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Abstract:   The growth of environmental energy harvesting has been explosive in wireless computing systems especially when replacing
or recharging batteries manually is impracticable. This work investigates the scheduling of periodic weekly hard real-time tasks under
energy constraints. Based on this motivation, we proposed a real-time scheduling algorithm, namely energy guarantee dynamic voltage
and frequency scaling (EG-DVFS), that utilizes the earliest deadline-harvesting (ED-H) scheduling algorithm combined with dynamic
voltage and  frequency scaling. This one  is qualified as real-time since tasks must satisfy their timing constraints. We assume that the
preemptable tasks receive dynamic priorities according to the earliest deadline first (EDF) rule. EG-DVFS adjusts the processor′s beha-
vior by characterizing the properties of the energy source module, capacity of the stored energy as well as the harvested energy in a fu-
ture duration. Specifically, tasks are executed at full processor speed if the amount of energy in the battery is enough to finish its execu-
tion. Otherwise, the processor slows down task execution to the lowest possible processor speed while still guaranteeing to meet all the
timing constraints. EG-DVFS mainly depends on the on-line computation of the slack time and the slack energy with dynamic voltage
and frequency selection in order to achieve an improved system performance. Experimental results show that EG-DVFS can achieve ca-
pacity savings up of up to 33% when compared to ED-H.

Keywords:    Real-time systems, energy harvesting, embedded systems, power management, dynamic voltage and frequency selection
(DVFS), ED-H scheduler.

 

1   Introduction

Energy management is a central problem in the design

of real-time systems including embedded wireless devices.

Various  power  management  techniques  for  reducing  the

energy consumption have been investigated in the literat-

ure. One of them is dynamic power management (DPM)[1]

that achieves energy efficiency by putting a device which

is not being used in a low power state or sleep mode. The

device  becomes  active  again  when  some  requests  arrive,

and work in high power state[2]. Another power manage-

ment technique  is  dynamic  voltage  and  frequency  selec-

tion (DVFS) which is applied to decrease energy dissipa-

tion by lowering the operating frequency of the processor[3].

Advancements  in  wireless  technologies  enable  us  to

position embedded wireless computing systems in remote

areas  for  monitoring  or  sensing  purposes.  For  example,

sensor nodes can be employed in critical scenarios such as

natural  catastrophes  and  artificial  disruptions[4].  Sensor

nodes help in monitoring physical and environmental con-

ditions such as temperature and pressure[5]. It is not per-

mitted  to  manually  recharge  or  replace  the  battery  in

many  remote  places.  Consequently,  renewable  energy

sources  that  are  found  in  all  parts  of  our  environment

should  be  employed.  Harvesting  energy  from  ambient

sources seems to be an appropriate approach to increase

the life-time of wireless systems.

By  definition,  energy  harvesting  is  the  process  by

which energy is captured from external sources and con-

verted into electricity to power small, autonomous devices,

making them self-sufficient, often for a long period of time[6].

Several technologies for deriving ambient energy from

the environment have been demonstrated including solar

power,  thermal  energy,  wind  energy,  salinity  gradients,

kinetic energy, and many others[7]. Many modules for en-

ergy harvesting have been developed in the literature. He-

liomote[8] and Prometheus[9] are the first prototypes which

proved  the  feasibility  of  energy  harvesting  for  small

autonomous devices.

Nonetheless,  harvested  energy  typically  varies  with

time  in  a  non-deterministic  manner.  Therefore,  energy

management  schemes  are  required  in  energy  harvesting

embedded systems so as to guarantee an acceptable qual-

ity of service characterized by the deadlines miss rate[10].

In  the  context  of  battery-operated  real-time  systems,

two  constraints  need  to  be  studied:  energy  and  timing

constraints.  Hence,  a high performance scheduling policy

should take  into  consideration  the  properties  of  the  en-

ergy source, the limitation in the energy storage capacity

as well as power consumption of the executed tasks.
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In  a  real-time  energy  harvesting  system,  the  role  of

any  scheduler  is  to  assign  the  tasks  to  time  slots  while

still respecting all timing and power requirements during

the  whole  lifetime  of  the  application.  Conventional  task

scheduling  and  power  management  techniques  are  no

longer convenient under energy harvesting considerations.

They  cannot  adapt  their  behavior  to  the  uncertainty  in

the  available  energy  profile.  A  new  power  management

technique  with  energy  harvesting  awareness  should  be

proposed in order to suitably exploit both the processing

capability and the available ambient energy.

1.1   Problem formulation

In this paper, we target a system of three components:

a general purpose dynamic voltage and frequency scaling

processor, an energy harvester and a rechargeable energy

storage  unit  with  a  limited  capacity  such  as  battery  or

supercapacitor.

For  this  reason,  we  address  the  real-time  scheduling

problem  in  a  uniprocessor  platform.  We  study  the  case

where a task can be preempted and later resumed at any

time without any time loss associated with such preemp-

tion. All the tasks must be successfully scheduled within

their timing requirements without any deadline failure so

as to avoid intolerable damage.

Many  challenges  lie  ahead  so  as  to  make  a  real-time

energy  scavenging  system work  effectively.  Among  them

is the development of energy management techniques and

scheduling  algorithms  that  produce  a  valid  schedule

whenever  possible  while  still  respecting  all  deadlines  of

the tasks. Specifically, we consider the following features:

1)  An  energy  harvesting  unit  is  used  to  harvest  the

energy  from  one  or  several  external  sources  in  order  to

charge the energy storage unit.

2) Tasks may be the recurring invocations of periodic

tasks.  The  parameters  of  each  task  can  be  determined

prior to system run-time.

3)  The  energy  source  acts  as  a  function  of  time.

Hence, it is not possible to determine the exact amount of

energy harvested  beforehand,  but  we  can  certainly  pre-

dict the energy harvested on near future at run time by

shadowing the previous energy source profile.

4)  The scheduler  is  able  to  alter  the  microprocessor′s
operating voltage at run-time.

5) The instantaneous power consumption of  any task

is  assumed  to  be  greater  than  the  incoming  power  from

the harvesting unit.

6)  No  harvesting  energy  is  wasted  because  of  energy

overflow  except  when  there  are  no  ready  tasks  and  the

storage unit is fully replenished.

1.2   Contributions

In this work, we propose the so-called energy guaran-

tee  dynamic  voltage  and  frequency  scaling  (EG-DVFS)

power  management  algorithm.  EG-DVFS  utilizes  the

earliest deadline-harvesting  (ED-H)  scheduling  rule  com-

bined with dynamic voltage and frequency scaling facilit-

ies to guarantee predictable execution for every task even

in the face of energy shortage.

The work presented in this paper provides the follow-

ing contributions to research:

1) We present an online algorithm that permits us to

answer  the  three  following  questions:  How  and  when  to

put the processor in idle versus active state? How to se-

lect the active task? How to compute the frequency of the

processor for executing the selected task?

2)  Our  power  management  approach  is  implemented

without  any  prior  information  about  the  energy  source

module that is considered to be uncontrollable and time-

varying.

3) The EG-DVFS policy is  based on trading two no-

tions: slack time and slack energy. It intelligently dynam-

ically selects the processing speed for every task depend-

ing on energy and time considerations.

4) The DVFS technology enables us to reduce energy

consumption  while  still  guaranteeing  the  absence  of  no

deadline violation whenever possible.

1.3   Outline

The  rest  of  this  paper  is  organized  as  follows:  In

Section  2,  we  present  related  works.  The  system  model

and terminology are introduced in Section 3. In Section 4,

we  give  necessary  background  materials.  The  EG-DVFS

policy is described in details in Section 5. Simulation res-

ults  and  discussions  are  presented  in  Section  6.  Finally,

Section 7 concludes the paper.

2   Related work

The  emerging  technology  of  the  energy  scavenging

systems  design  has  earned  lot  of  interest  in  the  past

years.  The  first  valuable  work  that  really  tackles  the

problem of power management for energy harvesting sys-

tems  has  been  studied  in  [11].  Kansal  et  al.[11] build  a

model  that  captures  the  energy supply of  a  solar  energy

source  by  tracing  its  instantaneous  power  profile.  Power

scaling algorithms  for  tuning  system  duty  cycles  are  re-

lated  to  the  power  consumption  that  in  turn  affects  the

system  performance.  The  system  switches  between  busy

mode and idle mode depending on harvested energy from

the  source.  Authors  formulate  the  problem  as  a  linear

program and is solved periodically. Within each period, it

is  necessary  to  adapt  the  duty  cycle  when  the  observed

energy values  are  different  from the predicted ones.  The

main  disadvantage  lies  in  that  tasks  have  no  real-time

pattern. Scheduling real-time tasks under the strong vari-

ation  of  energy  sources  remains  a  key  challenge  even

today[12]. In what follows, we review the main scheduling

techniques of real-time tasks that are executed in a timely

manner in an energy harvesting system.

Moser et al.[13] considered the case of scheduling tasks
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with  deadlines  on  a  monoprocessor  system  that  is

powered by  a  rechargeable  energy  storage  unit.  The  au-

thors work with the following assumptions: 1) Tasks may

be periodic or aperiodic and 2) energy loss is insignificant.

They propose an optimal real-time scheduling algorithm,

named “lazy scheduling algorithm (LSA)”. LSA is a vari-

ation  of  the  well-known  earliest  deadline  first  (EDF)

scheduler[14], but it is an idling energy-clairvoyant sched-

uler. LSA works as follows: The task is executed only if it

has  the  earliest  deadline  among  all  ready  tasks  and  the

system is able to keep on running at full processor speed

and without violating its deadline. Liu and Layland[14] as-

sume that  the  energy consumption for  every  task  in  the

computing  system  is  directly  connected  to  its  execution

time through  the  constant  recharging  power  of  the  pro-

cessor. Disadvantages of this algorithm are the following:

First  DVFS is  not  considered,  this  means that  tasks  are

executed  at  full  processor  speed  and  consequently,  some

future tasks  may  violate  their  deadlines  because  of  en-

ergy shortage. Secondly, authors assume the total energy

consumed by a task is necessarily proportional to its exe-

cution  time,  which  is  not  the  real  case  and  finally  slack

time is not used for energy savings.

In  practice,  the  total  energy  which  can  be  consumed

by  a  task  must  not  depend  on  the  worst  case  execution

time[15]. This  is  due  to  the  fact  that  the  worst  case  in-

stantaneous  power  consumed  by  every  task  depends  on

several factors like the circuitry and the instrumentation

used  by  the  task  during  and/or  after  its  execution.  In

reality, the highest power consumption of a running task

mainly  comes  from its  actuating  operation  or  from data

transmission ordered by the task. Under this assumption,

we  presented  a  scheduling  algorithm,  ED-H[16], that  ac-

counts for  the limits  of  both time and energy.  ED-H re-

lies on two basic concepts: slack time and slack energy. In

ED-H,  tasks  run  according  to  the  earliest  deadline  first

rule. However, before we authorize a task to execute, we

have to ensure that the energy storage capacity has suffi-

cient energy to complete the execution of all future occur-

ring tasks.  When  this  condition  is  not  verified,  the  pro-

cessor has to stay idle so that the storage unit recharges

as much as possible and as long as all  the deadlines can

still  be  met  despite  execution  postponement.  The  power

management strategy, ED-H, was proved in [16] to be op-

timal.  However,  in  order  to  build  an  optimal  schedule,

ED-H  needs  to  know  the  characteristics  of  the  future

tasks and the energy source profile.

This work was later extended in [17]  where tasks are

obliged to be scheduled according to an on-line algorithm

that ignores the arrival time of tasks and their future en-

ergy production. We can know the energy consumption of

tasks  only  when  they  are  released  on  the  processor.  For

this  manner,  we  presented  the  framework  of  an  on-line

monoprocessor scheduling  algorithm,  namely  energy  har-

vesting-earliest deadline  first  (EH-EDF).  The  main  ad-

vantage behind this scheduler is that it is completely on-

line and not clairvoyant such as EDF and hence it can be

easily implemented in any real-time operating system.

To achieve better system performance and energy effi-

ciency, several researchers focus on extending the classic-

al priority  driven  schedulers  to  variable-voltage  pro-

cessors to save power by slowing down the processor just

enough to meet the deadlines. Allavena and Mosse[18] de-

scribe an  off-line  scheduler  that  uses  voltage  and  fre-

quency selection (DVFS) for a frame based system. While

they permit the reduction of power consumption by slow-

ing down task execution under deadline constraints, their

approach  relies  on  the  unrealistic  assumption  that  both

the  instantaneous  consumption  power  and  production

power  are  constant.  Later  in  [19], we  set  the  full  hypo-

thesis  to  reduce  central  processing  unit  (CPU)  energy

consumption  by  proposing  an  optimal  energy  efficient

scheduling algorithm for aperiodic real-time jobs. Specific-

ally, we apply the concept of real-time process scheduling

to a dynamic voltage and frequency scaling (DVFS) tech-

nique.

Later  on,  Liu  et  al.[20] propose an  energy  aware  dy-

namic  voltage  and  frequency  scaling  algorithm,  called

EA-DVFS,  for  periodic  tasks.  EA-DVFS  can  efficiently

use the slack to reduce the deadline miss rate. Before ex-

ecuting a task, the processor must decide whether to run

with  full  power  or  reduced  power  based  on  the  energy

available in  the  energy  reservoir.  When  we  have  suffi-

cient energy  to  complete  the  task  execution,  the  pro-

cessor will operate at its full speed. Otherwise, the task is

stretched  and  executed  at  a  lower  speed.  In  case  of  low

workload, EA-DVFS algorithm reduces deadline miss rate

by  50%  compared  to  LSA  and  decreases  the  minimum

storage size by 25% when the deadline miss rate is zero.

The advantage of EA-DVFS is that it increases the per-

centage of  feasibly  executed  tasks  and  reduces  the  stor-

age capacity in case of low overload. However, this work

has some shortcomings:

1) Authors  define  the  term  “sufficient  available  en-

ergy” on a single current task. The system considers that

there is sufficient energy if  the remaining operation time

of system at the full speed is more than the relative dead-

line of the task. Let′s suppose that there is only 1% left in

the energy reservoir, then the system will operate at full

speed  and  consequently  the  deadline  of  the  task  will  be

violated. That is not the desired behavior.

2) For the aim of  energy savings,  task slacks are not

fully exploited. This is due to the fact that when author-

izing tasks to be scheduled, EA-DVFS considers only one

task  instead  of  considering  all  tasks  in  the  ready  task

queue and hence not all task slacks are exploited.

To  overcome  the  above  inconvenients,  Liu  et  al.[21]

propose a harvesting-aware DVFS (HA-DVFS) algorithm

to improve the system performance by fully exploiting the

task  slack  under  timing  and  energy  constraints.  HA-

DVFS combines the adaptive scheduling techniques with

dynamic  voltage  and  frequency  selection  to  reduce  the
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deadline  miss  rate  when  compared  to  LSA  and  EA-

DVFS.  With  the  aim  of  achieving  full  system  energy

autonomy, Lin et al.[22] propose a global control real-time

embedded  system  with  an  energy  harvesting  capability

(RTES-EH) scheduler.  The global  controller  aims to  ad-

opt a photovoltaic panel as the energy harvesting source,

a supercapacitor as the energy reservoir,  and a real-time

sensor node as the embedded device that performs an en-

ergy-harvesting aware real-time task scheduling with dy-

namic voltage and frequency scaling.

Srbinovski et al.[23] present an algorithm to adapt the

sampling  frequency  according  to  the  available  energy.

Tan and Yin[24] propose  an  algorithm based on dynamic

voltage and frequency scaling technique that dynamically

concentrates  all  dispersed  free  time  together  to  harvest

energy  by  dynamically  scheduling  harvesting  tasks  and

service tasks. Xu et al.[25] target the problem of energy-ef-

ficiency in  real-time  systems  with  DVFS under  the  con-

straint of reliability. For this reason, they present a glob-

al dynamic scheduling algorithm to maximize the energy

efficiency while ensuring the reliability.

3   System model and terminology

3.1   System model

The  real-time  energy  harvesting  system  (Fig. 1) con-

sidered in this work consists of three major units: energy

harvesting  unit  (EHU),  energy  storage  unit  (ESU)  and

energy  dissipation  unit  (EDU).  The  energy  harvesting

unit  harvests  the  energy  from  external  sources  like  sun,

wind, etc.

Apart from the applications running in the energy dis-

sipation unit,  there is additional software running in the

uniprocessor system, namely the scheduler. Earliest dead-

line  first  (EDF)  is  the  first  dynamic  priority  scheduler

used in our algorithm[26].  The other scheduler we used is

the DVFS which slows down task execution under dead-

line  constraints  depending  on  the  energy  harvested  and

energy in the storage unit.

3.1.1   Energy harvesting unit (EHU)

Ps(t)

We assume  that  the  ambient  energy  is  captured  and

converted into electrical power. The energy source is con-

sidered  to  be  unpredictable  but  we  still  can  predict  the

expected  availability  in  a  short-term  perspective  with  a

worst  case  charging  rate  (WCCR)  on  the  harvested

source  power  output,  namely .  Clearly,  we  do  not

make  any  consideration  about  the  nature  and  dynamics

of the energy source so as to make our model more easily

implemented  in  any  real  application  where  the  energy

source properties may not be available beforehand.

[t1, t2]

Es(t1, t2)

The energy  harvested  in  an  interval  of  time  is

denoted by  and can be calculated using the fol-

lowing formula:

Es(t1, t2) =

∫ t2

t1

Ps(t)dt. (1)

3.1.2   Energy storage unit (ESU)

C

Cmin
Cmax C = Cmax − Cmin

Cmin

We use in our work an ideal energy storage unit (su-

percapacitor  or  battery)  that  can  be  recharged  up  to  a

nominal capacity . Since we use an ideal energy storage

unit, we assume that the amount of energy wasted in the

charging and  discharging  process  is  neglected.  The  en-

ergy  level  has  to  remain  between  two  boundaries 

and  with . The lower limit of the

energy storage unit ( ) is not zero since there must al-

ways be a reserved energy in the energy storage unit for

worst case scenarios.
3.1.3   Energy dissipation unit (EDU)

fmin = f1 ≤ f2 ≤ · · · ≤ fn = fmax

fn Pn Vn

Pn

We  consider  a  real-time  system  equipped  with  a

DVFS-enabled processor. The variable speed processor is

assumed  to  be  working  with N discrete frequencies  ran-

ging  from .  The  power

consumption of  the  tasks  running  in  the  processor  de-

pends on the processor′s frequency. Thus, the power con-

sumption and  voltage  level  correspondent  to  clock  fre-

quency  are  denoted  as  and ,  respectively.  We

suppose that  is the overall power consumption of the

EDU that contains both dynamic power consumption and

 

T1 T2 T3 Tn

Ready queue

Uniprocessor computing system

EDF scheduling

Dynamic voltage and

frequency scaling

Energy harvesting

unit

Energy storage

unit

Ps(t) Scheduled tasks

{T1,T2, ... ,Tn}

Fig. 1     A real-time energy harvesting system model
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leakage power consumption.

Sn

fn
fmax Sn Smin

We consider a slow down factor  as the normalized

frequency  of  with  respect  to  the  maximum frequency

.  ranges from  to 1:

Sn =
fn
fmax

. (2)

We consider in our work that each task has different

power dissipation  that  varies  relative  to  its  correspond-

ing frequencies. Consequently, a task executes with max-

imum power dissipation when the frequency is maximum

and  this  power  consumption  decreases  as  the  frequency

decreases.

Pi(τi, Si)

Consequently, the power dissipation of a task must be

defined as function of the task index and its correspond-

ing slow down factor .

Γ = {τi|1 ≤ i ≤ n} (ri, Ci, Di, Ti, Ei)

τi Ci Di Ti Ei

ri
τi kTi k = 0, 1, 2, · · ·
τi Si

Ci(a) fi
Ci

Si

Ci(a) = Ci 0 ≤ Ci ≤ Di ≤ Ti

1 ≤ i ≤ n

We consider  here  a  set  of  independent  and  preempt-

ive  periodic  tasks  that  can  be  denoted  as  follows:

.  A five-tuple  is  used

to characterize a periodic task , where , ,  and 

indicate the worst case execution time (WCET), the rel-

ative deadline, the period and the worst case energy con-

sumption  (WCEC),  respectively.  Release  time  of  task

 is equal to , . When we stretch a task

 by  a  slow  down  factor ,  then  its  actual  execution

time  ( )  at  frequency  will  be . When  the  pro-

cessor  is  running  at  its  maximum  frequency,  then

.  We  assume  that  for  each

.

Γ

Tasks are scheduled on a monoprocessor system. Task

set  is said to be feasible if all tasks meet the deadlines.

(Ei) τiThe energy  dissipation  of  a  task  is  computed

as

Ei = Pi(τi, Si)×
(
Ci

Si

)
. (3)

4   Background material

4.1   EDF scheduling

t

t

The problem of scheduling periodic tasks on one pro-

cessor without energy constraints has attracted consider-

able research efforts in the past thirty years[27]. The most

popular approach is  the dynamic priority algorithms, in-

cluding the earliest deadline first (EDF) algorithm. EDF

places tasks in a priority queue. Whenever a task finishes

or a new task is released, the task closest to its deadline

will be executed. This means that, at each time instant ,

EDF schedule the ready task whose deadline is closest to

. EDF is proved to be an optimal scheduling algorithm.

EDF  fully  exploits  the  processor,  reaching  a  utilization

bound up to 100%.

Generally, EDF  implementation  offers  tasks  accord-

ing  to  their  priority  either  earliest  deadline  as  soon  as

possible  (EDS)[28] or  earliest  deadline  as  late  as  possible

(EDL)[28, 29].  EDF is  a  work-conserving  (also  called  non-

idling)  scheduling  algorithm  where  at  each  instant,  we

choose for execution the ready job with the closest abso-

lute deadline.

EDF is proved in [30] to be a class one scheduler for

energy harvesting applications because of its simplicity in

implementation and its optimality for non-idling settings.

4.2   Classical concepts for real-time
scheduling

tc
Γ

ω

In this subsection, we recall some definitions related to

real-time  scheduling.  Let  us  consider  as  the  current

time where we have to schedule a task set  by a certain

scheduling algorithm .

tc
Γ tc

At  a  current  time ,  we  define  the  slack  time  of  a

task  set  as  the  longest  interval  of  time  starting  at 

during  which  the  processor  may  be  idle  continuously

while still respecting all the timing constraints. Calculat-

ing  the  slack  time  at  run-time  is  performed  by  the  so-

called dynamic EDL schedule[29].

τi
tc

Definition 1. The slack time of a task  at current

time  is

STτi(tc) = di − tc − h(tc, di)−ATi (4)

ATi

tc
[tc, di) h(tc, di)

Γ [tc, di)

where  is  the  total  remaining  execution  time  of

uncompleted tasks currently ready at  and in the time

interval .  is the processor demand of a task

set  on the time interval .

STτi(tc)

di

Hence,  gives the  time  available  by  the  pro-

cessor  after  executing  uncompleted  tasks  with  deadlines

at or before .

Γ
tc

Definition 2. The slack time of a task set  at cur-

rent time  is

STΓ(tc) = min
di>tc

STτi(tc). (5)

tc

Equation (5) represents the maximum continuous pro-

cessor time that could be available from time  while still

guaranteeing the deadlines of all the tasks.

4.3   ED-H scheduling algorithm

Despite its  optimality  for  non-idling  settings  and  ro-

bustness properties,  EDF behaves poorly because it  con-

sumes the energy greedily. When considering energy as a

limiting  factor,  simply  executing  tasks  according  to  the

EDF  rule  may  lead  to  some  possible  deadline  misses.

Hence,  to  avoid  deadline  violation  in  energy  scavenging

systems, we presented an on-line scheduler called earliest

deadline-harvesting  scheduling  algorithm  (ED-H).  ED-H

is  an  EDF-based  real-time  scheduler  for  monoprocessor

energy-harvesting systems with considerations of both en-

ergy and time constraints. We take the hypothesis to be

that the  energy  consumption  of  any  task  can  be  per-
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formed with any power.

This means that before authorizing a task to execute,

the scheduler must ensure that the energy storage is suffi-

cient  to  execute  this  task  during  at  least  one  time  unit.

When this condition is not satisfied, the processor has to

postpone the execution of  the task as late as possible so

that  the  energy  reservoir  recharges  as  much  as  possible

and as long as all the deadlines can still be met.

The idea behind the ED-H is to order tasks according

to the earliest deadline first (EDF) rule. This rule is nat-

ural  since  tasks  have  hard  deadlines.  Executing  them in

accordance with their relative urgency appears to be the

best approach  even  if  they  are  not  systematically  ex-

ecuted as soon as possible.

The  major  difference  between  ED-H  and  EDF  is  on

the operation of the processor. This means that ED-H has

to decide when to let the processor busy in executing the

ready tasks  and  when  the  processor  has  to  be  idle.  Be-

fore executing  a  task,  the  energy  availability  of  the  sys-

tem  is  checked  to  ensure  that  energy  in  the  resevoir  is

sufficient  to  verify  the  scheduling  of  all  future  occurring

tasks, by  considering  both  their  timing  and  energy  re-

quirements  and  the  replenishment  rate  of  the  energy

reservoir[17].  Clearly,  this  means  that  there  is  sufficient

slack time.

To formally present ED-H, we need to illustrate some

novel  concepts  particularly  helpful  when  studying  the

feasibility of a task set when jointly consider both energy

and  deadline  requirements:  the  energy  demand  and  the

slack energy.

rk dk Ek

τk

Let ,  and  be release time, deadline and worst

case energy consumption of a task , respectively.

tc Γ

Hereafter, for  short,  we  will  actually  refer  to  the  dy-

namic slack energy (respectively the dynamic slack time)

as the  slack  energy  (respectively  the  slack  time)  at  cur-

rent time  when producing a schedule for  a task set 

by a certain scheduling algorithm.

tc
tc

We define  the  slack  energy  of  the  system  at  current

time  as  the  maximum amount  of  energy  that  can  be

consumed  from  continuously  while  still  satisfying  all

the timing constraints of the tasks[17].

τi
tc

Definition  3. The  slack  energy  of  a  task  at cur-

rent time  is

SEτi(tc) = E(tc) + Es(tc, di)− g(tc, di) (6)

Es(tc, di)

t1 t2

where  is the amount of energy that is produced

by the renewable energy source between  and .

Γ tc
PSEΓ(tc)

Since the main principle of ED-H is to execute a task

as long as no future starvation could occur, this leads us

to define a new terminology, named preemption slack en-

ergy (PSE).  The PSE of  a task set  at current time 

( ) is the maximum amount of energy that could

be consumed by the currently active task while still guar-

anteeing energy feasibility for tasks that may preempt it[30].

Γ tc

Definition 4. The preemption slack energy of a task

set  at current time  is

PSEΓ(tc) = min
tc<ri<di<d

SEτi(tc) (7)

d tcwhere  is the deadline of the active task at time .

Qr(t)

t SEΓ(t) STΓ(t)

Γ t

Let  be  the  queue  of  uncompleted  tasks  which

are ready for execution at time .  and  are

respectively  the  slack  energy  and  the  slack  time  of  the

task set  at time . The ED-H scheduling algorithm fol-

lows the below rules:

Qr(t)

Rule 1. The EDF priority order is used to select the

future running task in .

[t, t+ 1)

Qr(t) = ϕ

Rule 2. The processor is imperatively idle in 

if .

[t, t+ 1)

Qr(t) ̸= ϕ E(t) = 0 SEΓ(t) = 0

Rule 3. The processor is imperatively idle in 

if  and either  or .

[t, t+ 1)

Qr(t) ̸= ϕ E(t) = C STΓ(t) = 0

Rule 4. The processor is imperatively busy in 

if  and either  or .

Qr(t) ̸= ϕ 0 < E(t) < C STΓ(t) > 0 SEΓ(t) > 0

Rule 5. The processor can equally be idle or busy if

, ,  and .

The ED-H scheduler achieves full energy autonomy for

monoprocessor  scheduling  while  considering  both  time

and energy harvesting constraints.

Theorem  1. The ED-H  scheduling  algorithm  is  op-

timal for the real-time energy harvesting (RTEH) model.

Proof. See [16].  □

4.4   Motivational example

Γ

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti, Ei)

τ1 = (1, 3, 5, 30) τ2 = (2, 7, 10, 80) τ3 = (3, 12, 20,

C

t = 0

Ps

Consider a task set  that is composed of three peri-

odic  tasks,  and .

Let ,  and 

180). We assume that the energy reservoir has capacity 

equal to 200 energy units at . For ease of simplicity,

we  consider  that  the  rechargeable  power  is  constant

along the hyperperiod and equal to 10.

Up =
∑n

i=0

Ci

Ti
= 0.55 < 1

Up ≤ 1

Ue ≤ Ps

Ue =
∑n

i=0

Ei

Ti
= 23 > 10

Before  beginning  the  schedule,  we  have  to  verify  the

feasibility conditions. The processor utilization 

.  Consequently,  the  necessary  feasibility

condition  related  to  timing  constraints, , is  satis-

fied. On  the  other  side,  the  necessary  feasibility  condi-

tion related to energy constraints, , is not respec-

ted because .

Γ

Γ
t = 12

Let us schedule  according to ED-H within the first

hyperperiod ([0, 20]). We show that  is not schedulable

because of energy starvation at time  (Fig. 2). The

system  stops  immediately  and  the  deadline  miss  rate

amounts to 42%. In detail:

t = 0

C(0) = 200 τ1
t = 1 C(1) = C(0)− E1 + (PS × C1) = 180

t = 0

t = 1

t = 0

τ1

1)  At  time ,  all  task  instances  are  ready  and

. , as the highest priority task, runs and fin-

ishes  at .  en-

ergy  units.  Since  there  is  no  task  instance  in  the  ready

queue released after  with deadline less than or equal

to the current time ( ), the slack energy does not re-

quire  to  be  computed  at .  We  just  have  to  verify

that the energy level in the reservoir permits us to satis-

fy the energy requirement of task .
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t = 1 τ1
t = 3

C(3) = 120

2)  At  time ,  has  the  highest  priority  task,

ready  to  be  processed,  runs  and  finishes  at .

 energy units.

t = 3 τ3
C(3) = 120

C = Cmax

t = 3

t = 5

C(5) = 140

3)  At ,  is  now  ready  to  be  processed  and

. But there is no sufficient energy in the stor-

age unit for execution. So, we have to insert an idle time

to let the processor inactive as long as the energy storage

unit  is  not  fully  replenished  ( )  and  the  latest

start time of the next periodic task has not been attained.

The slack time at time  is equal to 2. Hence, the en-

ergy  storage  capacity  is  recharged  until  where

.

t = 5 τ1 t = 6

C(6) = 120

4) At ,  is released, runs and finishes at .

 energy units.

τ3

t = 6

t = 9 C(5) = 150

5) Now,  is the highest priority task ready to be pro-

cessed, but there is no sufficient energy for execution. An-

other time, we have to insert an idle time. The slack time

at time  is equal to 3. Hence, the energy storage ca-

pacity is recharged until  where .

t = 9 τ3
t = 12

6) At ,  has the highest priority task, ready to

be  processed,  runs  and  finishes  at  where the  en-

ergy storage unit is now empty.

t = 12 τ1

t = 12

7) At ,  has the highest priority task, but the

energy  reservoir  is  now empty  and  the  processor  cannot

be idle. Consequently, we stop scheduling at time .

5   Energy guarantee-dynamic voltage
and frequency scaling (EG-DVFS)
algorithm

In this work, we propose an energy guarantee dynam-

ic voltage and frequency scaling algorithm that scales the

processor speed for executing a task based on the energy

found in the storage unit as well as the available harvest-

ing  energy  and  deadline  of  a  task  which  in  fact  scales

down  to  conserve  energy  for  future  running  tasks.  The

EG-DVFS scheduling scheme jointly accounts for the re-

quirements arising from both the energy and time domain.

5.1   Presentation of the algorithm

EG-DVFS algorithm is designed to order tasks accord-

ing to the EDF scheduling policy. The difference between

EG-DVFS and classical EDF (or EDS) is to decide when

to execute tasks at full  processor speed and when to de-

crease the speed processor while meeting all deadlines.

Sti Fti
τi

Initially, we  try  to  execute  all  task  instances  accord-

ing  to  the  EDF  scheduler  where  the  system  operates  at

full  processor  speed.  Let  us  consider  that  there  are M

task instances in the ready queue.  The start time of  the

task is  derived  under  the  assumption  that  the  task  ex-

ecutes at  the  constant  processor  speed  until  its  comple-

tion.  and  are respectively considered as the start

time and finish time of task .

τ1

We consider  that  the  start  time  of  the  first  task  in-

stance  in the ready queue is equal to its release time.

St1 = r1. (8)

Thus, we  can  compute  the  start  time  of  the  remain-

ing task instances as

Sti = max(ri, F ti−1) (9)

2 ≤ i ≤ M − 1where .

Before authorizing a task to execute, we must ensure

that there is  sufficient energy to completely execute this

task  during  the  next  time  unit,  which  represents  the

worst case  situation.  Thus,  we  have  to  compute  the  re-

maining  energy in  the  energy storage  unit  at  the  end of

the task execution using the following equation:

C(Fti) = C(Sti) + Es(Sti, F ti)− Ei(Sti, F ti) (10)

(Si = 1)

when  the  energy  in  the  storage  capacity  is  sufficient  to

execute  a  task,  then  this  task  will  be  executed  at  the

scheduled start time and with full processor speed .

Sti
Ci(a)

When  we  cannot  verify  this  condition,  the  processor

has  to  execute  the  task at  the  head of  the  queue at  the

derived speed that is computed by scaling down the oper-

ating processor speed as much as possible and as long as

the  system  will  be  able  to  meet  all  the  deadlines.  This

means that we have to decide the slow down factor for all

task instances based on the processor utilization and en-

ergy  state.  Thus,  we  have  to  compute  the  slack  time  of

the  system  at  and  the  task′s  execution  time  will  be

stretched to the actual execution time  where

Ci(a) = Ci + ST (Sti). (11)

τiThe  finishing  time  of  task  instance  can be  calcu-

lated as

Fti = St(i) + Ci(a). (12)

Consequently, the start time of the next task instance

will be

Sti+1 = max(ri+1, F ti). (13)

The slow down factor is thus computed by the follow-

ing equation:

 

10

10

3 5 8 13 15 18 20

20

20

120

0

0

7 17

Ƭ
1

Ƭ
2

Ƭ
3

 
Fig. 2     Task scheduling according to ED-H

 

 360 International Journal of Automation and Computing 16(3), June 2019

 



Si =
Ci

Ci(a)
. (14)

τiSince,  every  task  must complete  the  execution  be-

fore  its  absolute  deadline,  then  the  following  equation

must hold:

ri + di − ci(a) ≥ max{ri, t} (15)

twhere  is the current time instance.

τiFurthermore, the execution of any real-time task  is

considered  to  be  preemptable  which  means  that  when  a

task of higher priority becomes ready, it will preempt the

execution of the current task of lower priority.

τi

Sti = max(ri, F ti−1) τi

ri

This implies that the start time of a task  is equal to

 when  finishes  its  execution

without being preempted by another task. When preemp-

tion  occurs,  the  start  time  of  the  newly  arrived  task  is

equal to . That is

Sti =

{
max(ri, F ti−1), if ri + di − Ci(a) ≥ max(ri, t)
ri, otherwise.

(16)

However, when  we  resume  execution  of  the  preemp-

ted  task,  it  has  the  opportunity  to  run  at  the  same  or

different  processor  speed,  depending  upon  the  system

state.

The EG-DVFS algorithm works as follows: First, EG-

DVFS checks if there are ready instances in the queue to

be  executed.  If  not,  the  processor  is  made  idle  until  the

next  task  release.  Otherwise,  EG-DVFS  selects  the

highest priority instance ready for execution.

Before  executing  the  ready  task  instance  with  the

highest priority,  EG-DVFS tests  if  there is  sufficient en-

ergy in the energy storage unit. Moreover, EG-DVFS cal-

culates the slack energy of all instances with a higher pri-

ority but not ready. The slack energy of the system is the

minimum of all these slack energies.

If the system slack energy is positive and there is suf-

ficient energy for execution, then the task instance will be

executed  with  the  highest  speed.  Otherwise,  EG-DVFS

scales down the frequency of the processor. The question

is:  by  how  much?  EG-DVFS  answers  this  question  by

computing the slack time of the system. Now, the sched-

uler is able to scale down the processor speed to the low-

est  possible  level  while  EG-DVFS jointly  considers  slack

time  and  energy  state  is  more  conservative.  Consequen-

tly, we  stretch  the  execution  time  of  the  ready  task  in-

stance  to  its  actual  execution  time  without  violating

deadlines.  Upon  stretching  the  execution  time  of  a  task

instance, the recharging energy increases (execution time

increases) and the energy dissipation decreases.

EG-DVFS can now compute the slow down factor  of

the corresponding  task  instance  and  the  energy  dissipa-

tion can then be chosen.

5.2   Frequency tuning in case of energy
overflow

When  the  energy  reservoir  reaches  its  full  charge  or

overflow  occurs,  the  incoming  ambient  energy  overflows

the storage and the extra energy is wasted. This overflow

completely counteracts our previous effort to save energy

by  slowing  down  task  execution.  Hence,  the  execution

speed  of  a  task  must  be  fine-tuned  to  eliminate  energy

overflow while still  meeting energy and time constraints.

In this work, and in case of insufficient energy, tasks are

executed  at  the  minimum  possible  operating  frequency

which respects the deadline of the task and it will be in-

creased to the next higher level to avoid energy overflow.

C(Fti) =

C(Sti) + Es(Sti, F ti)− Ei(Sti, F ti)

C(t)

C(t) C

In case of insufficient energy, EG-DVFS stretches the

task  execution  time  to  its  maximum  level  which  is  just

enough to meet the deadline of the task. It then checks if

an  energy  overflow  occurs.  In  other  words,  if 

 holds,  the  overflow

occurs.  In  this  case,  EG-DVFS  increases  the  speed  level

to  next  higher  level,  updates  and  rechecks  whether

the  energy  still  overflows.  This  process  is  then  repeated

until  is less than or equal to .

When  fine-tuning  the  operated  frequency,  overflow

will  be eliminated and more slack time will  be saved for

remaining tasks.

5.3   EG-DVFS algorithm

C(t) SE(t) ST (t) t

C(t)

t

SE(t) ST (t)

t

The major components of EG-DVFS algorithm are the

following: ,  and . We assume that  is the

current time,  is the amount of energy that is stored

in  the  energy  reservoir  at  time . In  addition,  we  con-

sider that  and  are respectively the slack en-

ergy  of  the  system  and  the  slack  time  of  the  system  at

time .

The  function  execute()  enables  the  processor  to  run

the ready job with the earliest deadline at its correspond-

ing frequency.

We  describe  in  Algorithm  1  the  pseudo  code  of  the

EG-DVFS scheduler:

Algorithm 1. Energy guarantee dynamic voltage and

frequency selection (EG-DVFS) algorithm.

Γ = {τi|τi = (ri, Ci, Di, Ti, Ei) i = 1, · · · ,M}
t Cmax

Cmin C(t)

Ps(t)

Require: A  Set  of M EDF-based  periodic  tasks

, current time

, energy reservoir with capacity bounded between 

and , energy level of the battery ,  source power

.

f1 fmin fN fmax

Ensure: A processor working with N discrete frequen-

cies ranging from  ( ) to  ( ).

1) Sort task instances according to the EDF rule

2) Determine the start time of task instances

3) for i = 1:M do

4)　if i == 1 then

St1 = r15)　　

6)　else
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Sti7)　　Calculate  from equation (16)

8)　end if

9) end for

τi
Si = 1

10) Assume we have to execute task instance  with

full processor speed ( ).

11) Calculate  the  energy  that  is  remained  in  the  en-

ergy storage unit at the end of the execution.

C(Fti) = C(Sti) +
∫ Fti
Sti

Ps(t)dt− Ei(Sti, F ti)12) 

C(Fti) ≥ Cmin SE(Sti) > 013) if (  and ) then

14)　execute()

15) else

ST (Sti)16)　Compute 

Ci(a) = Ci + ST (Sti)17)　Actual execution time 

Fti = Ci + ST (Sti)18)　

Si =
Ci

Ci(a)
19)　Slow down factor 

20)　Update execution time

Ei21)　Select the relative energy consumption ( )

C(Fti)22)　Compute  using equation (10)

C(Fti) > C23)　if  then

j = i+ 124)　　for  to N do

C(Fti)25)　　　Update  using equation (10)

C(Fti) ≤ C26)　　　if  then

27)　　　　break

28)　　　end if

29)　　end for

30)　end if

Sti+1 = max(ri+1, F ti)31) 

Si =
Ci

Ci(a)
32) Slow down factor 

33) Update execution time

τi34) Remove task  from ready task list

35) end if

The main contributions of EG-DVFS are:

1)  Optimization process  is  based on both energy and

timing constraints.

2) It fully explores the tradeoff between slack time as

well as slack energy to save energy when the ready queue

contains multiple tasks at the same time.

3) It allows DVFS techniques to stretch the processor

speed of periodic tasks such that overall energy consump-

tion  of  the  system  is  reduced  and  a  greater  number  of

task are accepted.

4) Avoid wasting the overflow energy. We only waste

energy  when  there  are  no  ready  tasks  in  the  queue  and

the storage unit is fully replenished.

5.4   Efficiency

O(K.n) n⌊
R

p

⌋

The computations  of  slack time and slack energy are

the major  keys  to  the  operation  of  the  EG-DVFS  al-

gorithm.  As  proved  in  [31],  the  slack  time  of  a  periodic

task  set  at  a  given  time instant  can be  obtained on-line

by  computing  the  dynamic  EDL  scheduling  algorithm,

with complexity , where  is the number of peri-

odic tasks, and K is equal to , where R and p are, re-

O(K.n)

O(K.n)

spectively the longest deadline and the shortest period of

current ready  tasks.  Moreover,  the  complexity  for  com-

puting  the  slack  energy  is  too[16].  As  EDeg  has

low and constant space requirements, this makes it easily

implementable on many low-power, unsophisticated hard-

ware platforms  including  micro-controllers.  We  can  con-

clude that the time complexity for EG-DVFS is .

5.5   Illustrative example 1

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti) τ1 = (1, 3, 5)

τ2 = (2, 7, 10) τ3 = (3, 12, 20)

C

t = 0

Ps

Si = {1, 0.75, 0.5, 0.3, 0.2, 0.1}
τi

Consider  the  above  example  where  a  task  set

 and .  Let ,

 and . We assume that the en-

ergy reservoir has capacity  equal to 200 energy units at

.  For  simplicity,  we  consider  that  the  rechargeable

power  is constant along the hyperperiod and equal to

10. The processor is assumed to be working with six dis-

crete  slow  down  factors .

The power dissipation of tasks  is shown in Table 1.

Γ

Γ

In  this  example,  we  have  to  schedule  according  to

EG-DVFS within the first hyperperiod. We show that 

is  schedulable  since  all  tasks  are  executed  before  their

deadlines  and  without  depleting  the  energy  reservoir.  In

details:

t = 0

τ1

t = 1 C(1) = 180

1)  At  time  (Fig. 3),  all  tasks  are  ready  and

stored in the ready queue.  has the earliest deadline and

is executed till  where  energy units.

t = 1 τ2 t = 3

C(1) = 120

2)  At  time ,  is  executed  until  where

 energy units.

t = 3 τ3

τ3

S3 S3 =
3

4
= 0.75

τ3 E3 = 120

3) At ,  is the highest priority task ready to be

processed but it cannot run at maximum speed because of

insufficient  energy  in  the  battery.  So,  we  have  to  slow

down the processor in such a way that the deadline is not

violated. The slack time is equal to one. Thus, the actual

execution time for  is equal to four and the slow down

factor  is . Consequently, the energy dis-

sipation for  is  (see Table 1).

 

τiTable 1    Energy dissipation of tasks 

Energy dissipation S = 1 S = 0.75 S = 0.5 S = 0.3 S = 0.2 S = 0.1

τ1Task  30 20 9 5 1 0.5

τ2Task  80 50 35 10 5 2

τ3Task  180 120 60 27 15 12
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Fig. 3     Task scheduling according to EG-DVFS

 

 362 International Journal of Automation and Computing 16(3), June 2019

 



t = 3

In  addition,  we  have  to  calculate  the  slack  energy  of

the system at time .

SE(t = 3) = C(3)+

∫ 12

3

Ps(t)dt−(E1+E3) = 60 > 0. (17)

τ3 t = 3 t = 5

S3 = 0.75 C(5) = 20

Now,  is  executed  from  to  with  a  slow

down factor  where  energy units.

t = 5 τ3 τ1
t = 6

4) At ,  is preempted by  that runs and fin-

ishes  at  where  the  energy  storage  unit  is  now

empty.

t = 6 τ3

τ3 t = 8

5)  At ,  continues its  execution  where  its  en-

ergy consumption is equal to 120 – 100 = 20 energy units.

 finishes  its  execution  at  where the  energy  stor-

age unit is again empty.

t = 8 t = 10

C(10) = 20

6)  The  processor  is  idle  from  to  where

 energy units.

t = 10 τ1

t = 11 C(11) = 0

7) At ,  is released and has the highest prior-

ity  task,  ready  to  be  processed,  runs  and  finishes  at

 where  energy units.

t = 11 τ2

τ2

S2 S2 =
2

6
= 0.33 S2 = 0.33

S2

8)  At ,  is  the  highest  priority  task  ready  to

be processed  but  it  cannot  run  at  maximum  speed  be-

cause of insufficient energy in the battery. So, we have to

slow down the processor in such a way that the deadline

is not violated. The slack time is equal to four. Thus, the

actual execution time for  is equal to six and the slow

down factor  is .  Since,  is  not

found  in Table  1,  then  we  have  to  choose  the  nearest

value greater than 0.33. Consequently,  becomes equal

to  0.5  and  the  actual  execution  time  becomes  equal  to

four.

τ2
E2 = 35

According to Table 1, when the slow down factor of 

is  0.5,  then  the  energy  dissipation  is  energy

units.

τ2 t = 11 t = 15

C(15) = 5

Now,  can be executed from  to . This is

because when we stretch the execution time, the harves-

ted energy increases and the energy dissipation decreases.

The energy left is  energy units.

t = 15 τ1
τ1 t = 17

S1 = 0.5 C(17) = 16

9) At ,  is released, but again there is no suffi-

cient  energy.  is  then stretched until  where  the

slow down factor is  and  energy units.

C(t = 20) = 46

10) Now, the system is idle until the end of the hyper-

period where  energy units.

5.6   Illustrative example 2

Γ

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti, Ei)

τ1=(1, 5, 6, 12) τ2=(2, 8, 10, 17) τ3=(3, 7, 15, 19)

C = 10

t = 0

Cmin = 0 Cmax = C

Ps = 5

Consider  a  periodic  task  set  that  is  composed  of

three  tasks,  and .

Let ,  and .

We  assume  that  the  energy  storage  capacity  is 

energy  units  at .  For  simplicity,  we  assume  that

,  and the  rechargeable  power  is  con-

stant along the hyperperiod and equal to 5 ( ).

Up =
∑n

i=0

Ci

Ti
=

Let us  verify  the timing and energy feasibility  condi-

tions.  First,  the  processor  utilization 

17

30
≤ 1

Up ≤ 1

Ue =
∑n

i=0

Ei

Ti
=

149

30
≤ 5

Ue ≤ Ps

.  Consequently,  the  necessary  feasibility  condition

related to timing constraints,  is satisfied. Second,

the  energy  utilization  and  the

necessary feasibility  condition  related  to  energy  con-

straints, , is satisfied.
5.6.1   Scheduling under ED-H

Γ

Γ

t = 7

Let us schedule  according to ED-H within the first

hyperperiod,  from  0  to  30.  We  verify  that  is  not

schedulable  because  of  energy  starvation  at  time 

(Fig. 4).  The  system stops  immediately  and  the  deadline

miss rate amounts to 80%.

In details:

t = 0

C(0) = 10 τ1

t = 1 C(1) = C(0)− E1 + (Ps × C1) = 10− 12+

5 = 3

τ1
t = 0

τ1

1)  At  time ,  all  task  instances  are  ready  and

. , as the highest priority task, runs and fin-

ishes  at . 

 energy units.  As there is no task instance released

after  0  with  deadline  less  than  that  of , the  slack  en-

ergy  does  not  require  to  be  computed  at .  We  just

have  to  verify  that  the  energy  level  in  the  storage  unit

permits to satisfy the energy requirement of task .

t = 1 τ2

t = 2 E(2) = 8

2) At time ,  has the highest priority task and

is ready  to  be  processed.  But  there  is  not  sufficient  en-

ergy to  complete  the  execution.  Consequently,  the  pro-

cessor is let idle until  where  energy units.

t = 2 τ2
t = 4 E(7) = 11

3) At time ,  as the highest priority task, ready

to be processed, runs and finishes at .  en-

ergy units.

t = 4 τ34) At time ,  has the highest priority task and

ready to be processed. However, the energy storage capa-

city is not sufficient to complete the execution and there

is  no  slack  time.  Hence,  the  system  stops  immediately

without completing the execution.
5.6.2   Scheduling under EH-DVFS

Γ

Si = {1, 0.75,
0.5, 0.3, 0.2, 0} τi

Now,  is  scheduled  according  to  EH-DVFS  within

the  first  hyperperiod.  The  processor  is  assumed  to  be

working with six discrete slow down factors 

. The power dissipation of tasks  is shown

in Table 2.

ΓWe verify  that  is schedulable  and the  energy stor-

age  capacity  is  again  full  at  the  end of  the  hyperperiod.

(Fig. 5).

In detail:

t = 0

C(0) = 10 τ1

1)  At  time ,  all  task  instances  are  ready  and

. , as the highest priority task, runs and fin-
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Fig. 4     Task scheduling according to ED-H
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t = 1 C(1) = C(0)− E1 + (Ps × C1) = 10− 12+

5 = 3

τ1
t = 0

τ1

ishes  at . 

 energy units.  As  there  are  no  task  instance  re-

leased after 0 with deadline less than that of , the slack

energy  does  not  require  to  be  computed  at .  We

have  just  to  verify  that  the  energy  level  in  the  storage

unit is able to satisfy the energy requirement of task .

t = 1 τ2

τ2

S2 S2 =
2

3
= 0.66

τ2 E3 = 13

2) At time ,  has the highest priority task and

is ready  to  be  processed.  But  there  is  not  sufficient  en-

ergy to complete the execution. So, we have to slow down

the processor in such a way that the deadline is not viol-

ated. The slack time is equal to one. Thus, the actual ex-

ecution  time for  is  equal  to  three  and the  slow down

factor  is . Consequently, the energy dis-

sipation for  is  (see Table 2).

τ2 t = 1 t = 4

S2 = 0.66 C(4) = 5

3) Now,  is executed from  to  with a slow

down factor  where  energy units.

t = 4 τ3
t = 7

E(7) = 1

4) At time ,  is the highest priority task and is

ready  to  be  processed,  runs  and  finishes  at .

 energy units.

τ1

τ1

S1 S1 =
1

3
= 0.33

τ1 E1 = 5 τ1
t = 7 t = 10 S1 = 0.33

5)  The  second  task  instance  of  is ready  to  be  ex-

ecuted  but  again  we  have  to  slow  down  the  processor.

The slack time is equal to three but we need only two to

fully  replenish  the  energy  storage  unit.  Thus,  the  actual

execution time for  is equal to three and the slow down

factor  is . Consequently, the energy dis-

sipation  for  is .  Consequently,  is  executed

from  to  with  a  slow  down factor 

where the energy storage unit is full again.

t = 10 τ2

τ2

6) At time ,  has the highest priority task and

is  ready  to  be  processed.  The  energy  storage  capacity  is

sufficient to execute  with full processor speed.

t = 10

In  addition,  we  have  to  compute  the  slack  energy  of

the system at time .

SE(t = 10) = C(10) +

∫ 18

10

Ps(t)dt− (E1 + E2) = 21 > 0.

(18)

τ2 t = 10 t = 12

C(12) = 3

Consequently,  is  executed  from  to 

where  energy units.

t = 307) This procedure continues until  where the en-

ergy storage unit is full.

6   Experimental results and discussions

6.1   Simulation details

n

Up Ue

Ps(t)

∑n
i=1

Ci

Ti
= Up ≤ 1

∑n
i=1

Ei

Ti
= Ue ≤ Ps Ps

Extensive simulation  experiments  have  been  per-

formed to evaluate the performance of the EG-DVFS al-

gorithm in  terms  of  energy  saving  and  performance  im-

provement. We developed a simulator in C/C++ . In the

simulator,  we implement  EG-DVFS with respect  to  ED-

H. We use the task generator of periodic tasks as the one

described  by  Martineau[32]. Experiments  are  built  by  se-

lecting as  input  several  parameters:  the  number  of  syn-

thesized  tasks , the  hyperperiod  of  task  periods,  pro-

cessor utilization , energy utilization  and the rechar-

ging power . For each experiment set, the algorithm

was simulated 100 times, generating a task configuration

of the scheduled task set. The worst case execution times

of  tasks  are  randomly generated such that  the  processor

utilization .  The  energy  consumptions

of tasks are also randomly generated based on the energy

utilization factor such that  where 

is the average recharging power.

Up Ci ≤ Di ≤ Ti

τi

The  simulator  generates  30  tasks  with  least  common

multiple  of  the  periods  equal  to  3 360.  The  worst-case

computation times are set according to the processor util-

ization . We also consider that  for every

task .

Ps(t)The rechargeable power  may be constant or may

vary according to time.  For this  reason,  a random num-

ber  generator  is  found  at  the  input  of  the  simulator  to

produce for every quantum of time within the hyperperi-

od,  a power energy profile  with minimum value 5 and a

maximum value 35.

To estimate the energy consumption of  tasks,  we use

an  Intel  XScale  processor  that  supports  five  frequency

levels[33].  Values  of  the  discrete  frequencies,  supply

voltage and consumed power of the processor are listed in

Table 3.

The effect of processor utilization on the task set feas-

ibility  ratio  and the  average  energy  consumption  can be

seen from the Figs. 6–8.

We assume that the energy storage is fully charged at

the beginning  of  the  simulation.  After  a  deadline  viola-

 

τiTable 2    Energy dissipation of tasks 

Energy dissipation S = 1 S = 0.75 S = 0.5 S = 0.3 S = 0.2 S = 0.1

τ1Task  12 9 5 3 2 1

τ2Task  17 13 8 5 3 2

τ3Task  19 14 10 7 5 3
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tion is detected, the simulation terminates for ED-H and

EG-DVFS.

6.2   Percentage of feasible task sets by
varying battery capacity

C

Our simulation depicts the percentage of feasible task

sets by varying the energy reservoir capacity . Here, we

conduct  experiments  with  different  processor  utilization

profiles  to  test  the  significant  increase  in  the  percentage

of task sets with EG-DVFS, compared with the greedy al-

gorithm ED-H.

To evaluate the method that combines ED-H with the

DVFS technique, we just set the processor utilization val-

ues to 0.4 and 0.8, respectively. We show that EG-DVFS

can perform better  than the ED-H while  considering en-

ergy consumption.

Cfeas

For each task set, we find the minimum storage capa-

city  that  permits  us  to  schedule  all  task  sets  by

EG-DVFS  without  violating  deadlines  and  the  energy

reservoir is fully replenished at the end of the hyperperi-

od. After that, we increase the reservoir capacity so that

all task sets are feasible with ED-H. Fig. 6 shows the task

set feasibility ratio under different desired processor util-

izations.

Up = 0.4For the case , we observe that the battery ca-

pacity must be more than 3.2 times bigger with ED-H to

maintain 100% feasible task sets compared to EG-DVFS.

This  is  due  to  the  fact  that  EG-DVFS  is  able  to  slow

down the speed of tasks and save energy so as to obtain a

better  opportunity  to  accept  a  greater  number  of  tasks.

However,  without  DVFS  based  approach,  ED-H  algori-

thm always execute tasks at full processor speed and the

energy storage in the reservoir is  consumed earlier.  Con-

sequently, there is more chance to reject tasks due to en-

ergy  shortage.  In  other  words,  the  more  stored  energy

means that more tasks are able to be finished before their

deadlines. Hence, the ED-H system incurs a much higher

deadline miss rate when compared to EG-DVFS.

 

Table 3    XScale frequencies, supply voltages and power

Frequency (MHz) 150 400 600 800 1 000

Power (mW) 80 170 400 900 1 600

Voltage (V) 0.75 1.0 1.3 1.6 1.8
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Fig. 6     Percentage  of  feasible  task  sets  by  varying  battery
capacity
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Fig. 7     Variation  of  the  remaining  energy  level  with  low
utilization
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Fig. 8     Variation  of  the  remaining  energy  level  with  high
utilization
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Fig. 6(a) shows  that  the  deadline  miss  rate  of  ED-H

exceeds  that  of  the  proposed  scheduling  algorithm  by

about 56%  and  32%  when  battery  capacity  is  respect-

ively the  same  and  twice.  Hence,  the  EG-DVFS  al-

gorithm is favorable even for small battery capacity.

Up

If we increase the processor utilization to 0.8 and run

the simulation again, we observe that the gain in energy

savings is decreased but EG-DVFS still beats ED-H by a

large  margin.  EG-DVFS  obtains  capacity  savings  of

about 45% compared to ED-H. This is because the funda-

mentals  that  EG-DVFS  outperform  are  such  that  the

used  slack  time  to  slow  down  task  execution  such  that

energy  is  saved  for  future  tasks.  When  is  high,  slack

time decreases and most of tasks are just executed at the

full speed, as the ED-H algorithm does.

If  we  consider  the  case  when  the  processor  is  always

busy,  EG-DVFS,  ED-H  and  EDS  require  exactly  the

same energy storage.  This is  because the processor is  al-

ways active and there is no processor slack time.

6.3   Remaining energy in the battery

In this experiment, we are interested in the remaining

energy stored in the system at any current time. The im-

portance of this study comes from the fact that we must

always  have  energy  in  the  storage  unit  to  complete  the

execution of tasks, otherwise the scheduler will stop.

Up

We aim to illustrate how the energy level in the stor-

age unit changes along time. We only report this informa-

tion  for  the  three  following  schedulers:  EDS,  ED-H,  and

EG-DVFS.  When  is  set  to  0.4,  the  remaining  energy

curves in EDS, ED-H, and EG-DVFS schedulers are both

plotted in Fig. 7. Under EDS, the remaining energy is de-

creasing until  the storage unit  is  empty or not sufficient

to  execute  the  highest  priority  instance.  It  is  observed

from Fig. 7 that ED-H runs as EDS except that, whenev-

er there is no sufficient energy to execute the highest pri-

ority task, then the processor becomes idle. Consequently,

whenever a  task  is  required  to  run,  the  scheduler  com-

pares its  energy  consumption  with  the  amount  of  avail-

able energy during one unit of time. According to the res-

ult of that test, either the task will be authorized to ex-

ecute  or  the  processor  will  idle.  This  mechanism implies

that  the  battery  level  will  decrease  systematically  when

executing a task without necessarily attaining the minim-

um level, i.e., 0. Then, the storage unit will recharge un-

til  being  fulfilled  as  long  as  the  system  will  be  able  to

meet all the deadlines. Of the three algorithms, EDS and

ED-H has the smallest amount of current energy as it op-

erates  at  the  highest  processor-supported  frequency  and

does not employ DVFS to save energy.

t = 0 t = 350

In details, EDS, ED-H and EG-DVFS are executed as

EDS from time  till time . Thus, the current

battery  energy  is  the  same  under  the  three  scheduling

policies.  EDS  and  ED-H stop  respectively  at  about  10%

and  71%  of  the  total  length  of  the  hyperperiod  when

there is no more energy in the storage unit. As dedicated

in Fig. 7,  the  EG-DVFS  scheduler  stores  significantly

more energy than the ED-H scheduler on average. That is

because EG-DVFS algorithm slows down the task execu-

tion for energy savings. On the contrary, ED-H scheduler

always executes  the  task  at  the  full  speed  and  it  con-

sumes more energy to finish an identical task.

UpWhen the processor utilization  is set to 0.8, we ob-

tain another plot shown in Fig. 8. We observe that as the

processor utilization  increases,  the  average  energy  con-

sumption  increases.  By  observing  the  variation  in  the

stored energy, we still find that ED-H and EDS have the

smallest amount of current energy since it operates at full

processor speed  and  does  not  employ  DVFS to  save  en-

ergy.  When  the  processor  utilization  is  high  (say  80%),

our proposed  approach  still  has  significant  energy  sav-

ings  of  almost  23%  in  average  energy  consumption  over

existing ED-H . The reason comes from two facts: On one

hand, when  the  processor  utilization  is  high,  the  pro-

cessor is almost busy and rarely has chance to slow down

the task execution for energy saving. Consequently, most

of the tasks will  be executed at full  speed. On the other

hand, the chance for the system to be completely idle is

also reduced and thus the system has no chance to har-

vest energy from the renewable energy source. Hence, the

consumed energy can not be supplemented in time.

7   Conclusions

Up

In  this  work,  we  presented  an  energy  guarantee

scheduling and voltage/frequency selection algorithm tar-

geting real-time  systems  with  energy  harvesting  capabil-

ity.  The  proposed  algorithm  is  an  extension  of  ED-H

combined  with  dynamic  voltage  and  frequency  selection.

In  the  case  of  insufficient  energy,  we  make  use  of  the

slack time  for  energy  saving  by  applying  DVFS  tech-

niques  to  stretch  the  execution  time  of  the  ready  task

with highest priority with lower clock frequency and sup-

ply.  Here,  maximum power savings is  achieved since the

recharging time  increases  and  the  dissipated  energy  de-

creases.  Compared  with  the  state-of-the-art  scheme  ED-

H, the  proposed scheme (EG-DVFS) achieves  a  compar-

able percentage of feasible task sets for varying values of

the battery  capacity.  Provided  that  the  average  harves-

ted  power  is  sufficient  for  continuous  operation  for  the

EG-DVFS, we  are  able  to  determine  the  minimum bat-

tery capacity  necessary.  Furthermore,  achievable  capa-

city savings are demonstrated in a simulative study since

the battery capacity must be respectively more than 3.2

and 2.4  times  bigger  with  ED-H to  keep  the  zero  dead-

line miss rate compared to EG-DVFS when the processor

utilization  is  set  to  0.4  and  0.8.  The  results  also

demonstrate that the proposed scheme is very effective in

reducing  the  battery  size  when  compared  to  the  ED-H

scheduler.

The future work will focus on the dynamic task alloca-
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tion  and  frequency  selection  scheme  for  multiprocessor

systems based on the scheduling scheme proposed in this

paper.
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