 DAD 2V 1+ 3, DA’D 2V 4
B3, DA’D 'z® = Du®.

Consider a model of finite orders p and ¢ for after-ef-
fect (by analogy with the Box-Jenkins models[22 23]):

@ Springer

2940, DAD 2D 1 0,DA’D "2 4 ... 4
0,DA?D '™P) =

D (¢Ou(j) + ¢1Au(j71) I ¢quu(j*q))

where 6o, 61,---,0, and ¢o, P1, - -
of the component increments of indices ® and of impacts

, ¢q are the coefficients

u, respectively.
For the solution in the form of stationary vectors of
impacts v = u and of indices ) = x, we get

D(E+601A+0:A°+ - +0,A") D 'z =
D (B + 1A+ ¢2A% + -+ ¢ A") u.  (6)
The optimal control impact is called impact uw which

maximizes the ratio of the squared norm of vertex in-
dices  to the squared norm of the impact vector w:

(z, )
(u, u)

— max. (M)

If the matrices on the left-hand side of (6) are nonsin-
gular, then the problem of unconditional optimization (7) is
equivalent to the following spectral problem, and we have

(Bu,u)

— max
(u, u)

where B = CTC, and

C=D(E+0A+0:A>+.- +0,A") " ¢oE+
D1A + 2 A 4 4 9 A”

Matrix B is symmetric and has a fixed sign.

Previously, we considered a delayed system[24, where
D=E, p=2, =0, 02=-6, q=1, ¢0=0, ¢1 =1,
C=(E-6A>"" A

The problem of conditional optimization with restric-
tions on control impacts can be solved. Let vi,va, - ,Um
be linearly independent vectors and the set of linear com-
binations v = & v1 + {2v2 + - - - + & be a linear mani-
fold generated by the vectors, where & >0, & >0,---,
&m > 0 are nonnegative numbers.

If the decomposition of vector w into vectors
v1,V2, - ,Um IS nonnegative, then vector w belongs to
the linear manifold, and we have:

U =c1v1 +c2v2+ -+ CmUm (8)

where ¢; > 0,¢2 >0, -+ ,¢m > 0. Under the conditions of
(8), we can determine the decomposition coefficients by
solving this system of equations:

(v1,v1)  (vi,02) ... (vi,0m)\ [ (v1,u)
(v2,v1) (v2,v2) ... (v2,um) || C2 (v2,u)

- . (9)
(Vm, v1) (Um,02) « .. (Um,Um)/) \Cm (Vim,u)
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The SLE matrix is nonsingular with respect to the
Gram matrix[2l 23] it exists by virtue of the linear inde-
pendence of vectors vi,vz2, -+, Um.

Let V be a matrix whose columns are the vectors
V1,2, "+, Um, then (9) reduces the SLE to the form:

Vive=vTu

T . ..
where ¢= (cic2...cm)” is the vector of coefficients.

Thus, the
decomposition coefficients reduces to a system of

condition of non-negativity of the

inequalities that represents the restriction:
T “toT
c= (V V) VvTu > 0.

Since the optimal direction is determined, the nonlin-
ear non-quadratic programming problem becomes

(Bu,u)
(u, u)

-1
— max, (VTV) vy >0

where B is a symmetric non-negative definite matrix.
The problem can be reduced to an equivalent quadratic
programming problem with nonlinear restrictions:

-1
— (Bu,u) = min, (u,u)=1, (VTV) viu>o.
The Lagrange function for this problem has the form:
L=—(Bu,u)+ X ((u,u) —1)—
-1
((VTV) VTu,u> — min

where A\ and ,uz(m,ug,---,um)T are Lagrange

multipliers. Taking into account [26], we obtain the
necessary conditions to solve for the minimum of this
system of nonlinear equations:

V.L :—(B + BT) ut2\u — V(VTV)_IH:O

Vil =(u,u)—1=0 (10)
~mo~\ —1 ~
VL= —(VTV) VTu=o0.

We have the linearized system of equations:

- (B + BT) u+ 2 — V(VTV)HH—

(B+BT) (G—w)+2) (G — u)+2 (5\—)\) u
v(v'V) (@-w=0 (11)
(u, ) — 142 (w6 —u) =0
{wv)‘lfﬂu _ (VTV/)_IVT (@—w) =0

and the transformation reduces (11) to the form:

NG — (B+BT) T+ 25\u—‘7(1~/T1~/)71ﬁ -2
2(@,u) = (u,u) + 1 (12)
(VTV/)_IV/TQ —o.

Suppose the optimal directions wi,u2, -+ ,ur are

defined in sequence such that each successive w; is ortho-
,ui—1. Then, the
quadratic programming problem reduces to the form:

gonal to all the previous wi,us,---

— (Bu,u) — min

-1
UiT_lui = 07 (ui,ui) = 1, (VTV) VTui Z 0

where U;_1 is a matrix whose columns are orthonormal
vectors w1, Uz, - ,u;—1. The Lagrange function for this
problem has the form:

Li = = (Bui,w) + (U5 yui, dim ) + A ((wiwi) = 1) =
((VTV) VT, ,M)

where Ai—1 = (A1, A2, - - 7)\1-,1)T, Ai and p; are Lagrange
multipliers. We obtain the necessary conditions to solve
for the minimum of this system of nonlinear equations:

Vu.L; = —(B+ BT)ui +U;—1Ai—1 + 2Nu—
1
V(VTV) pi=0

ViL; = UiT,1Ui =0
V)\ﬂ'Li = (ui,ui) —1=0

VLi = — (VTV)”VTW —o.

After transformation, the linearized system of equa-
tions has the form:

20w — (B + BT) i+ U1 N1 + 2N ui—
~ ~ ~\ —1
V(VTV) fii = 2\

T ~
Ui—lui =0

2 ('El,u,) = (ui,ui) +1
~mo~\ —1 ~
(Vv'v) Vi -o.

The following Algorithms for determining the prevail-
ing controls implements the actions mentioned above
(Algorithms 1 and 2).

Algorithm 1. Algorithm for determining a unique
prevailing control

Require: B, V', u, A\, p are initial approximations

Ensure: (5\7 ﬂ)7 4 is the optimal control

1) repeat

2)  Solve SLE: y =2 (2AE — (B+B")) ' u
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] 1 1
3) A:A_g((“(’;”; ) 7)) until | @ —w < e
. Y 8) Matrix expansion U; by column w;
4) = ()\ — )\) Yy
4 9) end for.
5) Solve SLE: V (VTV) i =202\E — (B+
BT)) +2 ( A — )\) w 4 A numerical experiment
6) until || & — u ||< e. A numerical experiment for finding the effective com-

Algorithm 2. Algorithm for determining numerous
prevailing controls

Require: B, V, the initial approximation w;, Ai_1,
iy i

Ensure: U, is a two-dimensional array whose
columns are the optimal controls.

1) for i= 2 to k

ponents of effective controls under the imposed restric-
tion of non-negativity increments in the values of factors
is considered. The example is of cognitive models repres-
ented as directed weighted signed graphs with cause-ef-
fect relations on the graph edges and having cycles. The
feasibility of the proposed algorithm has been tested with
real-world datasets. In this article, the following datasets

2) repeat are used for the numerical experiment: a) a 75 X 75 mat-

3) Solve SLE: y=2(2E — (B—|—BT))_1u,-, rix — a cognltlve map from [27]; b) the .72 X 72 adj'a-

Z-—(2BE-(B+ BT))fl U, cency matrix from [28]; c) the 25 x 25 ad‘]a.cency matrix

from [29]; d) the 24 x 24 adjacency matrix from [30].

4) Solve SLE: Graphs are represented by adjacency matrices with the
A= A Ul -t 0 corresponding characteristics (Table 3).

< N1 > - << ul ) < Z y >> < (w,u) +1 > The numerical experiment was performed using mod-

. el (7), for which the relationship between the influences

5) U= ()\i - )\i) y+2Zxh and responses is shown by (6) with the following para-

6) Solve SLE: V(VTV)A[A;:(Q)\E—(B—F meters: D=FE, p=1, 01 =-§, ¢=0, ¢o=1, ¢1 =1,

C = (E — §A™"). The solution is provided by Algorithm 1

BT))'Ill —Z>\i_2(5\i_)\i) U; L
under the restrictions of x > 0.

Table 3 Selected model factors with corresponding index values

Indicators of computed results by influence (responses) Indicators of computed results by impact

N vertices a® Cumulative r N vertices vl Cumulative v
Matrix a): 75 x 75 on 411 arcs of cumulative weight 216.5
47 0.216 827 0.216 827 37 0.145 136 0.145 136
51 0.201 887 0.418 714 6 0.123 891 0.269 027
52 0.171 254 0.589 968 34 0.108 118 0.377 145
25 0.129 799 0.719 767 55 0.107 73 0.484 875
Matrix b): 72 x 72 on 586 arcs of cumulative weight 290.6
62 0.292 181 0.292 181 49 0.098 086 0.098 086
50 0.286 346 0.578 527 10 0.079 896 0.177 982
68 0.172 491 0.751 018 44 0.071 564 0.249 546
54 0.141 029 0.892 047 4 0.052 477 0.302 023
Matrix c): 25 x 25 on 35 arcs of cumulative weight 35.0
16 0.263 177 0.263 177 15 0.415 907 0.415 907
12 0.233 274 0.496 451 6 0.119 845 0.535 751
23 0.156 316 0.652 767 11 0.077 496 0.613 247
17 0.112 739 0.765 506 12 0.064 801 0.678 048
Matrix d): 24 x 24 on 41 arcs of cumulative weight 41.0
1 0.136 237 0.136 237 21 0.218 18 0.218 18
5 0.134 855 0.271 092 12 0.130 548 0.348 729
2 0.124 934 0.396 025 3 0.084 498 0.433 226
10 0.124 094 0.520 119 4 0.084 498 0.517 724
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The results show that the functioning of the system is
determined by one or two leading directions that very
strongly prevail over the others. Sorting the values
Ri, R2,--- , R, that were obtained shows a significant lag
on the value of the first vector from the value of the
second (3 x 10%). In line with the structure of the matrix,
the effect on any factor produces the same growth vector,
though with different scales, because of the strong inter-
relationships between the factors. It is sufficient to select
one controlled factor (maximum). For more effective con-
trol, it was decided to select factors whose indices have a
large lag from the others, providing more than 50% of the
maximum growth (Table 3). The results show the possib-
ility of selecting an effective control for the socio-economic
system represented by the cognitive model (Fig.2).

5 Discussion of results

Five different criteria were applied to evaluate our ap-
proach:

1) Applicability for a specific domain

The research showed the applicability of our ap-
proach based on the system theory for the analysis of dir-
ected weighted signed graphs representing cognitive mod-
els for social and economic systems. The method does not
impose restrictions on the signs or ranges of weights of
the edges or the directions of the edges. The matrices
used in the SLE solutions are positive semidefinite, and
symmetric.

2) Feasibility

The matrices used in the solution of the problem are
matrices of second order partial differential equations of
quadratic forms, i.e., they are symmetric and sign defin-
ite when constructed. Under the simple restriction of
u > 0, Newtonian convergence was observed, i.e., the
number of iterations remained within 5-7. Since the SLE
is solved by direct methods, the algorithm has shown that
it works with matrix dimensions up to n < 100. Models
whose matrices contain single loops can produce singular
matrices when determining the SLE. Even in the case of
matrix singularity in models with single loops at the ver-
tices of the graph, the corresponding SLE can be solved
using the regularization of the problem by Tikhonov and
Arseninf3l],

3) Output format

As a result of the application of the algorithm, the se-
lection of the effective components and corresponding ef-
fective large impacts representing the key vertices is per-
formed. This is mapped to a user-specified value of the
equivalence level for the system as a whole. The number
of vertices was reduced to a reasonable number of ver-
tices and connections, which allows the graph model to
reach an acceptable level of informativeness for the de-
cision maker (expert).

4) Complexity of the solution obtained

The computational complexity of the algorithm is

O(n?). The ratio of the norms (vector) of changes € for
€0
the 6 cognitive models in which the eigenvalues of the

matrices have very large values (~ 10% + 10°) is shown in
(Fig.3(a)). The decision time of the algorithm is polyno-
mial and is a fraction of a second (Fig. 3 (b)).

5) Comparison with other algorithms

The results of comparing the proposed algorithm with
the most prominent algorithms from [8, 12-19] are
presented in Table 4. Thus, the proposed algorithm ex-
pands the class of solved problems in line with the above
criteria.

6) Quality

The employed method of multipliersi?6l is character-
ized by the fact that at each iteration the problem is
solved in the primal variables, which ensures the accur-
acy of the solution of the primal equations. With dual
variables, accuracy is not required, only an indication of
the activity or inactivity of the restrictions. The ex-
change of information between the primal and dual tasks
(at least in the case of simple restrictions) makes the pro-
cess of entering the area of unconditional optimization
fast.

6 Conclusions

In this article, we considered the problem of maximiz-
ing the positive response of the main factors of a system.
The challenge was to find a small but reasonable set of
factors initiating impacts in order to maximize the re-
sponse of the main factors of the system. Computation by
the algorithm was reduced to the solution of a quadratic
programming problem with nonlinear restrictions under
the sequential computation of the optimal directions of
the impacts w1, w2, - , Uk, and then computing the pos-
itive increments of the indices 1,2, -, ;. The selec-
tion of the most effective vertices was based on the accu-
mulation of the projected components by the solution
vector.

The experimental results show that the algorithm
achieves the required efficiency with respect to the min-
imum set of vertices (up to 4) necessary to achieve the
maximum response of the system. We also showed that
the algorithm provides a solution for models with a
strong predominance of the selected leading factor, which
is manifested as a large lag on the maximum eigenvalue
relative to the other eigenvalues. Although the proposed
algorithms have shown effectiveness in the selection of in-
fluence factors associated with response factors in cases of
single-factor and two-factor models, in experiments with
other cases they did not have a guaranteed solution. This
is because the restrictions must be compatible in a well-
defined statement of the problem.

We showed that the problem is solvable in polynomi-
al time. Using our algorithm, the choice of nodes as
points of application of control impacts provides excel-
lent performance and significantly improves the ability of
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Fig. 2 Values of the influences @, effectiveness index @, cumulative effectiveness index @), impacts @, ensuring controllability index
®), and cumulative ensuring controllability index ® for 4 matrices using models: a, b, ¢, and d.
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Table 4 Comparison of algorithms

Criterion Proposed algorithm

Algorithms (in Section 2)

1) Special properties
of the adjacency k

. given.
matrix

2) Number field

3) Formulation of the  Finding the most effective solution for progress of the

problem system.

Special properties of the adjacency matrix are not

All computational results (eigenvalues, eigenvectors,
and solutions of optimization tasks) are real numbers. numbers. An imaginary part of a complex number is ignored.

The adjacency matrix must satisfy the stability conditions (all
eigenvalues must be within the unit circle of the complex plane).

In the general case, the solution is expressed in complex

Finding a stationary solution.

Number of iteration (s;)

N AR

B« S
1 3 5 7 9 11131517 19 21 23 25 27 29 31

[—o—5 6 —1 -m 2 —x 3 —4]

(a) Value of the ratios of norms (vector) of changes%
under 6 cognitive models
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(b) Decision time
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Fig.3 Algorithm complexity parameters the value of the ratios
.

of norms (vector) of changes — under 6 cognitive models
3

.. . 0
decision time

decision makers to make control decisions using socio-eco-
nomic models of the real world. The results shown in this
article have good prospects for practical application. One
possible direction for further research is the development
of effective algorithms, which will not only be scalable for
large networks but will also have a guaranteed solution.
The study of the problem under different, more realistic
restrictions is another challenging direction for future
work.
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