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Abstract: A Fourier kernel based time-frequency transform is a proven candidate for non-stationary signal analysis and pattern recog-
nition because of its ability to predict time localized spectrum and global phase reference characteristics. However, it suffers from heavy
computational overhead and large execution time. The paper, therefore, uses a novel fast discrete sparse S-transform (SST) suitable for
extracting time frequency response to monitor non-stationary signal parameters, which can be ultimately used for disturbance detection,
and their pattern classification. From the sparse S-transform matrix, some relevant features have been extracted which are used to dis-
tinguish among different non-stationary signals by a fuzzy decision tree based classifier. This algorithm is robust under noisy conditions.

Various power quality as well as chirp signals have been simulated and tested with the proposed technique in noisy conditions as well.
Some real time mechanical faulty signals have been collected to demonstrate the efficiency of the proposed algorithm. All the simulation

results imply that the proposed technique is very much efficient.
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1 Introduction

During the last several years, significant research has
been undertaken to develop appropriate signal processing
methods for the representation, analysis and pattern re-
cognition of non-stationary signals embedded in noise.
Initial studies in non-stationary signal processing in-
cluded filter banks, spectrograms, quadratic methods for
the analysis of linear frequency modulated signals that
occurred in radar, geophysical systems, sonar, etc.
However, multi component signals which occurred in
power networks, biomedical systems, speech, seismic dis-
turbances, and many other real world problems required
the use of time-frequency transforms for their processing
and analysis. This is due to the fact that the time-fre-
quency representation (TFR) of non-stationary and non-
linear signals can provide significant information regard-
ing the frequency content of the signals over time.

TFR is a reflection of time evolving concentration of
various frequency components present in a signal, giving
rise to unique signatures for each class of non-stationary
signal. Some of the TFR based techniques include short-
time Fourier transform (STFT)[ 2, Gabor transform[-6,
Wigner-Ville function (WDF)[™, Wavelet transform
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(WT)[0-13] " Hilbert-Huang (HHT)[14  15],
S-transform (ST)[16-22 etc. Most of these techniques are

transform

not adequate to provide TFR for the estimation of amp-
litude, phase, and instantaneous frequency and accurate
pattern recognition of highly nonlinear and non-station-
ary signals. The STFT[23 suffers from fixed window size,
while HHT[24 23] has problems of cross-term interferences
between frequency components. On the other hand, the
WTR6 decomposes a signal into several time-frequency
levels using dilation and translation principles which are
suitable for transient analysis of time varying signals, but
its performance degrades with the presence of noise in the
signal and the approximation of the filter banks. Due to
these factors, WT cannot estimate instantaneous fre-
quency accurately and requires de-noising before pro-
cessing.

The well known S-transform is a proven candidate for
non-stationary signal analysis and pattern recognition be-
cause of its ability to predict time localized spectrum and
global phase reference characteristics. Furthermore, an in-
creased time resolution and energy concentration of ST
can be achieved by a modified Gaussian window with new
scalable parameters. Specifically, the ST has gained spe-
cial attention due to its Fourier kernel and absolute phase
reference. The reference to Fourier basis in ST enables
direct interpretation of spectral component variation
standards, and this property is the prime advantage of
ST from the perspective of measurement of parameters
and estimation, and pattern recognition. Although the
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conventional S-transform technique can be used for sig-
nal estimation purposes, it is computationally complex
and takes long time for estimation and therefore is not
suitable for real-time applications. Using the information
regarding the studied system, the transform can be made
computationally efficient with the help of some of the re-
cently proposed techniques273! and combining them with
various frequency scaling approaches. Also, the hardware
computations can be speeded up by efficiently utilizing
the pre-calculated values. Thus, in this paper, the au-
thors have proposed a fast discrete matrix based sparse S-
transform (SST)8 with complex sinusoid modulated
Gaussian atom, and new frequency scaling techniques.
This time-frequency transform results in drastic reduc-
tion of complexity with accurate TFR. The SST is evalu-
ated only at the significant frequencies reducing the com-
putations.

The sparsity is further achieved with a band pass fil-
tering which in turn reduces the computations.

To demonstrate the effectiveness and usefulness of the
proposed methodology, it is applied to 1) non-stationary
power network disturbance signals, 2) non-stationary sim-
ulated chirp signals with a high-level of noise and 3) real
time mechanical vibration signal with different types of
faults. In power networks the short duration transients
and impulsive transients may cause restarting of the com-
puters resulting in interruption and data loss. The pres-
ence of harmonic components due to power electronics
and solid state devices beyond the allowed threshold res-
ults in increased heating loss in distribution networks.
The sudden multi fold increase in voltage due to impuls-
ive transients can damage sensitive electronic equipment.
The capacitive transients may cause false tripping of pro-
tective relays causing stress in the power system. Anoth-
er non-stationary signal for concern is the one produced
by induction motors which are used extensively in indus-
tries as variable speed drives. Half of the electricity con-
sumed by the industry in the USA is used by the induc-
tion motors and thus a quick and accurate technique to
detect and classify the induction motor faults is needed.

After the relevant features are extracted by pro-
cessing the non-stationary signals by using SST, the next
step is to classify the signal patterns. Although there are
several linear and nonlinear classifiers, neural networks
(NN)26. 101 and support vector machines (SVM)[13. 32, 33]
are the two most sought after pattern classification tech-
niques. Several variants of neural networks like the mul-
tilayer perceptrons (MLPs)[11, radial basis function neur-
al networks (RBFNNs), probabilistic neural networks
(PNN) are widely used in a variety of applications in sig-
nal processing, power quality events recognition, image
recognition, bioinformatics, etc. due to their simple struc-
ture, function approximation, and classification capabilit-
ies. However, they suffer from slower convergence speed,
local minima, over fitting and generalization problems
producing not very accurate classification. On the other

hand, SVM is a very efficient classifier that minimizes
classification error and maximizes the margin by introdu-
cing a separate hyperplane to determine the classes of
data. But, it suffers from scalability problem, computa-
tional complexity, slow speed and high memory require-
ments for large scale problems. It is well known in the class-
ification literature that fuzzy logic systems[8-21, 27, 29, 34-43]
fused with decision trees enable one to combine uncer-
tainty handling and approximate reasoning capabilities of
fuzzy logic with ease of understanding and applicability of
decision tree to provide robust classifier with strong noise
immunity for a number of practical applications. Further-
more, using a data mining approach to assign certainty
factor and confidence values to each fuzzy rule, the fuzzy
decision tree based classifier system provides a very ac-
curate classification system for non-stationary signals.
Thus, in this paper, a fuzzy decision based classifier se-
lects the most significant and distinguishable feature set.

The paper is organized in six sections. Apart from in-
troduction in Section 1, the formulation of SST is presen-
ted in Section 2, where the various scaling schemes to re-
duce computation are outlined. Section 3 presents vari-
ous simulation results of different types of non-stationary
signals. Section 4 presents classification of different non-
stationary signals with fuzzy decision based -classifier.
Section 5 presents the performance of the classifier. Con-
cluding remarks are presented in Section 6.

2 Frequency scaled sparse S-transform
(SST) formulation

A suitable frequency scaling scheme is used to form a
frequency stack that contains only the significant fre-
quency components of the signal and the discrete ST is
evaluated only at these frequency components by using
the well known Fourier transform algorithm (FFT) al-
gorithm. This process reduces substantially the computa-
tional overhead for the estimation of the spectral amp-
litude and phase of the signal and the evolved ST will be
sparse and is termed as SST[27. 28], Furthermore, the band
pass filtering is used to improve the sparsity that results
in reduction of computations. Thus by reducing the nu-
merical computations the SST will be suitable for imple-
menting real-time instrumentation and pattern recogni-
tion events in a hardware environment.

The discrete S-transform (DST) of a signal z(k) of N
samples in the discrete domain is obtained as

= n i2mkn

S (n1d) = 32 (k) X W(G = )T, o) expl—7)
1)
where w (+) is the window function. j = 1, 2, --- , N are
time indices, T is sampling time, and n = 1, 2, --- ,g

are frequency indices. The frequency dependant Gaussian
window function with new scalable parameters in discrete
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domain is defined as
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where a and ¢ are the scaling parameters and p, c are
positive constants. The parameter c¢ is chosen as 0 < ¢ <1
to obtain damped hidden frequencies in the signal. Also
an increase in value of « improves the frequency
resolution and its value is chosen to lie between 0.2 < o <
3. For SST evaluation, different frequency sampling
schemes such as dyadic, harmonic or automatic scaling
can be chosen for those frequency components present in
the frequency stack mentioned earlier. Such a scheme
removes the retrieval of the unwanted and redundant
information, thereby, limiting the computational require-
ments.

2.1 Frequency scaling schemes

The original discrete ST follows a linear frequency

N
scaling where frequency index n = 1, 2, --- o So the

ST matrix is computed for all the 5 frequency samples.

The SST is based on limiting the number of frequency
samples for evaluation and thereby reducing the compu-
tations. Hence, appropriate choice of the frequency scal-
ing is a deciding factor for the fast computation of the al-
gorithm. This paper explores various types of frequency
segmentations and proposes three novel frequency parti-
tioning schemes.

The procedure for calculating SST in the Frequency
domain:

Step 1. Transform signal samples z(k), k = 1, 2, -+,
N to the Fourier domain X(k) by fast Fourier transform
algorithm (FFT) as

X(n) 2mink

Il
=
oy

=
@
»

T

)- (4)

Step 2. Formulate a data matrix D(m, n) by con-
volving the elements of the FFT of the data samples

X(n). Where the frequency index is m = 1,2, --- | M

and n = 1,2, ---,N. Furthermore, according to
N

Nyquist theorem M = 5

Step 3. A Gaussian window matrix in frequency do-
main for each set of N samples is formed. This is a two
dimensional window for acquiring localization in both
time and frequency domains.

@ Springer
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C(m,n) =exp(—

exp(—
where m is the signal frequency and
K =(p+qxm°) (6)

and « is a window factor to be chosen appropriately.

Step 4. A scaling matrix G(m, n) based on an intelli-
gent selection of dominant frequency components present
in the signal is then formulated. This, however, depends
on frequency partitioning and filtering. For each of the
scaling scheme the following formulations are used:

1) Dyadic scaling

The frequency samples in dyadic scaling are chosen at
an interval of n = {2°,2',2%...2'}, 2/ < N. The dyadic
frequency scaling may skip some of the significant fre-
quency components present and is not ideal for power sig-
nal analysis.

G(m, n) = {1,m € (1, 2,4, -- ’%) }, otherwise,
G(m, n)= 0.

2) Harmonic scaling

It is well known that most of the power quality, and
mechanical vibration signals contain fundamental and
harmonic frequencies. For harmonic scaling, the fre-
quency samples in non-stationary signal analysis are
chosen to include only the fundamental and harmonic fre-
quency components, instead of evaluating SST at all the
frequencies. Thus

G(mv n):L me(f: 3f7 5fyahf)

h = oddnumber, otherwise G(m,n) = 0.

Furthermore, as there can be a small deviation in the
fundamental frequency, the scaling includes frequency
samples corresponding to bands of +5Hz around the fun-
damental and harmonic frequencies. However, as presen-
ted in Table 1 automatic scaling can be used where the
frequency components with significant magnitudes can be
retained in the SST matrix.

3) Automatic scaling

Another scheme for frequency scaling is proposed
where only those frequencies are included that have signi-
ficant contribution to the spectral components of the sig-
nal. The significant frequency components can be identi-
fied from the Fourier spectrum of the signal by a
threshold method. Also, the automatic scaling reduces the
computations significantly where higher order harmonic
components are not present.

G(m, n)=1 for all m € {Ym <}, otherwise,
G(m,n) = 0 where an intelligent scheme is used to obtain
the threshold value of 1y}, depending on the cutoff mag-
nitude of the frequency component used for computation.

Step 5. Multiply the data matrix D(m, n) with the
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scaling matrix G(m, n) element wise to obtain
G'=DoG (7)

where o denotes the Hadamard product (element-by
element multiplication) of the matrices.

Step 6. The window matrix C obtained in Step 3 is
multiplied with the G’ matrix element-wise to acquire the
windowed frequency domain information to obtain

H(m,n') =G oC
where
h(fl, t1) h(fl, tn) h(fl, tN)
H]\/[XN = (fnu ) (fm> n) ot (f"u )
(fM, t1) (fz\/u tn) (fM, tN)
(8)
and F stands for scaled frequencies f1, f2, -, fum-

Step 7. Apply one-dimensional inverse Fourier trans-

form along each row of H(m, n’) to obtain the SST as

N-1
SST(m,n) 2 Z H(m,k exp(27;\7;k) (9)
k=0
and
S(fla tl) (fla ”) S(flv tN)
SSTrvsxn=|58(fm, t1) (fm: tn) 5(fm, tn)
s(fu, t1) s(fM, tn) s(fm, tw)

(10)

The important issue is proper selection of generalized
Gaussian window parameters. Authors have proposed a
technique for enhancing TFR energy distribution accord-
ing to a performance measure (PM) at any frequency in-
dex m obtained from (5) and (6). The optimization of
this PM reassigns energy concentration of the TFR.

N

1
1 1
PM[OC, P, q, C](m) - nZ:O (SST[Q’ I (m7 n)) N (11)

At each frequency index m:

[Ol, p, q, C]Optimized = arg Inax[oz7 P, q, c] [PM(m)] (12)

To obtain the maximum value of the PM the shape of
the window is varied for each analysis frequency to ob-
tain an accurate time-frequency distribution of the en-
ergy concentration. From (12) the optimization is per-
formed by integrating SST over the frequency domain
that preserves the frequency margin of the transform
without the loss of information regarding amplitudes of
the spectral components. For a sinusoidal signal of nor-
malized amplitude 1.0 per unit, the optimization yields
the values of p =0, ¢ = 1.0, ¢ = 1.0 and o = 0.9.

The output of the SST algorithm is a complex matrix,
which is sparse because of the FFT-based frequency selec-
tion. The M rows correspond to the M frequency points
and the N columns correspond to the N time points. At
each time and frequency point, the signal of that particu-
lar frequency is represented by an instantaneous phasor.
The multiplication of the Gaussian window for obtaining
time information is done with only a few of the M values
provided by the FFT operation. Rest of the rows in SST
matrix are assigned zero. The various atomic operations
performed for obtaining the SST of a signal using Radix-R
FFT and IFFT are summarized in Table 1.

Here, in Table 1 Ky and K4 represent the odd har-
monic frequencies and the number of frequencies with
their amplitudes crossing the cutoff amplitude, respect-
ively. Using the Nyquist sampling rate restriction, the

value of Ky is < (%), where Ny is the number of

2
non-stationary signals and the fundamental signal domin-

samples per fundamental cycle. Also Ka < (—) for

ates other frequencies. The SST operates on N samples at
a time and therefore is represented as

[SST arse =SST ([26i11)s Ta+2) T(ivs) -
L(i+N—1)» 1»‘(i+N)D . (13)
Further the SST algorithm yields both time varying

amplitude and phase on a sample to sample basis.
The SST output is represented as

Table 1 Atomic math operations performed in ST and SST when Radix-R FFT and IFFT are used

Method Number of additions Number of multiplications
General S-transform N x (N +2) x M N x 2 x NJF]O%RéN) x (L+N)
It N
SST with dyadic scaling N x logp (N) x log, <g> (N x OgRT() + N) x log, (g)

SST with harmonic scaling

SST with automatic scaling

N xlogp (N) x K

N xlogp (N) x (1+ Ka)

<wa+N>xKH

(wa-u\r)xm,

@ Springer
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SST(m, n) = A(m, n)exp(j0(m, n)) (14)

where the amplitude of the SST spectrum =

A(m,n) = \/real([SST(m, n)])* + imag([SST(m, n)])*
(15)

at a given frequency m and time index m. The phase
angle of the SST spectrum is obtained in a similar way as

(16)

0 (m, n) = arctan (Im [SST (m, n)] )

Re [SST (m,n)]

While calculating the amplitude and phase of a partic-
ular frequency component from the SST matrix compris-
ing of M rows, M—-1 rows will have very small amplitude
and hence are neglected. For a signal having frequency f
its actual phase is obtained as

2 f
fs

Gactual(m7 Tl) - 9(m7 n) - (17)
where fs; the sampling rate is in hertz and the phase is
represented in radians.

For obtaining the fundamental amplitude and phase
angle at the sample number ¢

Au(t) = \/(real[S(fh O)* + (imagls(f1, ))*  (18)

— tan—" (imag(s(f1,?)])
o= {0

By definition the instantaneous fundamental angular
frequency is obtained as

f— do1 _ SHrx 451 _ gH; x 4E8HR) 20)
L (SHg)® + (SHr)*
where
SHg = real[s(fi, t)], SH; = imag[s(f1, t)] (21)

and the actual phase is obtained as

f

Orirue = 0u(1) = 2. (22)

For the estimation of harmonics following equations
are used:

Am(t) = \/(real[S(fm, O)* + (imag[s(fm, 1)))*  (23)

~ tan—! (imag[s(fm, t)])
Om(t) =t { (real[s(fm,1)]) } 20

@ Springer

QMCorrected = em (t) -2 <§m> . (25)

In the presence of noise in the signal, the linear prop-
erty of both the S transform, and SST ensure that SST
(noisy signal) = SST(signal without noise) + SST(noise).

Thus a simple threshold can be used to remove the
noise from the signal. However, for numerical experiment-
ation white Gaussian noise is added to the simulated non-
stationary signals to test the efficacy of SST and pro-
posed fuzzy logic based classifier.

3 Computer simulation results

The proposed formulation is tested on different types
of non-stationary signals such as mechanical vibration
signal, chirp signal and power quality disturbance signal,
etc. The following case studies are attempted in this paper.

Case 1. Power quality disturbance signals

In recent years power quality (PQ) disturbances like
voltage sags and swells, harmonics due to power-electron-
ics controlled loads, voltage spikes and notches due to
converters and inverter operations, voltage flicker, capa-
citor switching transients, and lightning discharges, etc.
can cause immense damages to electrical utilities in terms
of production loss and increase in cost for replacing the
damaged equipment. Thus for supplying good quality
electric power of correct voltage, frequency, absence of
waveform distortions, it is customary to detect and classi-
fy these PQ disturbance events accurately#4 using power
quality monitoring instruments. Some important power
quality disturbance patterns are taken in this paper to il-
lustrate the efficacy of the proposed sparse time fre-
quency transform. Also suitable mitigating action can be
initiated to improve power supply quality to customers,
and maintain the performance of industrial or commer-
cial organizations at desired levels.

Some of the power quality signals with frequently oc-
curring disturbances, such as oscillatory transient (Al),
voltage sag (A2), and flicker (A3), etc., have been simu-
lated in Matlab. All the signals are corrupted with 20dB
noise, which is quite large for power network noise con-
tamination. The frequency contours are obtained by SST
with modified Gaussian window. Time localized fre-
quency information is obtained from the contours.
Figs.1(a)—(b), 2(a)—(b) and 3(a)—(b) illustrate the fre-
quency content and amplitude phase plot of the test pat-
terns of power quality. The low frequency component in
Fig.2(a) provides the fundamental frequency of voltage
sag. Frequency contours of oscillatory transient and flick-
er in Figs. 1(a) and 3(a) show high frequency components.

Case 2. Mechanical vibration signal

In most of the industries induction motors are used as
preferred drives and the conditions of these motors should
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Fig.1 (a) Frequency contour and (b) amplitude and phase of
oscillatory transient corrupted by 20dB noise are obtained
through SST with modified Gaussian window
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Fig.2 (a) Frequency contour and (b) amplitude and phase of
voltage sag corrupted by 20dB noise are obtained through SST
with modified Gaussian window
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Fig. 3 (a) Frequency contour and (b) amplitude and phase of
flicker corrupted by 20dB noise are obtained through SST with
modified Gaussian window

be monitored to detect faults and other disturbances.
Half of the electricity consumed by the industry in USA
is used by the induction motors. For anticipating work
stoppage, a fast and accurate method is necessary to de-
tect and classify different types of faults. Two types of
mechanical faults like the misalignment (M2) and bowed
rotor (M3) along with the healthy (M1) signal are con-
sidered in this paper for analysis and pattern recognition.
Misalignment fault is basically machine components de-
terioration that occurs when two machines are coupled.
Bowed rotor is a serious defect of rotating systems. These
defects sometimes developed on a motor that has been al-
lowed to remain idle for a long time. While remaining idle
the weight of the rotor causes the shaft to deflect. For
this study experimental data is obtained from the mech-
anical laboratory by generating signals for different load
conditions, faults, and other types of disturbances, etc.
Collected mechanical signal waveforms corrupted by mis-
alignment and bowed rotor are processed using the SST
algorithm with modified Gaussian window to get the time
frequency contours. Figs.4(a)—(b), 5(a)-(b) and 6(a)—(b)
show the time frequency contours along with the amp-
litude and phase plot of the healthy signal, bowed rotor
and misalignment cases, respectively. From the figures it
can be seen that the patterns of the frequency contours
are all distinguishable from each other.
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misalignment signal are obtained through SST with modified
Gaussian window

Case 3. Chirp signals

Chirp signals are everywhere in nature. They are de-
veloped from many audio signals such as speech, bird
song, music etc. Different man made systems also devel-
op chirp signals. They are used in different engineering
applications such as echo location systems (radar, sonar),
passive sensor array systems, communication systems,
mechanics and vibrations etc. In biomedical systems also
different types of chirps occur. Time frequency trans-
forms are very useful to analyze different types of chirp
signals. In this paper three different types of basic chirp
signals, linear (C1), power law (C2) and hyperbolic (C3)
are synthesized and tested with this SST algorithm.
Figs. 7(a)—(b), 8(a)—(b) and 9(a)—(b) show the frequency
contours, amplitude, and phase plot of different chirp sig-
nals; linear chirp, power law and hyperbolic chirp, etc.
From all the figures it can be observed that with the con-
tinuous frequency change, the frequency contours are also
changing. The high frequency as well as low frequency
range of different types of chirps can be distinguished eas-
ily from the frequency contours obtained using SST. All
the mathematical models of synthesized signals are given
in Table 2.

3.1 Feature extraction

After obtaining the spectral characteristics of the dis-
turbance signals, it is necessary to extract some relevant
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hyperbolic chirp signal are obtained through SST with modified
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features from the time-frequency contours to detect and
classify the type of the disturbances. The effectiveness of
a classifier is directly influenced by the accurate feature
selection. Different groups of disturbance data can be dis-
criminated with the choice of proper features. The five
most significant features for signal pattern classification
are derived from the SST and defined as follows:

Energy of the signal (Fy).

For SST analysis, with samples with n = 1, 2,
3,--+, N, where N is the total number of samples.

Its cumulative spectral energy (F}) is obtained using
(9) and is defined as

M
Energy = Fy = Z [max(abs(SST(m, n)))]?
m=1
n=1,2, 3,---,N. (26)

Minimum amplitude of the signal (F3).
F> = min(max(abs(SST(m, n)))). (27)

Standard deviation (F3).
The standard deviation is a measure of how the data

has been spread out.

1 < 5.)2
Py = i ﬂ; ([max(abs(SST(m,n)))] — &u)
n:1’2’3’...7N (28)
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Table 2 Non-stationary signal models with disturbances

Non-stationary signals Event Equation Parameters variation
Normal H(t) = sin(wst) +mny wy =2 X 7 X 60 rad/s
U(t—t1) . 01<a<0.9
é =|1- <a<
Sag Al H(t) [ el < Ut —1) >} sin(wpt) + ng T<t t <8T
. . . 01<a<02
Flicker A2 H(t)=[14asin(2xm x 8 x t)]sin(wst) + ny 10Hz < 8 < 20Hz
02<a<0.8
H(t) = sin(wpt) + aexp(—@) Sa= <
Oscillatory transient A3 (Ut —t1) —U(t —t2)) 05T < (t —t) 2T
(o ! . 2 400Hz < fn < 800 Hz
Sin(2 X m X fn X t) +mn 10ms < < 40ms
Chirp signals:
2 (1) = A (1) exp{i® (1)}
h c A(t) a exp {—myt*} 0.9>¢>0.1
Linear chirp 1 €2 0.5>p5>0.01
<I)(t)a27r(2+ﬂt) 12
. A(t) at™¢ 092¢2>01
P 1 h
ower law chirp C2 & (1) o 2rdt? 0.5>p>0.01
. . A(t) at™*
H bolic ch C3 09>¢>0.1
yperbolic chirp @ () a2ndlog (t) 282
where 4.1 Fuzzy decision tree (FDT) classifier
&, = mean(max(abs(SST(m, n)))). (29) The most important feature of fuzzy decision treel43, 45, 46]

is that it breaks the complex decisions into simple ones

If a data set looks same on the left and right of the so. It has a wide application in pattern classification. In

centre point, then the measure of this symmetry is known this paper, a hard decision tree is constructed at first and

as skewness. subsequently the hard decision boundaries are formed us-
y ing the fuzzy membership functions for the features. In
S ([max(abs(SST(m, n)))] — @)3 case of decision tree classifier, choosing of different sub-

Fy = 7=t ey . (30)

sets of feature is flexible which is not available in single
stage classifiers. The data sets in individual iteration are

Kurtosis (F). started from a root node. Then split into two child nodes,

L. until a stopping criterion is achieved. Gini's diversity in-
Kurtosis is a measure of whether the SST output set . R Pp & . v . v Y
. . dex is utilized to obtain the fittest condition formulated
has high or small number of peaks relative to a normal

at individual node. Division between events rather than

distribution. node miscellany is made possible for non-stationary sig-
M nal classification, using the towing rule base. This rule is

S ([max(abs(SST(m,n)))] — &)* particularly suitable for multiclass problems. All the

Fy = = . (31) classes are divided into two groups by this rule. Splits

(M —1)F3 . ;
preserving the correlated prototypes are strictly chosen.

For a number of mechanical faults as well as power qual-

4 Classification of non-stationary sig- ity problems with § number of patterns, with the percent-

nals age of annotations of c-th pattern at n-th node defined as

Psnz, the Gini's diversity index is defined as

For non-stationary signals corrupted by 20dB noise

and different types of fault are classified with fuzzy de- d

cision tree classifier. In case of mechanical disturbances,
healthy signal can be easily classified from the faulty sig-
nals with a simple decision tree using the most signific-
ant features like kurtosis and skewness. But to classify
other mechanical disturbances and other non-stationary
signals such as power quality and chirp signals a fuzzy
decision base classifier is needed.

@ Springer

Gpr = Zpsn[l — Pon] (32)

c=1

where Gp; is further vulnerable to alterations in the
likelihood at each node than to the misclassification
imprecision.

Further, the most significant features are needed to be
selected to formulate fuzzy decision tree through which
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highest classification accuracy can be obtained. In the
next step, the judgment rules are fuzzified using triangu-
lar and trapezoidal membership functions to formulate
the FDT.

The triangular membership function with legs si, sa,
s3 and s as input, respectively, is defined as

0, if s<s1
@, if 51 <s<s2
p(s1, s2, 83) = (22 = 1) (33)
M, if 52 <5< 53
(53— s2)
0, if s3 < s.

The trapezoidal membership function with legs si, s9,
s3, s4 and s as input, respectively, is defined as

0, if s<s1
,LL(S1, S2, 83, 84) = %, if 51 <s< 59 (34)
1, if $2,3,4 S S.

The membership functions for various fuzzy sets of
the features F} — F5 have been illustrated in Figs.10 to
12. The detailed value of the membership points of the
triangular and trapezoidal membership functions are
mentioned in Table 3 for power quality; Table 4 is for
chirp signal and Table 5 is for mechanical fault.

For deriving association rules with antecedents “A”
and consequents “C” of the “a” assessment rules is very
much significant for the application of certainty factor
based on support and confidence indices. The support (S)
of a particular rule “a-th” is an indication of the number
of instances the consequents (C) and the antecedents (A)
occur simultaneously and mathematically defined as

> k4 (Xa)

S(A=C)=pAnC) =22

- (35)

[ (P}

where “a” is the number of attributes (X) for

[15%4)

classification and “7” is the number of membership
functions, respectively.

In a similar manner, the confidence i.e., certainty
factor (CF) of a particular rule “a” is an indication of the
probability that the consequents (C) strictly follow the
respective antecedents (A) of the assessment rules, and

mathematically defined as

panc) S

CF(A—=C)= p(A) i a ()

(36)

Finally, the certainty factor (Kp) for particular rule

“a” is defined as

Kp=CF(A—C)—p (37)
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(c) Membership function of PQ signals for feature 2

Fig. 10 Plot showing the membership functions of PQ signals
for the features (a) Fi, (b) F5 and (c) Fb, respectively

where p is the average confidence value for each rule
defined as

—— Y CF(A—C). (38)

Cross validation is a model evaluation method and it
is better than residuals. In case of residual evaluations it
is very difficult to say how well the trainer will do when
it is required for classification or predictions with new
dataset. This problem can be overcome with this cross
validation technique. There are many types of cross valid-
ation methods, such as hold out method, k-fold cross val-
idation, leave one out cross validation, etc. In this paper,
hold out method has been used. It is the simplest kind of
cross validation where the data set is separated into two
sets, called the training set and testing set. Training of
the system is done with the training data set only. The
trained system has no idea of the testing data set. Before
training, some of the data is removed to test the perform-
ance of the system. Using Table 2 with different paramet-
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Fig. 11 Plot showing the membership functions of different
chirp signals for the features (a) Fs, (b) Fi and (c) F3,
respectively

ers, number of samples has been generated for each class.
Total 1200 samples have been used for power signals as
well as chirp signals. Initial 300 samples are separated to
perform cross validation. Then, 900 samples are left for
training the network. In this case also 300 samples are
randomly selected from the total data set for testing the
performance of the proposed classifier. The mechanical
signal is the real time experimental signal and in this case
25 samples are taken for testing.

4.2 Certainty factor based fuzzy rule base

The fuzzy decision rules for the FDT comprise the
rule base for classification. In the next step, we associate
each of the fuzzy rules with a certainty factor K. Table 6
shows the certainty factor based fuzzy rules formulation,
firing strength calculation and decision making variable.
All the fuzzy rules have been accumulated in this table
for all types of non-stationary signals.

Thus the final decision rule for power quality, chirp
signals and mechanical faults using FDT can be written
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Fig. 12 Plot showing the membership functions of mechanical
signals for the features (a) Fy and (b) F5, respectively

Table 3 Detailed value of the power quality membership points
of the triangular and trapezoidal membership functions as shown

in Fig. 10
S1. number Membership Class value a b c d
name
1 w(F5) Ky Al 0 0.1295 0.259 -
2 p(F5) Ko A2 0.2 034 0.48 -
3 w(F5) K3 A3 0.4 0.6 0.8 0.8
4 n(F1)Ey Al 0 0.1 0.2 -
5 w(F1) B2 A2 0.17 026 0.35 -
6 w(F1)Es A3 0.2465 0.354 0.5 0.5
7 w(F2) Ay Al 0 0.15 3 -
8 w(F2) Az A2 0.28 0.42 0.56 -
9 w(F2)As A3 0.5 0.65 0.8 0.8

as

Power quality:

Decision 1pg (D1pq): if cupg > cupg && oupg > aspg
then “A1”

Decision 2pg (Dapg): if aspg > aipg && aapg > aspg
then “A2”

Decision 3pg (D3pg): if aspg > aipg && aspg > awpg
then “A3”.

Chirp signal:

Decision 1oy (DICH)Z if aicg > oo && oo > azon
then “C3”

Decision 2¢g (DQCH): if aocg > aicr && oascr > ascr
then “C2”
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Table 4 Detailed value of the chirp membership points of the
triangular and trapezoidal membership functions as shown in

Fig.11

S1. number Membership name Class value a b c d
1 w(F1)ECy C1 0 0.13465 0.2693 —
2 w(F1) ECy C2 0.24 0.405 0.57 -
3 w(F1)ECs C3 0.2213 0.6363 0.8 0.8
4 W(F5)KCh C1 0.1 0.17325 0.2465 —
5 u(F5)KCy C2 0.2 0.25 0.3 -
6 W(F5)KCs Cc3 0.2465 0.354 0.4 0.4
7 1(F3)SDy C1 0 0.020750.0415 —
8 w(F3)SD> C2 0.0314 0.05845 0.0855 —
9 1(F3)SDs C3 0.05 0.075 0.1 0.1

Table 5 Detailed value of the mechanical membership points of
the triangular and trapezoidal membership functions
as shown in Fig. 12

Sl. number Membership name Class value a b c
1 p(Fy) SWy M2 0 0.325 0.65
2 p(Fy) SWy M3 0.56 0.73 0.9
3 u(Fs) KM, M2 0.3 0.52 0.74
4 w(Fs) KM, M3 0.52 0.76 1

Decision 3¢y (Dscn): if ascr > cicn && ascr > aocn
then “C1”.

Mechanical signal:

Decision 1 (Duu): if appr > o && anpgr > asyr
then “M2”

Decision 2 (Dan): if conr > cnm && aonr > asm
then “M3”.

Tables 7 to 9 show the certainty factors of the fuzzy
rules for some randomly selected feature sets for each
class of all non-stationary signals. It is significantly ob-
served from Tables 7 to 9 that the CF of a particular rule
is highest for the class which corresponds to the con-
sequent of that particular rule.

5 Performance evaluation of the pro-
posed classifier

The proposed method has lesser computational time
and acceptable classification accuracy. To further verify
the real time capability of the proposed algorithm, it was
implemented on a TMS 320C6713 Starter Kit (DSK)H47
and embedded Matlab coder. TMS 320C6713 is from
Texas instruments and a 32 bit floating point digital sig-
nal processor. The real time data exchange (RTDX) had
been used to exchange the data between the host pc and
the target DSK for analyzing the real time implementation.

To provide the interface between PC & DSK, a soft-
ware tool embedded Target for TI C6000 DSP and Mat-
lab link for code composer studio (CCS) is used by the
RTDX. To demonstrate the speed of execution of the
SST, the conventional ST takes around 0.0580s for pro-
cessing 10 cycles of data (64 samples per cycle), whereas
the SST algorithm with dyadic scaling, and automatic
scaling consumes significantly less time i.e., 0.0032s, and
0.0055s, respectively. Thus the speed advantage of the
SST algorithm is more than 10 times. However, with a
smaller cutoff magnitude of the harmonics, the speed can
be easily increased to more than 30 times for the auto-
matic scaling based SST. The performance of the pro-

Table 6 Certainty factor based fuzzy rule formation

Rule number Rule

Certainty factor based event selection

Firing strength Decision making variable

Rulelpg If F is By && Fyis Az && Fsis K

“A1” with certainty factor Kripg

Birg = (u(F1)Ex,

= X K,
11(F2) Az, n(Fo) K) a1pQ = Bir RIPQ

Barg = (W(F1)E2,

Rule2pq If Fy is B> && Fris A1 && Fsis K3 “A2” with certainty factor Krarg 1(Fo) A, ji(F5) Ks) azpq = Barg X Krorg
Rule3po If Fy is By && Fy is As && Fy is K “A3” with certainty factor Kuaro 3’2 ;2()%5253;) Ky = Baro X Knong
Bicr= (u(F1)ECh,
Rulelion If F3is SD; && F is ECy && Fs is KCs “C3” with certainty factor Kricn w(F3)SDy, o = Bica X Kricy
1(F5)KCh)
Bacu= (u(F1) EC3,
Rule2pcr If F3is SDy && F is EC3&& Fsis KCs “C2” with certainty factor Krocn 1(F3)SDs, aocr = Bacu X Krach
1(F5)KCs)
Bscn = (n(F1)ECh,
Rule3ucu If F3is SD3 && F is EC2&& Fsis KCq “C1” with certainty factor Krscn u(F3)SDs, ascn = Bacn X Kracn
n(F5)KCh)
Rulelys If Fyis SWh&& Fsis KMs “M2” with certainty factor Kgim ’61‘MATF§/;§?X}2’)SVW2’ aiy = B X Krim
Rule2y, If Fy is SW1 && Fsis KM, “M3” with certainty factor Kron Pavr = (p(F1) SW1, sy = Bam X Krom

p(Fs) KMy)
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Table 7 Detailed value of the certainty factors for fuzzy rules

Table 12 Classification performance of the proposed scheme for

for PQ disturbances PQ and chirp signal

Class Al A2 A3 Event Accuracy (%)
Krirg 0.971 0.014 0.015 Al 99.67
Krarg 0.021 0.951 0.028 A2 99.67
Krsrg 0.019 0.017 0.964 A3 98.33

C1 98.33

C2 99.67

Table 8 Detailed value of the certainty factors for fuzzy rules o3 100

for chirp signals

Class C1 C2 C3

Kricu 0.965 0.021 0.014
Kracu 0.019 0.956 0.025
Krscn 0.011 0.012 0.977

Table 13 Classification performance of the proposed scheme for
mechanical signal

Table 9 Detailed value of the certainty factors for fuzzy rules
for mechanical signal

. Number of Healt- Rotor- Mis- Performance
Conditions i
samples hy bar  alignment (%)
Healthy 25 25 0 0 100
Healthy 25 25 0 1 96
Mis- 25 0 24 1 96

alignment

Class M2 M3
Krim 0.956 0.044
Kraom 0.046 0.958

posed method is tested in noisy condition because in real
life operation signals are always contaminated with noise.
The general accuracy has been considered as the index to
evaluate the performance of the classification algorithm.

Number of detection of true events
A = 100.
couracy (%) Number of true events % (SS)

The results of Tables 10 and 11 represent the confu-
sion matrix. From Table 12, it can be observed that for
various types of events, the performance of the proposed
method is within the acceptable range. The classification
performance of mechanical signals is given in Table 13.

Table 10 Confusion matrix for PQ events

Class Al A2 A3
Al 299 1 0
A2 1 299 0
A3 0 2 298

Table 11 Confusion matrix for chirp signals

Class C1 C2 C3
C1 298 2 0
C2 1 299 0
C3 0 0 300

@ Springer

6 Conclusions

The conventional S-transform is modified in a novel
way and the simplifications required to make it fast when
analyzing non-stationary signals are presented. The res-
ulting new SST is very sparse due to the adoption of fre-
quency scaling techniques and is suitable for real time im-
plementation. Various time varying distorted signals like
the power quality disturbance signals, multi component
chirp signals, and mechanical vibration signals embedded
in noise are used for analysis and pattern recognition.
The simulation results show that the proposed algorithm
with the classifier gives an acceptable performance. The
performance is acceptable also in noisy condition. The al-
gorithm SST requires low computations and distinguish-
able features can be obtained from the time frequency
matrix. Computations are less and therefore the al-
gorithm processes the non-stationary signals much faster.
From all the simulation results it is clear that this meth-
od is robust and can classify different types of highly non-
linear and non-stationary signals in the presence of noise
and accurately classify the patterns.
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