

Energy Guarantee Scheme for Real-time Systems with

Energy Harvesting Constraints

Hussein El Ghor 1 Maryline Chetto 2

1 Laboratory of Embedded and Networked Systems, Faculty of Technology, Lebanese University, B. P. 813 Saida, Lebanon

2 Laboratory of Numerical Sciences of Nantes, University of Nantes, 2 Avenue of Professor Jean Rouxel, 4475 Carquefou, France

Abstract: The growth of environmental energy harvesting has been explosive in wireless computing systems especially when replacing
or recharging batteries manually is impracticable. This work investigates the scheduling of periodic weekly hard real-time tasks under
energy constraints. Based on this motivation, we proposed a real-time scheduling algorithm, namely energy guarantee dynamic voltage
and frequency scaling (EG-DVFS), that utilizes the earliest deadline-harvesting (ED-H) scheduling algorithm combined with dynamic
voltage and frequency scaling. This one is qualified as real-time since tasks must satisfy their timing constraints. We assume that the
preemptable tasks receive dynamic priorities according to the earliest deadline first (EDF) rule. EG-DVFS adjusts the processor′s beha-
vior by characterizing the properties of the energy source module, capacity of the stored energy as well as the harvested energy in a fu-
ture duration. Specifically, tasks are executed at full processor speed if the amount of energy in the battery is enough to finish its execu-
tion. Otherwise, the processor slows down task execution to the lowest possible processor speed while still guaranteeing to meet all the
timing constraints. EG-DVFS mainly depends on the on-line computation of the slack time and the slack energy with dynamic voltage
and frequency selection in order to achieve an improved system performance. Experimental results show that EG-DVFS can achieve ca-
pacity savings up of up to 33% when compared to ED-H.

Keywords: Real-time systems, energy harvesting, embedded systems, power management, dynamic voltage and frequency selection
(DVFS), ED-H scheduler.

1 Introduction

Energy management is a central problem in the design

of real-time systems including embedded wireless devices.

Various power management techniques for reducing the

energy consumption have been investigated in the literat-

ure. One of them is dynamic power management (DPM)[1]

that achieves energy efficiency by putting a device which

is not being used in a low power state or sleep mode. The

device becomes active again when some requests arrive,

and work in high power state[2]. Another power manage-

ment technique is dynamic voltage and frequency selec-

tion (DVFS) which is applied to decrease energy dissipa-

tion by lowering the operating frequency of the processor[3].

Advancements in wireless technologies enable us to

position embedded wireless computing systems in remote

areas for monitoring or sensing purposes. For example,

sensor nodes can be employed in critical scenarios such as

natural catastrophes and artificial disruptions[4]. Sensor

nodes help in monitoring physical and environmental con-

ditions such as temperature and pressure[5]. It is not per-

mitted to manually recharge or replace the battery in

many remote places. Consequently, renewable energy

sources that are found in all parts of our environment

should be employed. Harvesting energy from ambient

sources seems to be an appropriate approach to increase

the life-time of wireless systems.

By definition, energy harvesting is the process by

which energy is captured from external sources and con-

verted into electricity to power small, autonomous devices,

making them self-sufficient, often for a long period of time[6].

Several technologies for deriving ambient energy from

the environment have been demonstrated including solar

power, thermal energy, wind energy, salinity gradients,

kinetic energy, and many others[7]. Many modules for en-

ergy harvesting have been developed in the literature. He-

liomote[8] and Prometheus[9] are the first prototypes which

proved the feasibility of energy harvesting for small

autonomous devices.

Nonetheless, harvested energy typically varies with

time in a non-deterministic manner. Therefore, energy

management schemes are required in energy harvesting

embedded systems so as to guarantee an acceptable qual-

ity of service characterized by the deadlines miss rate[10].

In the context of battery-operated real-time systems,

two constraints need to be studied: energy and timing

constraints. Hence, a high performance scheduling policy

should take into consideration the properties of the en-

ergy source, the limitation in the energy storage capacity

as well as power consumption of the executed tasks.

Research Article

Manuscript received November 24, 2017; accepted November 14, 2018;
published online January 29, 2019
Recommended by Associate Editor Zheng-Tao Ding

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag Gmbh Germany, part of Springer Nature 2018

International Journal of Automation and Computing 16(3), June 2019, 354-368
DOI: 10.1007/s11633-018-1166-3

In a real-time energy harvesting system, the role of

any scheduler is to assign the tasks to time slots while

still respecting all timing and power requirements during

the whole lifetime of the application. Conventional task

scheduling and power management techniques are no

longer convenient under energy harvesting considerations.

They cannot adapt their behavior to the uncertainty in

the available energy profile. A new power management

technique with energy harvesting awareness should be

proposed in order to suitably exploit both the processing

capability and the available ambient energy.

1.1 Problem formulation

In this paper, we target a system of three components:

a general purpose dynamic voltage and frequency scaling

processor, an energy harvester and a rechargeable energy

storage unit with a limited capacity such as battery or

supercapacitor.

For this reason, we address the real-time scheduling

problem in a uniprocessor platform. We study the case

where a task can be preempted and later resumed at any

time without any time loss associated with such preemp-

tion. All the tasks must be successfully scheduled within

their timing requirements without any deadline failure so

as to avoid intolerable damage.

Many challenges lie ahead so as to make a real-time

energy scavenging system work effectively. Among them

is the development of energy management techniques and

scheduling algorithms that produce a valid schedule

whenever possible while still respecting all deadlines of

the tasks. Specifically, we consider the following features:

1) An energy harvesting unit is used to harvest the

energy from one or several external sources in order to

charge the energy storage unit.

2) Tasks may be the recurring invocations of periodic

tasks. The parameters of each task can be determined

prior to system run-time.

3) The energy source acts as a function of time.

Hence, it is not possible to determine the exact amount of

energy harvested beforehand, but we can certainly pre-

dict the energy harvested on near future at run time by

shadowing the previous energy source profile.

4) The scheduler is able to alter the microprocessor′s
operating voltage at run-time.

5) The instantaneous power consumption of any task

is assumed to be greater than the incoming power from

the harvesting unit.

6) No harvesting energy is wasted because of energy

overflow except when there are no ready tasks and the

storage unit is fully replenished.

1.2 Contributions

In this work, we propose the so-called energy guaran-

tee dynamic voltage and frequency scaling (EG-DVFS)

power management algorithm. EG-DVFS utilizes the

earliest deadline-harvesting (ED-H) scheduling rule com-

bined with dynamic voltage and frequency scaling facilit-

ies to guarantee predictable execution for every task even

in the face of energy shortage.

The work presented in this paper provides the follow-

ing contributions to research:

1) We present an online algorithm that permits us to

answer the three following questions: How and when to

put the processor in idle versus active state? How to se-

lect the active task? How to compute the frequency of the

processor for executing the selected task?

2) Our power management approach is implemented

without any prior information about the energy source

module that is considered to be uncontrollable and time-

varying.

3) The EG-DVFS policy is based on trading two no-

tions: slack time and slack energy. It intelligently dynam-

ically selects the processing speed for every task depend-

ing on energy and time considerations.

4) The DVFS technology enables us to reduce energy

consumption while still guaranteeing the absence of no

deadline violation whenever possible.

1.3 Outline

The rest of this paper is organized as follows: In

Section 2, we present related works. The system model

and terminology are introduced in Section 3. In Section 4,

we give necessary background materials. The EG-DVFS

policy is described in details in Section 5. Simulation res-

ults and discussions are presented in Section 6. Finally,

Section 7 concludes the paper.

2 Related work

The emerging technology of the energy scavenging

systems design has earned lot of interest in the past

years. The first valuable work that really tackles the

problem of power management for energy harvesting sys-

tems has been studied in [11]. Kansal et al.[11] build a

model that captures the energy supply of a solar energy

source by tracing its instantaneous power profile. Power

scaling algorithms for tuning system duty cycles are re-

lated to the power consumption that in turn affects the

system performance. The system switches between busy

mode and idle mode depending on harvested energy from

the source. Authors formulate the problem as a linear

program and is solved periodically. Within each period, it

is necessary to adapt the duty cycle when the observed

energy values are different from the predicted ones. The

main disadvantage lies in that tasks have no real-time

pattern. Scheduling real-time tasks under the strong vari-

ation of energy sources remains a key challenge even

today[12]. In what follows, we review the main scheduling

techniques of real-time tasks that are executed in a timely

manner in an energy harvesting system.

Moser et al.[13] considered the case of scheduling tasks

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 355

with deadlines on a monoprocessor system that is

powered by a rechargeable energy storage unit. The au-

thors work with the following assumptions: 1) Tasks may

be periodic or aperiodic and 2) energy loss is insignificant.

They propose an optimal real-time scheduling algorithm,

named “lazy scheduling algorithm (LSA)”. LSA is a vari-

ation of the well-known earliest deadline first (EDF)

scheduler[14], but it is an idling energy-clairvoyant sched-

uler. LSA works as follows: The task is executed only if it

has the earliest deadline among all ready tasks and the

system is able to keep on running at full processor speed

and without violating its deadline. Liu and Layland[14] as-

sume that the energy consumption for every task in the

computing system is directly connected to its execution

time through the constant recharging power of the pro-

cessor. Disadvantages of this algorithm are the following:

First DVFS is not considered, this means that tasks are

executed at full processor speed and consequently, some

future tasks may violate their deadlines because of en-

ergy shortage. Secondly, authors assume the total energy

consumed by a task is necessarily proportional to its exe-

cution time, which is not the real case and finally slack

time is not used for energy savings.

In practice, the total energy which can be consumed

by a task must not depend on the worst case execution

time[15]. This is due to the fact that the worst case in-

stantaneous power consumed by every task depends on

several factors like the circuitry and the instrumentation

used by the task during and/or after its execution. In

reality, the highest power consumption of a running task

mainly comes from its actuating operation or from data

transmission ordered by the task. Under this assumption,

we presented a scheduling algorithm, ED-H[16], that ac-

counts for the limits of both time and energy. ED-H re-

lies on two basic concepts: slack time and slack energy. In

ED-H, tasks run according to the earliest deadline first

rule. However, before we authorize a task to execute, we

have to ensure that the energy storage capacity has suffi-

cient energy to complete the execution of all future occur-

ring tasks. When this condition is not verified, the pro-

cessor has to stay idle so that the storage unit recharges

as much as possible and as long as all the deadlines can

still be met despite execution postponement. The power

management strategy, ED-H, was proved in [16] to be op-

timal. However, in order to build an optimal schedule,

ED-H needs to know the characteristics of the future

tasks and the energy source profile.

This work was later extended in [17] where tasks are

obliged to be scheduled according to an on-line algorithm

that ignores the arrival time of tasks and their future en-

ergy production. We can know the energy consumption of

tasks only when they are released on the processor. For

this manner, we presented the framework of an on-line

monoprocessor scheduling algorithm, namely energy har-

vesting-earliest deadline first (EH-EDF). The main ad-

vantage behind this scheduler is that it is completely on-

line and not clairvoyant such as EDF and hence it can be

easily implemented in any real-time operating system.

To achieve better system performance and energy effi-

ciency, several researchers focus on extending the classic-

al priority driven schedulers to variable-voltage pro-

cessors to save power by slowing down the processor just

enough to meet the deadlines. Allavena and Mosse[18] de-

scribe an off-line scheduler that uses voltage and fre-

quency selection (DVFS) for a frame based system. While

they permit the reduction of power consumption by slow-

ing down task execution under deadline constraints, their

approach relies on the unrealistic assumption that both

the instantaneous consumption power and production

power are constant. Later in [19], we set the full hypo-

thesis to reduce central processing unit (CPU) energy

consumption by proposing an optimal energy efficient

scheduling algorithm for aperiodic real-time jobs. Specific-

ally, we apply the concept of real-time process scheduling

to a dynamic voltage and frequency scaling (DVFS) tech-

nique.

Later on, Liu et al.[20] propose an energy aware dy-

namic voltage and frequency scaling algorithm, called

EA-DVFS, for periodic tasks. EA-DVFS can efficiently

use the slack to reduce the deadline miss rate. Before ex-

ecuting a task, the processor must decide whether to run

with full power or reduced power based on the energy

available in the energy reservoir. When we have suffi-

cient energy to complete the task execution, the pro-

cessor will operate at its full speed. Otherwise, the task is

stretched and executed at a lower speed. In case of low

workload, EA-DVFS algorithm reduces deadline miss rate

by 50% compared to LSA and decreases the minimum

storage size by 25% when the deadline miss rate is zero.

The advantage of EA-DVFS is that it increases the per-

centage of feasibly executed tasks and reduces the stor-

age capacity in case of low overload. However, this work

has some shortcomings:

1) Authors define the term “sufficient available en-

ergy” on a single current task. The system considers that

there is sufficient energy if the remaining operation time

of system at the full speed is more than the relative dead-

line of the task. Let′s suppose that there is only 1% left in

the energy reservoir, then the system will operate at full

speed and consequently the deadline of the task will be

violated. That is not the desired behavior.

2) For the aim of energy savings, task slacks are not

fully exploited. This is due to the fact that when author-

izing tasks to be scheduled, EA-DVFS considers only one

task instead of considering all tasks in the ready task

queue and hence not all task slacks are exploited.

To overcome the above inconvenients, Liu et al.[21]

propose a harvesting-aware DVFS (HA-DVFS) algorithm

to improve the system performance by fully exploiting the

task slack under timing and energy constraints. HA-

DVFS combines the adaptive scheduling techniques with

dynamic voltage and frequency selection to reduce the

 356 International Journal of Automation and Computing 16(3), June 2019

deadline miss rate when compared to LSA and EA-

DVFS. With the aim of achieving full system energy

autonomy, Lin et al.[22] propose a global control real-time

embedded system with an energy harvesting capability

(RTES-EH) scheduler. The global controller aims to ad-

opt a photovoltaic panel as the energy harvesting source,

a supercapacitor as the energy reservoir, and a real-time

sensor node as the embedded device that performs an en-

ergy-harvesting aware real-time task scheduling with dy-

namic voltage and frequency scaling.

Srbinovski et al.[23] present an algorithm to adapt the

sampling frequency according to the available energy.

Tan and Yin[24] propose an algorithm based on dynamic

voltage and frequency scaling technique that dynamically

concentrates all dispersed free time together to harvest

energy by dynamically scheduling harvesting tasks and

service tasks. Xu et al.[25] target the problem of energy-ef-

ficiency in real-time systems with DVFS under the con-

straint of reliability. For this reason, they present a glob-

al dynamic scheduling algorithm to maximize the energy

efficiency while ensuring the reliability.

3 System model and terminology

3.1 System model

The real-time energy harvesting system (Fig. 1) con-

sidered in this work consists of three major units: energy

harvesting unit (EHU), energy storage unit (ESU) and

energy dissipation unit (EDU). The energy harvesting

unit harvests the energy from external sources like sun,

wind, etc.

Apart from the applications running in the energy dis-

sipation unit, there is additional software running in the

uniprocessor system, namely the scheduler. Earliest dead-

line first (EDF) is the first dynamic priority scheduler

used in our algorithm[26]. The other scheduler we used is

the DVFS which slows down task execution under dead-

line constraints depending on the energy harvested and

energy in the storage unit.

3.1.1 Energy harvesting unit (EHU)

Ps(t)

We assume that the ambient energy is captured and

converted into electrical power. The energy source is con-

sidered to be unpredictable but we still can predict the

expected availability in a short-term perspective with a

worst case charging rate (WCCR) on the harvested

source power output, namely . Clearly, we do not

make any consideration about the nature and dynamics

of the energy source so as to make our model more easily

implemented in any real application where the energy

source properties may not be available beforehand.

[t1, t2]

Es(t1, t2)

The energy harvested in an interval of time is

denoted by and can be calculated using the fol-

lowing formula:

Es(t1, t2) =

∫ t2

t1

Ps(t)dt. (1)

3.1.2 Energy storage unit (ESU)

C

Cmin
Cmax C = Cmax − Cmin

Cmin

We use in our work an ideal energy storage unit (su-

percapacitor or battery) that can be recharged up to a

nominal capacity . Since we use an ideal energy storage

unit, we assume that the amount of energy wasted in the

charging and discharging process is neglected. The en-

ergy level has to remain between two boundaries

and with . The lower limit of the

energy storage unit () is not zero since there must al-

ways be a reserved energy in the energy storage unit for

worst case scenarios.
3.1.3 Energy dissipation unit (EDU)

fmin = f1 ≤ f2 ≤ · · · ≤ fn = fmax

fn Pn Vn

Pn

We consider a real-time system equipped with a

DVFS-enabled processor. The variable speed processor is

assumed to be working with N discrete frequencies ran-

ging from . The power

consumption of the tasks running in the processor de-

pends on the processor′s frequency. Thus, the power con-

sumption and voltage level correspondent to clock fre-

quency are denoted as and , respectively. We

suppose that is the overall power consumption of the

EDU that contains both dynamic power consumption and

T1 T2 T3 Tn

Ready queue

Uniprocessor computing system

EDF scheduling

Dynamic voltage and

frequency scaling

Energy harvesting

unit

Energy storage

unit

Ps(t) Scheduled tasks

{T1,T2, ... ,Tn}

Fig. 1 A real-time energy harvesting system model

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 357

leakage power consumption.

Sn

fn
fmax Sn Smin

We consider a slow down factor as the normalized

frequency of with respect to the maximum frequency

. ranges from to 1:

Sn =
fn
fmax

. (2)

We consider in our work that each task has different

power dissipation that varies relative to its correspond-

ing frequencies. Consequently, a task executes with max-

imum power dissipation when the frequency is maximum

and this power consumption decreases as the frequency

decreases.

Pi(τi, Si)

Consequently, the power dissipation of a task must be

defined as function of the task index and its correspond-

ing slow down factor .

Γ = {τi|1 ≤ i ≤ n} (ri, Ci, Di, Ti, Ei)

τi Ci Di Ti Ei

ri
τi kTi k = 0, 1, 2, · · ·
τi Si

Ci(a) fi
Ci

Si

Ci(a) = Ci 0 ≤ Ci ≤ Di ≤ Ti

1 ≤ i ≤ n

We consider here a set of independent and preempt-

ive periodic tasks that can be denoted as follows:

. A five-tuple is used

to characterize a periodic task , where , , and

indicate the worst case execution time (WCET), the rel-

ative deadline, the period and the worst case energy con-

sumption (WCEC), respectively. Release time of task

 is equal to , . When we stretch a task

 by a slow down factor , then its actual execution

time () at frequency will be . When the pro-

cessor is running at its maximum frequency, then

. We assume that for each

.

Γ

Tasks are scheduled on a monoprocessor system. Task

set is said to be feasible if all tasks meet the deadlines.

(Ei) τiThe energy dissipation of a task is computed

as

Ei = Pi(τi, Si)×
(
Ci

Si

)
. (3)

4 Background material

4.1 EDF scheduling

t

t

The problem of scheduling periodic tasks on one pro-

cessor without energy constraints has attracted consider-

able research efforts in the past thirty years[27]. The most

popular approach is the dynamic priority algorithms, in-

cluding the earliest deadline first (EDF) algorithm. EDF

places tasks in a priority queue. Whenever a task finishes

or a new task is released, the task closest to its deadline

will be executed. This means that, at each time instant ,

EDF schedule the ready task whose deadline is closest to

. EDF is proved to be an optimal scheduling algorithm.

EDF fully exploits the processor, reaching a utilization

bound up to 100%.

Generally, EDF implementation offers tasks accord-

ing to their priority either earliest deadline as soon as

possible (EDS)[28] or earliest deadline as late as possible

(EDL)[28, 29]. EDF is a work-conserving (also called non-

idling) scheduling algorithm where at each instant, we

choose for execution the ready job with the closest abso-

lute deadline.

EDF is proved in [30] to be a class one scheduler for

energy harvesting applications because of its simplicity in

implementation and its optimality for non-idling settings.

4.2 Classical concepts for real-time
scheduling

tc
Γ

ω

In this subsection, we recall some definitions related to

real-time scheduling. Let us consider as the current

time where we have to schedule a task set by a certain

scheduling algorithm .

tc
Γ tc

At a current time , we define the slack time of a

task set as the longest interval of time starting at

during which the processor may be idle continuously

while still respecting all the timing constraints. Calculat-

ing the slack time at run-time is performed by the so-

called dynamic EDL schedule[29].

τi
tc

Definition 1. The slack time of a task at current

time is

STτi(tc) = di − tc − h(tc, di)−ATi (4)

ATi

tc
[tc, di) h(tc, di)

Γ [tc, di)

where is the total remaining execution time of

uncompleted tasks currently ready at and in the time

interval . is the processor demand of a task

set on the time interval .

STτi(tc)

di

Hence, gives the time available by the pro-

cessor after executing uncompleted tasks with deadlines

at or before .

Γ
tc

Definition 2. The slack time of a task set at cur-

rent time is

STΓ(tc) = min
di>tc

STτi(tc). (5)

tc

Equation (5) represents the maximum continuous pro-

cessor time that could be available from time while still

guaranteeing the deadlines of all the tasks.

4.3 ED-H scheduling algorithm

Despite its optimality for non-idling settings and ro-

bustness properties, EDF behaves poorly because it con-

sumes the energy greedily. When considering energy as a

limiting factor, simply executing tasks according to the

EDF rule may lead to some possible deadline misses.

Hence, to avoid deadline violation in energy scavenging

systems, we presented an on-line scheduler called earliest

deadline-harvesting scheduling algorithm (ED-H). ED-H

is an EDF-based real-time scheduler for monoprocessor

energy-harvesting systems with considerations of both en-

ergy and time constraints. We take the hypothesis to be

that the energy consumption of any task can be per-

 358 International Journal of Automation and Computing 16(3), June 2019

formed with any power.

This means that before authorizing a task to execute,

the scheduler must ensure that the energy storage is suffi-

cient to execute this task during at least one time unit.

When this condition is not satisfied, the processor has to

postpone the execution of the task as late as possible so

that the energy reservoir recharges as much as possible

and as long as all the deadlines can still be met.

The idea behind the ED-H is to order tasks according

to the earliest deadline first (EDF) rule. This rule is nat-

ural since tasks have hard deadlines. Executing them in

accordance with their relative urgency appears to be the

best approach even if they are not systematically ex-

ecuted as soon as possible.

The major difference between ED-H and EDF is on

the operation of the processor. This means that ED-H has

to decide when to let the processor busy in executing the

ready tasks and when the processor has to be idle. Be-

fore executing a task, the energy availability of the sys-

tem is checked to ensure that energy in the resevoir is

sufficient to verify the scheduling of all future occurring

tasks, by considering both their timing and energy re-

quirements and the replenishment rate of the energy

reservoir[17]. Clearly, this means that there is sufficient

slack time.

To formally present ED-H, we need to illustrate some

novel concepts particularly helpful when studying the

feasibility of a task set when jointly consider both energy

and deadline requirements: the energy demand and the

slack energy.

rk dk Ek

τk

Let , and be release time, deadline and worst

case energy consumption of a task , respectively.

tc Γ

Hereafter, for short, we will actually refer to the dy-

namic slack energy (respectively the dynamic slack time)

as the slack energy (respectively the slack time) at cur-

rent time when producing a schedule for a task set

by a certain scheduling algorithm.

tc
tc

We define the slack energy of the system at current

time as the maximum amount of energy that can be

consumed from continuously while still satisfying all

the timing constraints of the tasks[17].

τi
tc

Definition 3. The slack energy of a task at cur-

rent time is

SEτi(tc) = E(tc) + Es(tc, di)− g(tc, di) (6)

Es(tc, di)

t1 t2

where is the amount of energy that is produced

by the renewable energy source between and .

Γ tc
PSEΓ(tc)

Since the main principle of ED-H is to execute a task

as long as no future starvation could occur, this leads us

to define a new terminology, named preemption slack en-

ergy (PSE). The PSE of a task set at current time

() is the maximum amount of energy that could

be consumed by the currently active task while still guar-

anteeing energy feasibility for tasks that may preempt it[30].

Γ tc

Definition 4. The preemption slack energy of a task

set at current time is

PSEΓ(tc) = min
tc<ri<di<d

SEτi(tc) (7)

d tcwhere is the deadline of the active task at time .

Qr(t)

t SEΓ(t) STΓ(t)

Γ t

Let be the queue of uncompleted tasks which

are ready for execution at time . and are

respectively the slack energy and the slack time of the

task set at time . The ED-H scheduling algorithm fol-

lows the below rules:

Qr(t)

Rule 1. The EDF priority order is used to select the

future running task in .

[t, t+ 1)

Qr(t) = ϕ

Rule 2. The processor is imperatively idle in

if .

[t, t+ 1)

Qr(t) ̸= ϕ E(t) = 0 SEΓ(t) = 0

Rule 3. The processor is imperatively idle in

if and either or .

[t, t+ 1)

Qr(t) ̸= ϕ E(t) = C STΓ(t) = 0

Rule 4. The processor is imperatively busy in

if and either or .

Qr(t) ̸= ϕ 0 < E(t) < C STΓ(t) > 0 SEΓ(t) > 0

Rule 5. The processor can equally be idle or busy if

, , and .

The ED-H scheduler achieves full energy autonomy for

monoprocessor scheduling while considering both time

and energy harvesting constraints.

Theorem 1. The ED-H scheduling algorithm is op-

timal for the real-time energy harvesting (RTEH) model.

Proof. See [16]. □

4.4 Motivational example

Γ

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti, Ei)

τ1 = (1, 3, 5, 30) τ2 = (2, 7, 10, 80) τ3 = (3, 12, 20,

C

t = 0

Ps

Consider a task set that is composed of three peri-

odic tasks, and .

Let , and

180). We assume that the energy reservoir has capacity

equal to 200 energy units at . For ease of simplicity,

we consider that the rechargeable power is constant

along the hyperperiod and equal to 10.

Up =
∑n

i=0

Ci

Ti
= 0.55 < 1

Up ≤ 1

Ue ≤ Ps

Ue =
∑n

i=0

Ei

Ti
= 23 > 10

Before beginning the schedule, we have to verify the

feasibility conditions. The processor utilization

. Consequently, the necessary feasibility

condition related to timing constraints, , is satis-

fied. On the other side, the necessary feasibility condi-

tion related to energy constraints, , is not respec-

ted because .

Γ

Γ
t = 12

Let us schedule according to ED-H within the first

hyperperiod ([0, 20]). We show that is not schedulable

because of energy starvation at time (Fig. 2). The

system stops immediately and the deadline miss rate

amounts to 42%. In detail:

t = 0

C(0) = 200 τ1
t = 1 C(1) = C(0)− E1 + (PS × C1) = 180

t = 0

t = 1

t = 0

τ1

1) At time , all task instances are ready and

. , as the highest priority task, runs and fin-

ishes at . en-

ergy units. Since there is no task instance in the ready

queue released after with deadline less than or equal

to the current time (), the slack energy does not re-

quire to be computed at . We just have to verify

that the energy level in the reservoir permits us to satis-

fy the energy requirement of task .

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 359

t = 1 τ1
t = 3

C(3) = 120

2) At time , has the highest priority task,

ready to be processed, runs and finishes at .

 energy units.

t = 3 τ3
C(3) = 120

C = Cmax

t = 3

t = 5

C(5) = 140

3) At , is now ready to be processed and

. But there is no sufficient energy in the stor-

age unit for execution. So, we have to insert an idle time

to let the processor inactive as long as the energy storage

unit is not fully replenished () and the latest

start time of the next periodic task has not been attained.

The slack time at time is equal to 2. Hence, the en-

ergy storage capacity is recharged until where

.

t = 5 τ1 t = 6

C(6) = 120

4) At , is released, runs and finishes at .

 energy units.

τ3

t = 6

t = 9 C(5) = 150

5) Now, is the highest priority task ready to be pro-

cessed, but there is no sufficient energy for execution. An-

other time, we have to insert an idle time. The slack time

at time is equal to 3. Hence, the energy storage ca-

pacity is recharged until where .

t = 9 τ3
t = 12

6) At , has the highest priority task, ready to

be processed, runs and finishes at where the en-

ergy storage unit is now empty.

t = 12 τ1

t = 12

7) At , has the highest priority task, but the

energy reservoir is now empty and the processor cannot

be idle. Consequently, we stop scheduling at time .

5 Energy guarantee-dynamic voltage
and frequency scaling (EG-DVFS)
algorithm

In this work, we propose an energy guarantee dynam-

ic voltage and frequency scaling algorithm that scales the

processor speed for executing a task based on the energy

found in the storage unit as well as the available harvest-

ing energy and deadline of a task which in fact scales

down to conserve energy for future running tasks. The

EG-DVFS scheduling scheme jointly accounts for the re-

quirements arising from both the energy and time domain.

5.1 Presentation of the algorithm

EG-DVFS algorithm is designed to order tasks accord-

ing to the EDF scheduling policy. The difference between

EG-DVFS and classical EDF (or EDS) is to decide when

to execute tasks at full processor speed and when to de-

crease the speed processor while meeting all deadlines.

Sti Fti
τi

Initially, we try to execute all task instances accord-

ing to the EDF scheduler where the system operates at

full processor speed. Let us consider that there are M

task instances in the ready queue. The start time of the

task is derived under the assumption that the task ex-

ecutes at the constant processor speed until its comple-

tion. and are respectively considered as the start

time and finish time of task .

τ1

We consider that the start time of the first task in-

stance in the ready queue is equal to its release time.

St1 = r1. (8)

Thus, we can compute the start time of the remain-

ing task instances as

Sti = max(ri, F ti−1) (9)

2 ≤ i ≤ M − 1where .

Before authorizing a task to execute, we must ensure

that there is sufficient energy to completely execute this

task during the next time unit, which represents the

worst case situation. Thus, we have to compute the re-

maining energy in the energy storage unit at the end of

the task execution using the following equation:

C(Fti) = C(Sti) + Es(Sti, F ti)− Ei(Sti, F ti) (10)

(Si = 1)

when the energy in the storage capacity is sufficient to

execute a task, then this task will be executed at the

scheduled start time and with full processor speed .

Sti
Ci(a)

When we cannot verify this condition, the processor

has to execute the task at the head of the queue at the

derived speed that is computed by scaling down the oper-

ating processor speed as much as possible and as long as

the system will be able to meet all the deadlines. This

means that we have to decide the slow down factor for all

task instances based on the processor utilization and en-

ergy state. Thus, we have to compute the slack time of

the system at and the task′s execution time will be

stretched to the actual execution time where

Ci(a) = Ci + ST (Sti). (11)

τiThe finishing time of task instance can be calcu-

lated as

Fti = St(i) + Ci(a). (12)

Consequently, the start time of the next task instance

will be

Sti+1 = max(ri+1, F ti). (13)

The slow down factor is thus computed by the follow-

ing equation:

10

10

3 5 8 13 15 18 20

20

20

120

0

0

7 17

Ƭ
1

Ƭ
2

Ƭ
3

Fig. 2 Task scheduling according to ED-H

 360 International Journal of Automation and Computing 16(3), June 2019

Si =
Ci

Ci(a)
. (14)

τiSince, every task must complete the execution be-

fore its absolute deadline, then the following equation

must hold:

ri + di − ci(a) ≥ max{ri, t} (15)

twhere is the current time instance.

τiFurthermore, the execution of any real-time task is

considered to be preemptable which means that when a

task of higher priority becomes ready, it will preempt the

execution of the current task of lower priority.

τi

Sti = max(ri, F ti−1) τi

ri

This implies that the start time of a task is equal to

 when finishes its execution

without being preempted by another task. When preemp-

tion occurs, the start time of the newly arrived task is

equal to . That is

Sti =

{
max(ri, F ti−1), if ri + di − Ci(a) ≥ max(ri, t)
ri, otherwise.

(16)

However, when we resume execution of the preemp-

ted task, it has the opportunity to run at the same or

different processor speed, depending upon the system

state.

The EG-DVFS algorithm works as follows: First, EG-

DVFS checks if there are ready instances in the queue to

be executed. If not, the processor is made idle until the

next task release. Otherwise, EG-DVFS selects the

highest priority instance ready for execution.

Before executing the ready task instance with the

highest priority, EG-DVFS tests if there is sufficient en-

ergy in the energy storage unit. Moreover, EG-DVFS cal-

culates the slack energy of all instances with a higher pri-

ority but not ready. The slack energy of the system is the

minimum of all these slack energies.

If the system slack energy is positive and there is suf-

ficient energy for execution, then the task instance will be

executed with the highest speed. Otherwise, EG-DVFS

scales down the frequency of the processor. The question

is: by how much? EG-DVFS answers this question by

computing the slack time of the system. Now, the sched-

uler is able to scale down the processor speed to the low-

est possible level while EG-DVFS jointly considers slack

time and energy state is more conservative. Consequen-

tly, we stretch the execution time of the ready task in-

stance to its actual execution time without violating

deadlines. Upon stretching the execution time of a task

instance, the recharging energy increases (execution time

increases) and the energy dissipation decreases.

EG-DVFS can now compute the slow down factor of

the corresponding task instance and the energy dissipa-

tion can then be chosen.

5.2 Frequency tuning in case of energy
overflow

When the energy reservoir reaches its full charge or

overflow occurs, the incoming ambient energy overflows

the storage and the extra energy is wasted. This overflow

completely counteracts our previous effort to save energy

by slowing down task execution. Hence, the execution

speed of a task must be fine-tuned to eliminate energy

overflow while still meeting energy and time constraints.

In this work, and in case of insufficient energy, tasks are

executed at the minimum possible operating frequency

which respects the deadline of the task and it will be in-

creased to the next higher level to avoid energy overflow.

C(Fti) =

C(Sti) + Es(Sti, F ti)− Ei(Sti, F ti)

C(t)

C(t) C

In case of insufficient energy, EG-DVFS stretches the

task execution time to its maximum level which is just

enough to meet the deadline of the task. It then checks if

an energy overflow occurs. In other words, if

 holds, the overflow

occurs. In this case, EG-DVFS increases the speed level

to next higher level, updates and rechecks whether

the energy still overflows. This process is then repeated

until is less than or equal to .

When fine-tuning the operated frequency, overflow

will be eliminated and more slack time will be saved for

remaining tasks.

5.3 EG-DVFS algorithm

C(t) SE(t) ST (t) t

C(t)

t

SE(t) ST (t)

t

The major components of EG-DVFS algorithm are the

following: , and . We assume that is the

current time, is the amount of energy that is stored

in the energy reservoir at time . In addition, we con-

sider that and are respectively the slack en-

ergy of the system and the slack time of the system at

time .

The function execute() enables the processor to run

the ready job with the earliest deadline at its correspond-

ing frequency.

We describe in Algorithm 1 the pseudo code of the

EG-DVFS scheduler:

Algorithm 1. Energy guarantee dynamic voltage and

frequency selection (EG-DVFS) algorithm.

Γ = {τi|τi = (ri, Ci, Di, Ti, Ei) i = 1, · · · ,M}
t Cmax

Cmin C(t)

Ps(t)

Require: A Set of M EDF-based periodic tasks

, current time

, energy reservoir with capacity bounded between

and , energy level of the battery , source power

.

f1 fmin fN fmax

Ensure: A processor working with N discrete frequen-

cies ranging from () to ().

1) Sort task instances according to the EDF rule

2) Determine the start time of task instances

3) for i = 1:M do

4)　if i == 1 then

St1 = r15)　　

6)　else

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 361

Sti7)　　Calculate from equation (16)

8)　end if

9) end for

τi
Si = 1

10) Assume we have to execute task instance with

full processor speed ().

11) Calculate the energy that is remained in the en-

ergy storage unit at the end of the execution.

C(Fti) = C(Sti) +
∫ Fti
Sti

Ps(t)dt− Ei(Sti, F ti)12)

C(Fti) ≥ Cmin SE(Sti) > 013) if (and) then

14)　execute()

15) else

ST (Sti)16)　Compute

Ci(a) = Ci + ST (Sti)17)　Actual execution time

Fti = Ci + ST (Sti)18)　

Si =
Ci

Ci(a)
19)　Slow down factor

20)　Update execution time

Ei21)　Select the relative energy consumption ()

C(Fti)22)　Compute using equation (10)

C(Fti) > C23)　if then

j = i+ 124)　　for to N do

C(Fti)25)　　　Update using equation (10)

C(Fti) ≤ C26)　　　if then

27)　　　　break

28)　　　end if

29)　　end for

30)　end if

Sti+1 = max(ri+1, F ti)31)

Si =
Ci

Ci(a)
32) Slow down factor

33) Update execution time

τi34) Remove task from ready task list

35) end if

The main contributions of EG-DVFS are:

1) Optimization process is based on both energy and

timing constraints.

2) It fully explores the tradeoff between slack time as

well as slack energy to save energy when the ready queue

contains multiple tasks at the same time.

3) It allows DVFS techniques to stretch the processor

speed of periodic tasks such that overall energy consump-

tion of the system is reduced and a greater number of

task are accepted.

4) Avoid wasting the overflow energy. We only waste

energy when there are no ready tasks in the queue and

the storage unit is fully replenished.

5.4 Efficiency

O(K.n) n⌊
R

p

⌋

The computations of slack time and slack energy are

the major keys to the operation of the EG-DVFS al-

gorithm. As proved in [31], the slack time of a periodic

task set at a given time instant can be obtained on-line

by computing the dynamic EDL scheduling algorithm,

with complexity , where is the number of peri-

odic tasks, and K is equal to , where R and p are, re-

O(K.n)

O(K.n)

spectively the longest deadline and the shortest period of

current ready tasks. Moreover, the complexity for com-

puting the slack energy is too[16]. As EDeg has

low and constant space requirements, this makes it easily

implementable on many low-power, unsophisticated hard-

ware platforms including micro-controllers. We can con-

clude that the time complexity for EG-DVFS is .

5.5 Illustrative example 1

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti) τ1 = (1, 3, 5)

τ2 = (2, 7, 10) τ3 = (3, 12, 20)

C

t = 0

Ps

Si = {1, 0.75, 0.5, 0.3, 0.2, 0.1}
τi

Consider the above example where a task set

 and . Let ,

 and . We assume that the en-

ergy reservoir has capacity equal to 200 energy units at

. For simplicity, we consider that the rechargeable

power is constant along the hyperperiod and equal to

10. The processor is assumed to be working with six dis-

crete slow down factors .

The power dissipation of tasks is shown in Table 1.

Γ

Γ

In this example, we have to schedule according to

EG-DVFS within the first hyperperiod. We show that

is schedulable since all tasks are executed before their

deadlines and without depleting the energy reservoir. In

details:

t = 0

τ1

t = 1 C(1) = 180

1) At time (Fig. 3), all tasks are ready and

stored in the ready queue. has the earliest deadline and

is executed till where energy units.

t = 1 τ2 t = 3

C(1) = 120

2) At time , is executed until where

 energy units.

t = 3 τ3

τ3

S3 S3 =
3

4
= 0.75

τ3 E3 = 120

3) At , is the highest priority task ready to be

processed but it cannot run at maximum speed because of

insufficient energy in the battery. So, we have to slow

down the processor in such a way that the deadline is not

violated. The slack time is equal to one. Thus, the actual

execution time for is equal to four and the slow down

factor is . Consequently, the energy dis-

sipation for is (see Table 1).

τiTable 1 Energy dissipation of tasks

Energy dissipation S = 1 S = 0.75 S = 0.5 S = 0.3 S = 0.2 S = 0.1

τ1Task 30 20 9 5 1 0.5

τ2Task 80 50 35 10 5 2

τ3Task 180 120 60 27 15 12

Ƭ
1
Ƭ
2 Ƭ

3

104 5 8 11 15 18 200

Ƭ
1

Ƭ
1

t

Si

Ƭ
2

Ƭ
3

Ƭ
1

1.0

0.6

0.2

Fig. 3 Task scheduling according to EG-DVFS

 362 International Journal of Automation and Computing 16(3), June 2019

t = 3

In addition, we have to calculate the slack energy of

the system at time .

SE(t = 3) = C(3)+

∫ 12

3

Ps(t)dt−(E1+E3) = 60 > 0. (17)

τ3 t = 3 t = 5

S3 = 0.75 C(5) = 20

Now, is executed from to with a slow

down factor where energy units.

t = 5 τ3 τ1
t = 6

4) At , is preempted by that runs and fin-

ishes at where the energy storage unit is now

empty.

t = 6 τ3

τ3 t = 8

5) At , continues its execution where its en-

ergy consumption is equal to 120 – 100 = 20 energy units.

 finishes its execution at where the energy stor-

age unit is again empty.

t = 8 t = 10

C(10) = 20

6) The processor is idle from to where

 energy units.

t = 10 τ1

t = 11 C(11) = 0

7) At , is released and has the highest prior-

ity task, ready to be processed, runs and finishes at

 where energy units.

t = 11 τ2

τ2

S2 S2 =
2

6
= 0.33 S2 = 0.33

S2

8) At , is the highest priority task ready to

be processed but it cannot run at maximum speed be-

cause of insufficient energy in the battery. So, we have to

slow down the processor in such a way that the deadline

is not violated. The slack time is equal to four. Thus, the

actual execution time for is equal to six and the slow

down factor is . Since, is not

found in Table 1, then we have to choose the nearest

value greater than 0.33. Consequently, becomes equal

to 0.5 and the actual execution time becomes equal to

four.

τ2
E2 = 35

According to Table 1, when the slow down factor of

is 0.5, then the energy dissipation is energy

units.

τ2 t = 11 t = 15

C(15) = 5

Now, can be executed from to . This is

because when we stretch the execution time, the harves-

ted energy increases and the energy dissipation decreases.

The energy left is energy units.

t = 15 τ1
τ1 t = 17

S1 = 0.5 C(17) = 16

9) At , is released, but again there is no suffi-

cient energy. is then stretched until where the

slow down factor is and energy units.

C(t = 20) = 46

10) Now, the system is idle until the end of the hyper-

period where energy units.

5.6 Illustrative example 2

Γ

Γ = {τi|1 ≤ i ≤ 3} τi = (Ci, Di, Ti, Ei)

τ1=(1, 5, 6, 12) τ2=(2, 8, 10, 17) τ3=(3, 7, 15, 19)

C = 10

t = 0

Cmin = 0 Cmax = C

Ps = 5

Consider a periodic task set that is composed of

three tasks, and .

Let , and .

We assume that the energy storage capacity is

energy units at . For simplicity, we assume that

, and the rechargeable power is con-

stant along the hyperperiod and equal to 5 ().

Up =
∑n

i=0

Ci

Ti
=

Let us verify the timing and energy feasibility condi-

tions. First, the processor utilization

17

30
≤ 1

Up ≤ 1

Ue =
∑n

i=0

Ei

Ti
=

149

30
≤ 5

Ue ≤ Ps

. Consequently, the necessary feasibility condition

related to timing constraints, is satisfied. Second,

the energy utilization and the

necessary feasibility condition related to energy con-

straints, , is satisfied.
5.6.1 Scheduling under ED-H

Γ

Γ

t = 7

Let us schedule according to ED-H within the first

hyperperiod, from 0 to 30. We verify that is not

schedulable because of energy starvation at time

(Fig. 4). The system stops immediately and the deadline

miss rate amounts to 80%.

In details:

t = 0

C(0) = 10 τ1

t = 1 C(1) = C(0)− E1 + (Ps × C1) = 10− 12+

5 = 3

τ1
t = 0

τ1

1) At time , all task instances are ready and

. , as the highest priority task, runs and fin-

ishes at .

 energy units. As there is no task instance released

after 0 with deadline less than that of , the slack en-

ergy does not require to be computed at . We just

have to verify that the energy level in the storage unit

permits to satisfy the energy requirement of task .

t = 1 τ2

t = 2 E(2) = 8

2) At time , has the highest priority task and

is ready to be processed. But there is not sufficient en-

ergy to complete the execution. Consequently, the pro-

cessor is let idle until where energy units.

t = 2 τ2
t = 4 E(7) = 11

3) At time , as the highest priority task, ready

to be processed, runs and finishes at . en-

ergy units.

t = 4 τ34) At time , has the highest priority task and

ready to be processed. However, the energy storage capa-

city is not sufficient to complete the execution and there

is no slack time. Hence, the system stops immediately

without completing the execution.
5.6.2 Scheduling under EH-DVFS

Γ

Si = {1, 0.75,
0.5, 0.3, 0.2, 0} τi

Now, is scheduled according to EH-DVFS within

the first hyperperiod. The processor is assumed to be

working with six discrete slow down factors

. The power dissipation of tasks is shown

in Table 2.

ΓWe verify that is schedulable and the energy stor-

age capacity is again full at the end of the hyperperiod.

(Fig. 5).

In detail:

t = 0

C(0) = 10 τ1

1) At time , all task instances are ready and

. , as the highest priority task, runs and fin-

12

10

65 11 1718 23

22

20

150

0

0

8 18

Ƭ
1

Ƭ
2

Ƭ
3

24 2930

28 30

307

Fig. 4 Task scheduling according to ED-H

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 363

t = 1 C(1) = C(0)− E1 + (Ps × C1) = 10− 12+

5 = 3

τ1
t = 0

τ1

ishes at .

 energy units. As there are no task instance re-

leased after 0 with deadline less than that of , the slack

energy does not require to be computed at . We

have just to verify that the energy level in the storage

unit is able to satisfy the energy requirement of task .

t = 1 τ2

τ2

S2 S2 =
2

3
= 0.66

τ2 E3 = 13

2) At time , has the highest priority task and

is ready to be processed. But there is not sufficient en-

ergy to complete the execution. So, we have to slow down

the processor in such a way that the deadline is not viol-

ated. The slack time is equal to one. Thus, the actual ex-

ecution time for is equal to three and the slow down

factor is . Consequently, the energy dis-

sipation for is (see Table 2).

τ2 t = 1 t = 4

S2 = 0.66 C(4) = 5

3) Now, is executed from to with a slow

down factor where energy units.

t = 4 τ3
t = 7

E(7) = 1

4) At time , is the highest priority task and is

ready to be processed, runs and finishes at .

 energy units.

τ1

τ1

S1 S1 =
1

3
= 0.33

τ1 E1 = 5 τ1
t = 7 t = 10 S1 = 0.33

5) The second task instance of is ready to be ex-

ecuted but again we have to slow down the processor.

The slack time is equal to three but we need only two to

fully replenish the energy storage unit. Thus, the actual

execution time for is equal to three and the slow down

factor is . Consequently, the energy dis-

sipation for is . Consequently, is executed

from to with a slow down factor

where the energy storage unit is full again.

t = 10 τ2

τ2

6) At time , has the highest priority task and

is ready to be processed. The energy storage capacity is

sufficient to execute with full processor speed.

t = 10

In addition, we have to compute the slack energy of

the system at time .

SE(t = 10) = C(10) +

∫ 18

10

Ps(t)dt− (E1 + E2) = 21 > 0.

(18)

τ2 t = 10 t = 12

C(12) = 3

Consequently, is executed from to

where energy units.

t = 307) This procedure continues until where the en-

ergy storage unit is full.

6 Experimental results and discussions

6.1 Simulation details

n

Up Ue

Ps(t)

∑n
i=1

Ci

Ti
= Up ≤ 1

∑n
i=1

Ei

Ti
= Ue ≤ Ps Ps

Extensive simulation experiments have been per-

formed to evaluate the performance of the EG-DVFS al-

gorithm in terms of energy saving and performance im-

provement. We developed a simulator in C/C++ . In the

simulator, we implement EG-DVFS with respect to ED-

H. We use the task generator of periodic tasks as the one

described by Martineau[32]. Experiments are built by se-

lecting as input several parameters: the number of syn-

thesized tasks , the hyperperiod of task periods, pro-

cessor utilization , energy utilization and the rechar-

ging power . For each experiment set, the algorithm

was simulated 100 times, generating a task configuration

of the scheduled task set. The worst case execution times

of tasks are randomly generated such that the processor

utilization . The energy consumptions

of tasks are also randomly generated based on the energy

utilization factor such that where

is the average recharging power.

Up Ci ≤ Di ≤ Ti

τi

The simulator generates 30 tasks with least common

multiple of the periods equal to 3 360. The worst-case

computation times are set according to the processor util-

ization . We also consider that for every

task .

Ps(t)The rechargeable power may be constant or may

vary according to time. For this reason, a random num-

ber generator is found at the input of the simulator to

produce for every quantum of time within the hyperperi-

od, a power energy profile with minimum value 5 and a

maximum value 35.

To estimate the energy consumption of tasks, we use

an Intel XScale processor that supports five frequency

levels[33]. Values of the discrete frequencies, supply

voltage and consumed power of the processor are listed in

Table 3.

The effect of processor utilization on the task set feas-

ibility ratio and the average energy consumption can be

seen from the Figs. 6–8.

We assume that the energy storage is fully charged at

the beginning of the simulation. After a deadline viola-

τiTable 2 Energy dissipation of tasks

Energy dissipation S = 1 S = 0.75 S = 0.5 S = 0.3 S = 0.2 S = 0.1

τ1Task 12 9 5 3 2 1

τ2Task 17 13 8 5 3 2

τ3Task 19 14 10 7 5 3

Ƭ
1

Ƭ
2

Ƭ
3

104 5 7 12 15 18 200

Ƭ
1

Ƭ
1

t

Si

Ƭ
2

Ƭ
1

Ƭ
3

Ƭ
1

Ƭ
2

22 24 25 30

1.0

0.6

0.2

Fig. 5 Task scheduling according to EG-DVFS

 364 International Journal of Automation and Computing 16(3), June 2019

tion is detected, the simulation terminates for ED-H and

EG-DVFS.

6.2 Percentage of feasible task sets by
varying battery capacity

C

Our simulation depicts the percentage of feasible task

sets by varying the energy reservoir capacity . Here, we

conduct experiments with different processor utilization

profiles to test the significant increase in the percentage

of task sets with EG-DVFS, compared with the greedy al-

gorithm ED-H.

To evaluate the method that combines ED-H with the

DVFS technique, we just set the processor utilization val-

ues to 0.4 and 0.8, respectively. We show that EG-DVFS

can perform better than the ED-H while considering en-

ergy consumption.

Cfeas

For each task set, we find the minimum storage capa-

city that permits us to schedule all task sets by

EG-DVFS without violating deadlines and the energy

reservoir is fully replenished at the end of the hyperperi-

od. After that, we increase the reservoir capacity so that

all task sets are feasible with ED-H. Fig. 6 shows the task

set feasibility ratio under different desired processor util-

izations.

Up = 0.4For the case , we observe that the battery ca-

pacity must be more than 3.2 times bigger with ED-H to

maintain 100% feasible task sets compared to EG-DVFS.

This is due to the fact that EG-DVFS is able to slow

down the speed of tasks and save energy so as to obtain a

better opportunity to accept a greater number of tasks.

However, without DVFS based approach, ED-H algori-

thm always execute tasks at full processor speed and the

energy storage in the reservoir is consumed earlier. Con-

sequently, there is more chance to reject tasks due to en-

ergy shortage. In other words, the more stored energy

means that more tasks are able to be finished before their

deadlines. Hence, the ED-H system incurs a much higher

deadline miss rate when compared to EG-DVFS.

Table 3 XScale frequencies, supply voltages and power

Frequency (MHz) 150 400 600 800 1 000

Power (mW) 80 170 400 900 1 600

Voltage (V) 0.75 1.0 1.3 1.6 1.8

1.0 1.5 2.0 2.5 3.0 3.5
40

50

60

70

80

90

100

P
er

ce
n
ta

g
e

o
f

fe
as

ib
le

 t
as

k
 s

et
s

(a) Up = 0.4

1.0 1.5 2.0
50

60

70

80

90

100

P
er

ce
n
ta

g
e

o
f

fe
as

ib
le

 t
as

k
 s

et
s

(b) Up = 0.8

EG-DVFS

ED-H

EG-DVFS

ED-H

Cfeas
—C

Cfeas
—C

Fig. 6 Percentage of feasible task sets by varying battery
capacity

0 500 1 000 1 500 2 000 2 500 3 000

Time (s)

P
er

ce
n
ta

g
e

o
f

re
m

ai
n
in

g
 e

n
er

g
y

0

20

40

60

80

100

120
EG-DVFS
ED-H
EDS

Fig. 7 Variation of the remaining energy level with low
utilization

0 500 1 000 1 500 2 000 2 500 3 000

Time (s)

0

20

40

60

80

100

120

P
er

ce
n
ta

g
e

o
f

re
m

ai
n
in

g
 e

n
er

g
y

EG-DVFS
ED-H
EDS

Fig. 8 Variation of the remaining energy level with high
utilization

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 365

Fig. 6(a) shows that the deadline miss rate of ED-H

exceeds that of the proposed scheduling algorithm by

about 56% and 32% when battery capacity is respect-

ively the same and twice. Hence, the EG-DVFS al-

gorithm is favorable even for small battery capacity.

Up

If we increase the processor utilization to 0.8 and run

the simulation again, we observe that the gain in energy

savings is decreased but EG-DVFS still beats ED-H by a

large margin. EG-DVFS obtains capacity savings of

about 45% compared to ED-H. This is because the funda-

mentals that EG-DVFS outperform are such that the

used slack time to slow down task execution such that

energy is saved for future tasks. When is high, slack

time decreases and most of tasks are just executed at the

full speed, as the ED-H algorithm does.

If we consider the case when the processor is always

busy, EG-DVFS, ED-H and EDS require exactly the

same energy storage. This is because the processor is al-

ways active and there is no processor slack time.

6.3 Remaining energy in the battery

In this experiment, we are interested in the remaining

energy stored in the system at any current time. The im-

portance of this study comes from the fact that we must

always have energy in the storage unit to complete the

execution of tasks, otherwise the scheduler will stop.

Up

We aim to illustrate how the energy level in the stor-

age unit changes along time. We only report this informa-

tion for the three following schedulers: EDS, ED-H, and

EG-DVFS. When is set to 0.4, the remaining energy

curves in EDS, ED-H, and EG-DVFS schedulers are both

plotted in Fig. 7. Under EDS, the remaining energy is de-

creasing until the storage unit is empty or not sufficient

to execute the highest priority instance. It is observed

from Fig. 7 that ED-H runs as EDS except that, whenev-

er there is no sufficient energy to execute the highest pri-

ority task, then the processor becomes idle. Consequently,

whenever a task is required to run, the scheduler com-

pares its energy consumption with the amount of avail-

able energy during one unit of time. According to the res-

ult of that test, either the task will be authorized to ex-

ecute or the processor will idle. This mechanism implies

that the battery level will decrease systematically when

executing a task without necessarily attaining the minim-

um level, i.e., 0. Then, the storage unit will recharge un-

til being fulfilled as long as the system will be able to

meet all the deadlines. Of the three algorithms, EDS and

ED-H has the smallest amount of current energy as it op-

erates at the highest processor-supported frequency and

does not employ DVFS to save energy.

t = 0 t = 350

In details, EDS, ED-H and EG-DVFS are executed as

EDS from time till time . Thus, the current

battery energy is the same under the three scheduling

policies. EDS and ED-H stop respectively at about 10%

and 71% of the total length of the hyperperiod when

there is no more energy in the storage unit. As dedicated

in Fig. 7, the EG-DVFS scheduler stores significantly

more energy than the ED-H scheduler on average. That is

because EG-DVFS algorithm slows down the task execu-

tion for energy savings. On the contrary, ED-H scheduler

always executes the task at the full speed and it con-

sumes more energy to finish an identical task.

UpWhen the processor utilization is set to 0.8, we ob-

tain another plot shown in Fig. 8. We observe that as the

processor utilization increases, the average energy con-

sumption increases. By observing the variation in the

stored energy, we still find that ED-H and EDS have the

smallest amount of current energy since it operates at full

processor speed and does not employ DVFS to save en-

ergy. When the processor utilization is high (say 80%),

our proposed approach still has significant energy sav-

ings of almost 23% in average energy consumption over

existing ED-H . The reason comes from two facts: On one

hand, when the processor utilization is high, the pro-

cessor is almost busy and rarely has chance to slow down

the task execution for energy saving. Consequently, most

of the tasks will be executed at full speed. On the other

hand, the chance for the system to be completely idle is

also reduced and thus the system has no chance to har-

vest energy from the renewable energy source. Hence, the

consumed energy can not be supplemented in time.

7 Conclusions

Up

In this work, we presented an energy guarantee

scheduling and voltage/frequency selection algorithm tar-

geting real-time systems with energy harvesting capabil-

ity. The proposed algorithm is an extension of ED-H

combined with dynamic voltage and frequency selection.

In the case of insufficient energy, we make use of the

slack time for energy saving by applying DVFS tech-

niques to stretch the execution time of the ready task

with highest priority with lower clock frequency and sup-

ply. Here, maximum power savings is achieved since the

recharging time increases and the dissipated energy de-

creases. Compared with the state-of-the-art scheme ED-

H, the proposed scheme (EG-DVFS) achieves a compar-

able percentage of feasible task sets for varying values of

the battery capacity. Provided that the average harves-

ted power is sufficient for continuous operation for the

EG-DVFS, we are able to determine the minimum bat-

tery capacity necessary. Furthermore, achievable capa-

city savings are demonstrated in a simulative study since

the battery capacity must be respectively more than 3.2

and 2.4 times bigger with ED-H to keep the zero dead-

line miss rate compared to EG-DVFS when the processor

utilization is set to 0.4 and 0.8. The results also

demonstrate that the proposed scheme is very effective in

reducing the battery size when compared to the ED-H

scheduler.

The future work will focus on the dynamic task alloca-

 366 International Journal of Automation and Computing 16(3), June 2019

tion and frequency selection scheme for multiprocessor

systems based on the scheduling scheme proposed in this

paper.

References

 R. Mishra, N. Rastogi, D. K. Zhu, D. Mosse, R. Melhem.

Energy aware scheduling for distributed real-time systems.

In Proceedings of International Parallel and Distributed

Processing Symposium, Nice, France, pp. 21–29, 2003.

DOI: 10.1109/IPDPS.2003.1213099.

[1]

 Q. R. Qiu, S. B. Liu, Q. Wu. Task merging for dynamic

power management of cyclic applications in real-time mul-

tiprocessor systems. In Proceedings of International Con-

ference on Computer Design, San Jose, USA, pp. 397–404,
2006. DOI: 10.1109/ICCD.2006.4380847.

[2]

 I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. B. Srivast-

ava. Power optimization of variable-voltage core-based

systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 1, pp. 1702–
1714, 1999. DOI: 10.1109/43.811318.

[3]

 D. J. Cook, S. K. Das. Smart Environments: Technologies,

Protocols, and Applications, New York, USA: John Wiley,

2004.

[4]

 R. Nallusamy, K. Duraiswamy. Solar powered wireless

sensor networks for environmental applications with en-

ergy efficient routing concepts: A review. Information

Technology Journal, vol. 10, pp. 1–10, 2011. DOI: 10.3923/

itj.2011.1.10.

[5]

 S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Ra-

baey. Power sources for wireless sensor networks. In Pro-

ceedings of the 1st European Workshop Wireless Sensor

Networks, Springer, Berlin, Germany, pp. 1–17, 2004.

DOI: 10.1007/978-3-540-24606-0_1.

[6]

 R. Kotz, M. Carlen. Principles and applications of electro-
chemical capacitors. Electrochimica Acta, vol. 45, no. 15–
16, pp. 2483–2498, 2000. DOI: 10.1016/S0013-4686(00)

00354.

[7]

 V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M.

Srivastava. Design considerations for solar energy harvest-

ing wireless embedded systems. In Proceedings of the 4th
International Symposium on Information Processing in

Sensor Networks, Boise, USA, pp. 457–462, 2005. DOI:

10.1109/IPSN.2005.1440973.

[8]

 X. Jiang, J. Polastre, D. Culler. Perpetual environment-

ally powered sensor networks. In Proceedings of the 4th In-

ternational Symposium on Information Processing in

Sensor Networks, Boise, USA, pp. 463–468, 2005. DOI:

10.1109/IPSN.2005.1440974.

[9]

 A. Kansal, J. Hsu, S. Zahedi, M. B. Srivastava. Power

management in energy harvesting sensor networks. ACM

Transactions on Embedded Computing Systems, vol. 6,
no. 4, Article number 32, 2007. DOI: 10.1145/1274858.

1274870.

[10]

 A. Kansal, J. Hsu, M. Srivastava, V. Raqhunathan. Har-

vesting aware power management for sensor networks. In
IEEE Proceedings of the 43rd ACM/IEEE Design Auto-

mation Conference, San Francisco, USA, 2006. DOI:

10.1145/1146909.1147075.

[11]

 J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, V.

Raghunathan. Adaptive duty cycling for energy harvest-

ing systems. In Proceedings of International Symposium

on Low Power Electronics and Design, Tegernsee, Ger-

many, pp. 180–185, 2006. DOI: 10.1145/1165573.1165616.

[12]

 C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time

scheduling for energy harvesting sensor nodes. Real-Time

Systems, vol. 37, no. 3, pp. 233–260, 2007. DOI: 10.1007/
s11241-007-9027-0.

[13]

 C. L. Liu, J. W. Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973. DOI: 10.1145/
321738.321743.

[14]

 R. Jayaseelan, T. Mitra, X. F. Li. Estimating the worst-

case energy consumption of embedded software. In Pro-

ceedings of the 12th IEEE Real-time and Embedded Tech-

nology and Applications Symposium, San Jose, USA,

pp. 81–90, 2006. DOI: 10.1109/RTAS.2006.17.

[15]

 M. Chetto. Optimal scheduling for real-time jobs in en-

ergy harvesting computing systems. IEEE Transactions on
Emerging Topics in Computing, vol. 2, no. 2, pp. 122–133,
2014. DOI: 10.1109/TETC.2013.2296537.

[16]

 H. El Ghor, M. Chetto, R. Hage Chehade. EH-EDF: An

on-line scheduler for real-time energy harvesting systems.

In Proceedings of the 18th IEEE International Conference

on Electronics, Circuits, and Systems, Beirut, Lebanon,

pp. 776–779, 2011. DOI: 10.1109/ICECS.2011.6122389.

[17]

 A. Allavena, D. Mosse. Scheduling of frame-based embed-

ded systems with rechargeable batteries. In Proceedings of
Workshop on Power Management for Real-time and Em-

bedded Systems, Taipei, China, 2001.

[18]

 H. El Ghor, E. M. Aggoune. Energy efficient scheduler of
aperiodic jobs for real-time embedded systems. Interna-

tional Journal of Automation and Computing, 2016, pub-

lished online. DOI: 10.1007/s11633-016-0993-3.

[19]

 S. B. Liu, Q. Qiu, Q. Wu. Energy aware dynamic voltage

and frequency selection for real-time systems with energy

harvesting. In Proceedings of Design, Automation and

Test in EUROPE, Munich, Germany, pp. 236–241, 2008.
DOI: 10.1109/DATE.2008.4484692.

[20]

 S. B. Liu, J. Lu, Q. Wu, Q. R. Qiu. Harvesting-aware

power management for real-time systems with renewable

energy. IEEE Transactions on Very Large Scale Integra-

tion Systems, vol. 20, no. 8, pp. 1473–1486, 2012. DOI:

10.1109/TVLSI.2011.2159820.

[21]

 X. Lin, Y. Z. Wang, S. Y. Yue, N. Chang, M. Pedram. A
framework of concurrent task scheduling and dynamic

voltage and frequency scaling in real-time embedded sys-

tems with energy harvesting. In Proceedings of Interna-

tional Symposium on Low Power Electronics and Design,

Beijing, China, pp. 70–75, 2013. DOI: 10.1109/ISLPED.

2013.6629269.

[22]

 B. Srbinovski, M. Magno, B. O′Flynn, V. Pakrashi, E.

Popovici. Energy aware adaptive sampling algorithm for
energy harvesting wireless sensor networks. In Proceed-

ings of IEEE Sensors Applications Symposium, Zadar,

Croatia, 2015. DOI: 10.1109/SAS.2015.7133582.

[23]

 Y. H. Tan, X. D. Yin. A dynamic scheduling algorithm for
energy harvesting embedded systems. EURASIP Journal

[24]

H. El Ghor and M. Chetto / Energy Guarantee Scheme for Real-time Systems with Energy ··· 367

http://dx.doi.org/10.1109/IPDPS.2003.1213099
http://dx.doi.org/10.1109/ICCD.2006.4380847
http://dx.doi.org/10.1109/43.811318
http://dx.doi.org/10.3923/itj.2011.1.10
http://dx.doi.org/10.3923/itj.2011.1.10
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://dx.doi.org/10.1016/S0013-4686(00)00354
http://dx.doi.org/10.1016/S0013-4686(00)00354
http://dx.doi.org/10.1109/IPSN.2005.1440973
http://dx.doi.org/10.1109/IPSN.2005.1440974
http://dx.doi.org/10.1145/1274858.1274870
http://dx.doi.org/10.1145/1274858.1274870
http://dx.doi.org/10.1145/1146909.1147075
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1007/s11241-007-9027-0
http://dx.doi.org/10.1007/s11241-007-9027-0
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTAS.2006.17
http://dx.doi.org/10.1109/TETC.2013.2296537
http://dx.doi.org/10.1109/ICECS.2011.6122389
http://dx.doi.org/10.1007/s11633-016-0993-3
http://dx.doi.org/10.1109/DATE.2008.4484692
http://dx.doi.org/10.1109/TVLSI.2011.2159820
http://dx.doi.org/10.1109/ISLPED.2013.6629269
http://dx.doi.org/10.1109/ISLPED.2013.6629269
http://dx.doi.org/10.1109/SAS.2015.7133582
http://dx.doi.org/10.1109/SAS.2015.7133582
http://dx.doi.org/10.1109/SAS.2015.7133582
http://dx.doi.org/10.1109/IPDPS.2003.1213099
http://dx.doi.org/10.1109/ICCD.2006.4380847
http://dx.doi.org/10.1109/43.811318
http://dx.doi.org/10.3923/itj.2011.1.10
http://dx.doi.org/10.3923/itj.2011.1.10
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://dx.doi.org/10.1016/S0013-4686(00)00354
http://dx.doi.org/10.1016/S0013-4686(00)00354
http://dx.doi.org/10.1109/IPSN.2005.1440973
http://dx.doi.org/10.1109/IPSN.2005.1440974
http://dx.doi.org/10.1145/1274858.1274870
http://dx.doi.org/10.1145/1274858.1274870
http://dx.doi.org/10.1145/1146909.1147075
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1145/1165573.1165616
http://dx.doi.org/10.1007/s11241-007-9027-0
http://dx.doi.org/10.1007/s11241-007-9027-0
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTAS.2006.17
http://dx.doi.org/10.1109/TETC.2013.2296537
http://dx.doi.org/10.1109/ICECS.2011.6122389
http://dx.doi.org/10.1007/s11633-016-0993-3
http://dx.doi.org/10.1109/DATE.2008.4484692
http://dx.doi.org/10.1109/TVLSI.2011.2159820
http://dx.doi.org/10.1109/ISLPED.2013.6629269
http://dx.doi.org/10.1109/ISLPED.2013.6629269
http://dx.doi.org/10.1109/SAS.2015.7133582
http://dx.doi.org/10.1109/SAS.2015.7133582
http://dx.doi.org/10.1109/SAS.2015.7133582

on Wireless Communications and Networking, vol. 2016,
Article number 114, 2016. DOI: 10.1186/s13638-016-0602-

8.

 H. Z. Xu, R. F. Li, L. N. Zeng, K. Q. Li, C. Pand. Energy-

efficient scheduling with reliability guarantee in embed-

ded real-time systems. Sustainable Computing: Informat-

ics and Systems, vol. 18, pp. 137–148, 2018. DOI: 10.

1016/j.suscom.2018.01.005.

[25]

 M. L. Dertouzos. Control robotics: The procedural control

of physical processes. In Proceedings of International Fed-

eration for Information Processing, Stockholm, Sweden,

pp. 807–813, 1974.

[26]

 J. W. S. Liu. Real-time Systems, New Jersey, USA: Pren-

tice-Hall, 2000.

[27]

 H. Chetto, M. Chetto. Some results of the earliest dead-

line scheduling algorithm. IEEE Transactions on Software

Engineering, vol. 15, no. 10, pp. 1261–1269, 1989. DOI:

10.1109/TSE.1989.559777.

[28]

 M. Silly. The EDL server for scheduling periodic and soft
aperiodic tasks with resource constraints. Real-time Sys-

tems, vol. 17, no. 1, pp. 87–111, 1999. DOI: 10.1023/

A:1008093629946.

[29]

 M. Chetto, A. Queudet. Clairvoyance and online schedul-

ing in real-time energy harvesting systems. Real-time Sys-

tems, vol. 50, no. 2, pp. 179–184, 2014. DOI: 10.1007/s11241-

013-9193-1.

[30]

 J. Y. T. Leung, J. Whitehead. On the complexity of fixed-

priority scheduling of periodic, real-time tasks. Perform-

ance Evaluation, vol. 2, no. 4, pp. 237–250, 1982. DOI:

10.1016/0166-5316(82)90024-4.

[31]

 P. Martineau. Online Scheduling In Real-Time Systems,

Ph. D. dissertation, University of Nantes, France, 1994.
[32]

 Intel Corp. Intel XScale Processor Family Electrical,[33]

Mechanical, and Thermal Specification Datasheet, Tech-

nical Report, Santa Clara, USA, 2004.

Hussein El Ghor received the B. Eng. de-
gree in engineering from the Lebanese Uni-
versity, Lebanon in 2002, the Ph. D. de-
gree in automatics and applied informat-
ics from University of Nantes, France in
2012. He is currently an assistant profess-
or with Institute of Technology, Lebanese
University, Lebanon. He authored many
papers in prestigious journals and confer-

ences in the area of real-time systems.

 His research interests include scheduling and power manage-

ment for real-time energy harvesting applications.

 E-mail: husseinelghor@ul.edu.lb (Corresponding author)

 ORCID iD: 0000-0003-0001-3066

Maryline Chetto received the Ph. D. de-
gree of 3rd cycle doctor in control engineer-
ing and the degree of HDR in computer sci-
ence from the University of Nantes, France
in 1984 and 1993, respectively. From 1984
to 1985, she held the position of assistant
professor of computer science at the Uni-
versity of Rennes 1, France while her re-
search was with the Institute of Research

in Computer Science and Random Systems, France. In 1986, she

returned to Nantes and is currently a professor with the Insti-

tute of Technology, University of Nantes, France. She is con-

ducting her research at Laboratory of Numerical Sciences of
Nantes Institute. She has published more than 100 journal art-
icles and conference papers in the area of real-time operating sys-

tems.

 Her research interests include scheduling and power manage-

ment for real-time energy harvesting applications.

 E-mail: maryline.chetto@univ-nantes.fr

 368 International Journal of Automation and Computing 16(3), June 2019

http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1186/s13638-016-0602-8
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1016/j.suscom.2018.01.005
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1023/A:1008093629946
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1007/s11241-013-9193-1
http://dx.doi.org/10.1016/0166-5316(82)90024-4

