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Abstract: The optimal test sequence design for fault diagnosis is a challenging NP-complete problem. An improved differential

evolution (DE) algorithm with additional inertial velocity term called inertial velocity differential evolution (IVDE) is proposed to

solve the optimal test sequence problem (OTP) in complicated electronic system. The proposed IVDE algorithm is constructed based

on adaptive differential evolution algorithm. And it is used to optimize the test sequence sets with a new individual fitness function

including the index of fault isolation rate (FIR) satisfied and generate diagnostic decision tree to decrease the test sets and the test

cost. The simulation results show that IVDE algorithm can cut down the test cost with the satisfied FIR. Compared with the other

algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA), IVDE can get better solution to OTP.
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1 Introduction

Complex systems with high safety and mission critical

requirements, such as the space shuttle or commercial air-

craft, consume high maintenance expenditures annually.

The high maintenance cost can often be due to the lack

of consideration of testability requirements at the initial

design stage and inefficiencies in test strategy. To improve

the design for testability, the optimal test sequence design

for fault diagnosis is focused on, but it is a challenging NP-

complete problem[1]. There are two kinds of algorithms

available to solve the problem: the dynamic programming

and heuristic search algorithm. The bottom-up dynamic

programming with a self-constructed test tree needs ex-

ponential storage and it has computational complexity of

O(3n) (n is the number of the test set)[1]. AO* entropy-

based heuristic search method is proposed to solve the prob-

lem in AND/OR graph search of fault isolation[2−4] . The

entropy is used to select the current best test point for each

step of the expansion of the node in the AO* algorithm.

This is easy to fall into the local optimal solution. More

practical algorithms such as traditional Lagrangian relax-

ation, near-optimal gradient[5], bottom-up test sequenc-

ing generation methods[6] and dynamic uncertain causal-

ity graph method to model complex behaviors of real-world

systems under uncertainties[7] are studied to solve the mid-

dle scale optimal test sequence problem (OTP). The intelli-

gent algorithms such as genetic algorithm (GA)[8], discrete

binary particle swarm optimization (DBPSO)[9], quantum-

Research Article
Manuscript received October 27, 2014; accepted July 24, 2015; pub-

lished online September 2, 2016
Recommended by Associate Editor Chandrasekhar Kambhampati
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag Berlin Heidelberg 2016

behaved particle swarm optimization[10] application in the

optimal diagnostic test strategies is suggested to effectively

reduce the testing cost for large-scale system. After research

on the particle swarm optimization (PSO) algorithm, the

swarm behavior should be determined not only by the previ-

ous velocity, own experience and the others′ experience, but

also by the adventure factor, and DBPSO with this new idea

has gotten better test sequence to solve the OTP[11]. More

intelligent algorithms are studied, e.g., firefly algorithm has

been also used to solve the software testing problem[12], ant

algorithm is used to overcome the computational explosion

by setting up ant state transfer rule and feedback[13], cul-

tural algorithm is used to optimize the detection of stuck-at

faults and crosstalk faults in digital circuits[14]. But these

algorithms have to construct a new fitness function which is

not directly related to the test cost. And the constraints on

the flexible testability index of fault detection rate and fault

isolation rate are not directly concerned with[15]. Differen-

tial evolution (DE) is an effective population-based random

search heuristic evolutionary algorithm. Adaptive differ-

ential evolution with optional external archive (JADE)[16]

and composite trial vector generation strategies differential

evolution algorithm (CoDE)[17] are two improved DE with

good performance in their test numerical simulation. But

they have not been applied to solve the OTP.

The organization of the paper is as follows. A general test

sequence problem formulation is introduced in Section 2. In

Section 3, an improved differential evolution called inertial

velocity differential evolution (IVDE) with an additional

inertial velocity factor is presented and discussed. And a

new fitness function is proposed to integrate the test cost
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with the fault detection rate (FDR) and fault isolation rate

(FIR) to solve the OTP. IVDE optimizes the test sequence

sets to isolate the failure states by a new individual state

representation of test sequence and generate diagnostic de-

cision tree to decrease the test cost and meet the FDR

and FIR requirements. The IVDE used to optimize the

examples compared with other algorithms is discussed in

Section 4. The paper has been concluded in Section 5.

2 Test sequence problem

The optimal test sequencing problem known as test plan-

ning issues is to design a test sequencing strategy that un-

ambiguously isolates the failure states with minimum ex-

pected testing cost to meet the FDR and FIR requirements.

The OTP parameters are defined as the five-tuple (S, P ,

T , C, D)[1], where S = {s0, s1, · · ·, sm} is a set of statisti-

cally independent failure states associated with the system.

And s0 states that “no fault” state, si (0 < i < m + 1) is a

different fault condition.

P = [p(s0), p(s1), · · ·, p(sm)] is a priori probability vec-

tor associated with the set of failure states S.

T = {t1, t2, · · ·, tn} is a finite set of n reliable binary

outcome tests, where each test tj checks a subset of S.

C = {c1, c2, · · ·, cn} is a set of test costs measured in

terms of time, manpower requirements, or other economic

factors, where cj is the cost of applying test tj .

D = [dij ] is a binary matrix of dimension (m + 1) × n

called dependence matrix which represents the relationship

between the set of failure states S and the set of tests T ,

where dij=1 if test tj monitors failure state si, otherwise

dij=0.

The OTP parameters of a small scale system are shown

in Table 1.

Table 1 OTP parameters for small scale example

S
Test T

P
t1 t2 t3 t4 t5

s0 0 0 0 0 0 0.01

s1 0 1 0 0 1 0.08

s2 0 0 1 1 0 0.28

s3 1 0 0 1 1 0.20

s4 1 1 0 0 0 0.30

s5 1 1 1 1 0 0.13

Cost C 1.0 4.0 3.0 3.0 5.0

This paper assumes that there is only one system failure

state occurs. (Multiple fault diagnosis problem will be dis-

cussed in another paper in the future). The problem is to

design a test sequence that is able to unambiguously iden-

tify the occurrence of any system state in S using the tests

in the test set of T , and that minimizes the expected testing

cost J , given by (1) under the known condition of (S, P ,

T , C, D) with required FIR named FIRtarget
[1].

J = PTAC =

m∑

i=0

n∑

j=1

aijp(si)cj (1)

where A = (aij) is a binary matrix with the dimension of

(m+1)×n. Let aij = 1 if the failure state si identification

system used in the course of the test tj , otherwise aij = 0.

FIRtarget is the lowest requirement of FIR in system. In

general, A is derived from D according to the test sequence.

3 Inertial velocity differential evolution

3.1 Differential evolution algorithm

We suppose that the minimized objective function is

f(xi), xi = (xi,1, · · · , xi,d, · · · , xi,n) ∈ Rn, the feasible

solution space is Ω =
n∏

i=1

[xi,min,xi,max]. And the initial pop-

ulation Pop = {x1, · · · , xi, · · · , xNpop} is randomly sam-

pled from Ω, where Npop is the population size. Differential

evolution is an effective population-based random search

heuristic evolutionary algorithm and can be used to deal

with the optimization problem. At the k-th generation, DE

creates a mutant vector vi = (vi,1, · · · , vi,d, · · · , vi,n) ∈ Rn

for each individual xi in current population. Different mu-

tation operation will play key role to decide the DE per-

formance. One widely used DE mutation operator named

DE/current-to-best/1/bin[16] is shown as

vk+1
i,d = xk

i,d + F k
i × ((xk

best,d − xk
i,d) + λ × (xk

r1,d − xk
r2,d))

(2)

where the superscript k stands for the k-th iteration or

k-th generation, the subscript i stands for the i-th individ-

ual, and the subscript d stands for the d-th subdimension.

Namely, xk
i,d and vk

i,d are the position and mutant vector

in the d-th subdimension of the i-th individual in the k-th

iteration(or generation). r1 and r2 are the distinct integers

randomly selected from the range [1, Npop] and are also

different from i. The parameter Fi is called the mutation

factor, which amplifies the difference vectors. λ is a scale

factor. xbest,d is the d-th element of the best individual in

the current population. After mutation, DE applies a bino-

mial crossover operator on xi,d and vi,d to generate a trial

vector ui,d as

uk
i,d =

{
vk

i,d, if rand(1) ≤ CR or d = rand(n)

xk
i,d, otherwise

(3)

where i = 1, 2, · · ·, Npop, d = 1, 2, · · ·, n, rand(n) is a ran-

domly chosen integer in [1, n], rand(1) is a uniformly dis-

tributed random number between 0 and 1 which is gen-

erated for each individual, and CR ∈[0, 1] is called the

crossover control parameter. Due to the use of rand(·),
the trial vector ui differs from its target vector xi.

If the d-th element ui,d of the trial vector ui is out of the
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boundary, it is reset as

ui,d =

{
min{xd,max, 2xd,min − ui,d}, if ui,d < xd,min

max{xd,min, 2xd,max − ui,d}, if ui,d > xd,max.
(4)

The selection operator is applied to select the better one

from the target vector xk
i (k-th generation) and the trial

vector uk
i to enter the next generation xk+1

i as

xk+1
i =

{
uk

i , if f(uk
i ) < f(xk

i )

xk
i , otherwise.

(5)

3.2 Improved DE with additional inertial
velocity factor

To combine the good feature of particle swarm optimizer

with DE to escape from local optimum[16], we suggest an

improved DE with additional inertial velocity factor. After

the inertial velocity factor added, (2) is rewritten as (6) and

(7).

velk+1
i,d = wk

i,d × velki,d+

F k
i × ((xbest,d − xk

i,d) + λ × (xk
r1,d − xk

r2,d)) (6)

vk+1
i,d = xk

i,d + velki,d (7)

where the superscript k and the subscripts i and d have

the same meaning as in (2). Namely, velki,d is the speed

in d-th subdimension of the i-th particle in the k-th iter-

ation (or generation), wk
i,d is the inertial weight factor of

velocity to escape from the local optimum. Fi is the mu-

tation factor, its value is estimated by the method used

in JADE algorithm[16] , and the “DE/current-to-pbest/1”

strategy instead of only adopting the best individual in the

“current-to-best/1” strategy. Namely xp
best,d is randomly

chosen as one of the top 100×p% individuals in the current

population with p ∈ (0, 1] instead of xbest,d. Equation (6)

will be

velk+1
i,d = wk

i,d × velki,d+

F k
i × ((xp

best,d − xk
i,d) + λ × (xk

r1,d − xk
r2,d)) (8)

Fi = randc(μF , 0.1) (9)

μF = (1 − c) × μF + c × meanL(SF ) (10)

meanL(SF ) =

∑
F∈SF

F 2

∑
F∈SF

F
(11)

where F k
i is associated with xi and is re-generated at each

generation by the adaptation process introduced in (9). At

k-th generation, the mutation factor Fi of each individual

xi is independently generated according to a Cauchy dis-

tribution with location parameter μF and scale parameter

0.1, and then truncated to be 1 if Fi ≥ 1 or regenerated if

Fi ≤ 0. Denote SF as the set of all successful mutation fac-

tors in the k-th generation. The location parameter μF of

the Cauchy distribution is initialized to be 0.5 and then up-

dated at the end of each generation as (10), where c ∈ (0, 1)

is a positive constant and meanL(·) is the Lehmer mean

calculated by (11).

Similarly, we consider the crossover probability CR,i also

has the different weighting feature, and is estimated by (12)

and (13).

CR,i = randn(μCR, 0.1) + CR,iw (12)

μCR = (1 − c) × μCR + c × meanA(SCR) (13)

where randn(μCR, 0.1) is a normal distribution of mean

μCR and standard deviation 0.1, CR,iw is a modified factor

with different weighting factor according to their fitness.

Denote SCR as the set of all successful crossover probabil-

ities C′
R,is at generation k. The mean μCR is initialized to

be 0.5 and then updated at the end of each generation as

(13), where c ∈ (0, 1) is a positive constant and meanA(·)
is the usual arithmetic mean.

Then, sort current population in their fitness ascending

order fi,order = sortAscending{
xi∈Pop

f(xi)}. The other parame-

ters will be calculated as

Cv(i) = sin(
fi,order

Npop
π) (14)

Ck
R,iw =

1 + α1k

1 + α2k
× 0.04 × Cv(i) (15)

wk
i,d =

1 + α1k

1 + α2k
× (0.1rand(0, 1) + 0.618) (16)

pk =
1 + α1k

1 + α2k
× p0 (17)

where k is the iteration times, evaluations α1 and α2 are

control parameters of the filter to be adjusted with itera-

tions, and p0 is the initial value of the top percentage of

best individuals.

3.3 Test sequence coder for IVDE

When using IVDE to solve the test sequencing problem,

we should map the state space to test sequence. We define

individual state x = (x1, · · · , xi, · · · , xN) as a test vector

whose dimension is equal to the number of tests. The value

of xi corresponds to the test number of the i-th test in the

test sequence, 1 to N . For every individual, the descending

order of its sub vector value can be regarded as a diagnostic

sequence design.

Shown in Fig. 1, for example, a five dimension vector

is x = {8.1,−6.5,−0.9, 6.2,−7.3}, its descending order is

Ts={1, 4, 3, 2, 5} represented by {t1, t4, t3, t2, t5}. That

means it is a diagnostic sequence result in the test space.

Therefore, the vector x will give a diagnostic strategy Ts =

{ t1 −→t4 −→t3 −→t2 −→t5}. This test sequence can be

regarded as an OTP solution of the example whose param-

eters are mentioned in Table 1. If this test sequence is used

to isolate the failure states, the diagnostic tree is shown in

Fig. 2.
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Fig. 1 Individual state vector for test sequence coder

Fig. 2 Fault isolation flow diagram by test sequence

Shown in Fig. 2, if we set FIRtarget = 0.9, at the

beginning, all the failure states are in one group S =

{s0, s1, s2, s3, s4, s5}. The first test t1 of { t1 −→ t4 −→
t3 −→ t2 −→ t5} is used to separate S into two ambigu-

ous groups, which are {s0, s1, s2} and {s3, s4, s5}. Then

the second test t4 is used to separate these two ambiguous

groups. {s0, s1, s2} is separated into {s0, s1} and {s2};
{s3, s4, s5} is separated into {s4} and {s3, s5}. There

are two ambiguous groups and two isolated failure states.

So we calculate the FIR= the sum of the probability of

isolated failure states= p(s2) + p(s4)=0.58. If the actual

FIR ≥ FIRtarget, the test sequence is enough and termi-

nated to isolate the failure states. Otherwise, the next test

is used to separate the ambiguous groups again. The group

{s0, s1} cannot be further separated into two groups by the

test t3, but {s3, s5} can be separated into failure state {s3}
and {s5}. Now FIR =0.58+p(s3)+p(s5)= 0.91, it is bigger

than FIRtarget = 0.9. Therefore , the valid test sequence

length Nt is 3 in this OTP example.

3.4 The fitness function of the IVDE to
solve OTP

A vector xxx stands for a diagnostic sequence, which gives

a diagnostic tree as mentioned above, so we can use the cost

of diagnostic tree to establish fitness function. Suppose xxx

is given, its fault isolation matrix is A = (aij) mentioned

in (1), its fault detection rate is FDR and fault isolation

rate is FIR. The FDR, FIR and the cost of testing should

be integrated into the fitness function of the individual xr

based on (1).

f(xr) =
m∑

i=0

n∑

j=1

aijp(si)cj + γNt+

α(FDRtarget − FDR) + β(FIRtarget − FIR) (18)

Fig. 3 Fitness calculation algorithm pseudocode

where Nt is the number of the test sequence set of Ts

used to detect and isolate failure states, α, β, γ are three

weighting coefficients. In (18), Nt is added to minimize

the test set. A bigger Nt means that it needs more test

points to detect and isolate failure states. The bigger are

the factors of α and β, the FDR and FIR will be closer

to the specified FDRtarget and FIRtarget. The other

symbols have the same meaning as in (1). In this pa-

per, α=1, β=1, γ=0.000 1, FDRtarget=100% . The fitness

function calculation detailed algorithm pseudocode is illus-

trated in Fig. 3. The complexity of the IVDE to solve OTP

is mainly determined by the fitness function calculation. As

shown in (18), A=(aij) should be calculated first. A column

vector of A is determined by one test. The test sequence will

decide the fault isolation matrix A. The detailed diagnostic

strategy algorithm is illustrated in Fig. 3. The complexity of

calculating A=(aij) is O(mn2). Therefore, the fitness func-

tion calculation complexity is O(m2n3). It is smaller than
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the complexity O(3n) of dynamic programming[1] when n

is large enough, so IVDE can be used to generate optimal

test sequence to meet the testability analysis requirement

of a complex system.

3.5 IVDE algorithm to solve OTP

Suppose that FEs is the variable of the objective (or fit-

ness) function evaluations, FEsmax is the maximum limit

of FEs for the optimal problem to solve. The inertial veloc-

ity differential evolution algorithm is described as follows:

Step 1. Set the value of FIRtarget, the population size

Npop, the dimension n, the value of FEsmax, the percent-

age p0 of xp
best in (17), the parameter values of α1, α2 used

in (15)−(17).

Step 2. Generate random initialization population

Pop = {x1, · · · , xi, · · · , xNpop}. For each individual x i,

the descending order of its sub vector value is regarded as

a diagnostic sequence design and their fitness can be cal-

culated as shown in Fig. 3. Set iteration control variable

FEs= Npop .

Step 3. Set i = 1.

Step 4. Select individual xi in current population, calcu-

late its inertial velocity weighting factor wi,d and crossover

probability CR,iw by (16) and (15), respectively. Then cal-

culate CR by (12) and Fi by (9).

Step 5. Calculate the variation vi of individual xi by (8)

and (7), calculate its fitness as shown in Fig. 3 and update

ui by (3) and (4).

Step 6. Select the optimum assignment from {ui, xi}
according to greedy selection mechanism by (5), update in-

dividuals to be the next generation of the population, and

record the successful individuals in an external storage to

form SF and SCR.

Step 7. i = i +1. If i > Npop, go to Step 8. Otherwise,

go to Step 4.

Step 8. Set FEs = FEs + Npop.

Step 9. All individuals are regarded as the new genera-

tion population, calculate the μF by (10), Fi by (9), μCR

by (13).

Step 10. Sort current population according to their fit-

ness in ascending order, randomly select one of the top

100×p% individuals as xp
best.

Step 11. When FEs < FEsmax, go to Step 3. Oth-

erwise, the algorithm stops, the best individual will be re-

garded as the optimal solution.

4 Numerical experiment results

IVDE algorithm to solve OTP is programmed in Matlab

environment. Experiments run on a PC with 2.93 GHz Intel

dual-core CPU, and Win7 operating system. The parame-

ters of IVDE algorithm are set as: n = the elements of test

set, the feasible solution space is Ω =
n∏

i=1

[xi,min, xi,max],

xi,min = −10, xi,max = 10, the max number of genera-

tions is 200, FEsmax =20 000, population size Npop = 100,

λ =1.123, c = 0.1, p0 = 0.35, α1 = 0.000 11, α2 = 0.000 67.

The initial values of μCR and μF are 0.5. In this section,

three OTP examples are chosen to test IVDE in Matlab.

4.1 Apollo prelaunch checkout[1]

APOLLO prelaunch checkout example[1] is always used

to check computer-based diagnostic aid. In this system,

there are 10 failure states and 15 tests with the required

FIRtarget = 100%. The system is assumed to be in one of

the failure states, i.e., the probability of no-fault condition

p(s0) =0. This situation is very common in field mainte-

nance, where the objective of fault diagnosis is to identify

the failure source, given that the system built-in testing

and monitoring aids have detected the presence of a fault

during system operation. The given binary test matrix D

along with the probability P of failure states and test costs

C are shown in Table 2. The optimal solution is shown in

Table 3, where IVDE has independently run 15 times to

solve the OTP in Matlab.

Table 2 Test parameters for APOLLO prelaunch checkout [1]

S
Test T

P
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

s0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

s1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0.1

s2 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0.1

s3 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0.1

s4 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0.1

s5 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0.1

s6 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0.1

s7 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0.1

s8 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0.1

s9 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0.1

s10 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0.1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The results shown in Table 3 compared with huffman

code-based heuristic eualuation functions (HEF1)[1] are the

same. The average test cost value is 3.400 0± 1.81 × 10−15

in 15 run times. Because in this OTP shown in Table 2,

the different failure states have the same priori probability

and the different test costs also have same value, its optimal

solution will be more than one in general. And IVDE can

almost get 15 different optimal test sequences but almost

the same test cost and fitness in 15 runs.

Table 3 Optimal solution on APOLLO prelaunch checkout

Algorithm Optimal test sequencing set Ts Test cost

Ts1={t15,t7, t8, t9} 3.4000 ± 1.81 × 10−15

Ts2={ t11 , t3, t13, t12}
Ts3={ t5 , t8, t6, t1}

Ts4={ t15, t12, t11, t10}
IVDE Ts5={ t8, t9, t4, t15}

Ts6={ t9, t11, t3, t2}
Ts7={ t12, t13, t9, t15}
Ts8={ t5, t8, t10, t11}

. . .
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4.2 Anti-tank system[15]

Anti-tank system is a guided missile system primarily

designed to hit and destroy heavily armored military ve-

hicle. In this system, there are 13 failure states and 12

tests. The parameters of failure state probability and test

cost are shown in Table 4[15]. In this OTP, the differ-

ent failure state has a different probability, and different

tests have different test costs. The optimal solutions com-

pared with the self-adaptive test optimizing DPSO algo-

rithm (SADPSO)[15] are shown in Table 5, where IVDE has

independently run 15 times to solve the OTP in Matlab.

And all the comparisons are carried out under the same

FIR constraints, i.e., 95%, 90%, 80%. The first line of

Table 5 shows the FIR requirements, the test sequence gen-

erated by all algorithms should have a FIR no less than the

required. The other lines shows all algorithm′s performance

including the actual FIR (FIR result), different number of

test sequence set and test cost.

Table 4 NMI scores of different algorithms

S
Test T

P
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

s0 0 0 0 0 0 0 0 0 0 0 0 0 0.10

s1 1 0 1 1 1 1 1 1 1 0 1 1 0.12

s2 0 1 0 1 1 0 1 1 1 0 1 1 0.07

s3 0 0 0 0 0 0 1 1 1 0 1 0 0.08

s4 0 0 0 0 0 0 0 1 0 1 0 0 0.09

s5 0 0 0 1 1 0 1 1 1 0 1 1 0.08

s6 0 0 0 0 1 0 0 1 0 0 1 1 0.11

s7 0 0 0 0 0 0 1 0 0 0 0 0 0.13

s8 0 0 0 0 0 1 1 1 1 0 1 1 0.09

s9 0 0 0 0 0 0 0 1 0 0 1 0 0.04

s10 0 0 0 0 0 0 0 1 0 0 0 0 0.02

s11 0 0 0 0 0 0 0 1 1 0 1 0 0.02

s12 0 0 1 1 1 0 1 1 1 0 1 1 0.05

Cost 1.0 1.0 2.2 1.3 1.5 10 1.0 2.0 3.9 2.8 0.8 2.3

As shown in Table 5, the performance of the proposed

method is compared with SADPSO. SADPSO is regarded

as the best algorithm discussed in [15]. Compared to

SADPSO, the IVDE consumes less test cost in the same

FIRtarget. For example,under the FIRtarget = 95% con-

straint, both algorithms need 11 tests to get the FIR, 100%

bigger than FIRtarget, but IVDE consumes test cost of 4.75

and SADPSO needs test cost of 4.86.

4.3 Super-heterodyne receiver compli-
cated system

The test sequence design of the super-heterodyne receiver

of the radar system[1] is always used to evaluate a new al-

gorithm performance. The system consists of 36 different

tests and 22 failure states. Its failure states and test re-

lationship matrix D, failure priori probability P and test

costs C are illustrated in Table 4 in [1]. IVDE is verified

further by this example and used the same parameters as

mentioned above except n = 36, FEsmax = 0.25n × 104.

Table 5 Algorithm comparison in anti-tank system[15]

Algorithm FIR ≥ 95% ≥ 90% ≥ 85% ≥ 80% ≥ 75% ≥ 70%

FIR 100% 94% 89% 83% 79% 73%

SADPSO-C Tests 11 10 10 9 9 8

Cost 4.86 4.63 4.56 4.32 4.14 3.9

FIR 100% 94% 89% 83% 79% 73%

IVDE Tests 11 10 10 9 9 8

Cost 4.75 4.52 4.44 4.21 4.02 3.9

In Table 6, the performance of IVDE is compared with

the SADPSO[15]. All the comparisons are carried out un-

der the same FIR constraints, i.e., 90%, 80 %, 70 % and

60 %. The test sequence generated by all algorithms should

have a FIR no less than the required. For example,

IVDE generates a test sequence with test cost of 3.25 and

FIR =93.53 % when the required FIR index is no less than

90%, and it only needs 6 different tests but SADPSO needs

9 different tests. The solution of only 6 different tests to

achieve the FIR >90% by IVDE is shown in Fig. 4. To

compare the solution of the problem in [8, 9, 10, 11], solu-

tions with FIRtarget = 100% solved by IVDE are shown

in Table 7. To achieve 100 % FIR, IVDE needs 15 tests to

isolate all the failure states and get the test cost of 3.347.

This is better than the test cost of 3.952 6 in [8] and cost

of 3.52 in [11]. That means IVDE can get a better solu-

tion. Although IVDE has also not gotten a solution with

test cost less than 3.02 in [9], we think this result is unrea-

sonable with the optimal test sequencing set because of t8
used twice.

Table 6 Algorithm comparison in super-heterodyne receiver[15]

Algorithm FIR ≥ 90% ≥ 80% ≥ 70% ≥ 60%

FIR 94.65% 80.26% 74.69% 60.26%

SADPSO-C Tests 9 13 10 10

Cost 3.26 3.13 3.04 2.68

FIR 93.53% 80.02% 74.85% 60.04%

IVDE Tests 6 13 4 9

Cost 3.25 3.16 2.84 2.68

In Table 7, IVDE has achieved different optimal test se-

quence sets of Ts1, T s2 and Ts3, which have the same test

cost and fitness. If the optimal test sequence is {34, 8, 19,

30, 28, 26, 29, 32, 31, 7, 5, 21, 22, 10, 14}, its diagnostic

decision tree is shown as Fig. 5. From the tree in Fig. 5, a

failure state only needs part of the test set to form the deci-

sion tree path to isolate from the others. For example, fail-

ure state s19 only needs test sequence {t34, t8, t19, t26, t21}
to isolate from the others. It is established from the tree,

the longer is the path from the root, the failure state priori

probability is smaller.
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Table 7 Optimal solution on the super heterodyne receiver

Algorithm Optimal test sequencing Ts Cost J

DPSO-AO*[9] t30, t26, t31, t34, t8, t11, t4, t21, t22, t12, t28, t8, t19 3.02

GA[8] t34, t28, t8, t26, t31, t32, t19, t21, t27, t5, t14, t22, t12, t13 3.952 6

DBPSO-AO*[11] t34, t7, t8, t26, t32, t14, t21, t19, t31, t28, t13, t35, t29, t22, t36 3.52

QPSO[10] t32, t34, t28, t31, t8, t26, t13, t14, t5, t12, t21, t27, t19, t22 3.390 4

Ts1 = { t34, t8, t19, t30, t28, t26, t29, t32, t31, t7, t5, t21, t22, t10, t14}
IVDE Ts2 = { t34, t8, t19, t30, t28, t29, t32, t31, t26, t11, t21, t6, t23, t15, t22} 3.347 35

Ts3 = { t34, t8, t19, t30, t28, t26, t29, t32, t31, t11, t21, t6, t22, t7, t35}

Fig. 4 Solution of 6 tests to achieve FIR >90% by IVDE

4.4 IVDE solution compared with
CLPSO, JADE and CoDE

In order to demonstrate the advantage of IVDE, we com-

pare the results of the super heterodyne receiver OTP with

that of the comprehensive learning particle swarm optimizer

(CLPSO)[19] , JADE [16] and CoDE[17]. The Matlab code

of CLPSO, JADE and CoDE algorithms and their param-

eters are taken from [17]. Their fitness functions are the

same as (18). Using a PC with Intel dual-core CPU, and

Win7 operating system, IVDE, CLPSO, CoDE and JADE

are independently run 15 times to solve the OTP in Mat-

lab R2006 environment. The test cost average results and

standard deviation are shown in Table 8. The convergence

graph of IVDE algorithm compared with CLPSO, CoDE

and JADE is shown in Fig. 6. The convergence of the three

differential evolution algorithms (CoDE, JADE and IVDE)

is better than the CLPSO. The average optimal test cost

of JADE is not better than CLPSO. But IVDE has gotten

better solution and convergence speed than the other′s af-

ter 2 000 FEs. That means IVDE has better features than

the other algorithms.

Fig. 5 Diagnostic decision tree by optimal test sequence of

IVDE
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Table 8 Average test cost on the super heterodyne receiver

over 15 independent runs

Algorithm Optimal average test cost

CLPSO 3.353 11×100±1.80×10−3

CoDE 3.351 29×100±9.06×10−16

JADE 3.354 52×100±4.98×10−3

IVDE 3.349 02×100±7.56×10−4

Fig. 6 Convergence of IVDE , CLPSO, CoDE and JAD

5 Conclusions

We have developed a new differential evolution algorithm

with additional inertial velocity factor called inertial veloc-

ity differential evolution (IVDE) and proposed a new fitness

function to solve the optimal test sequencing problems for

large scale electronic system. We demonstrated our algo-

rithms on the super heterodyne receiver system[1] and get

a better solution with FDR = 100% and FIR= 100% com-

pared with the other algorithms in the paper [8, 10, 11]. And

compared with SADPSO[15], the IVDE algorithm can get

better solution to reduce the test cost and number of tests

under the condition of the specified FIR during the system

design.

The IVDE algorithm proposed in this paper introduces

an inertial velocity factor to escape from local optimum.

This is useful to avoid early convergence and increase the

probability of searching global optimal solution compared

with other DE such as JADE,CoDE. The IVDE used to

solve multiple fault diagnosis problem and software testing

problem will be discussed in near future.
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