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Abstract: The convergence analysis of MaxMin-SOMO algorithm is presented. The SOM-based optimization (SOMO) is an opti-

mization algorithm based on the self-organizing map (SOM) in order to find a winner in the network. Generally, through a competitive

learning process, the SOMO algorithm searches for the minimum of an objective function. The MaxMin-SOMO algorithm is the

generalization of SOMO with two winners for simultaneously finding two winning neurons i.e., first winner stands for minimum and

second one for maximum of the objective function. In this paper, the convergence analysis of the MaxMin-SOMO is presented. More

specifically, we prove that the distance between neurons decreases at each iteration and finally converge to zero. The work is verified

with the experimental results.
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1 Introduction

The self-organizing feature map (SOFM)[1−5] is a

biologically-inspired method for constructing a structured

representation of data from an input space by prototypes,

called weight vector in topological order fashion. The

weight vector is associated with selected elements, the neu-

rons, of an image space where metric relationships are de-

fined between the elements. For any given data-set, the

SOFM algorithm selects weight vectors and assigns them

to neurons in the network. The weight vectors as a func-

tion of neuron coordinates are called the feature map. The

applications of self-organizing map range widely from sim-

ulations used for the purpose of understanding and model-

ing of computational maps in the brain to subsystems for

engineering applications such as speech recognition, vector

quantization and cluster analysis[6−9].

Earlier studies have developed optimization algorithms

for solving optimization problems. For solving continuous

and discrete problems, the most common optimization al-

gorithms are genetic algorithms (GAs)[10, 11], evolutionary

programming[12], and evolutionary strategies[13]. GAs use

operators, reproduction crossover, and mutation to yield

the optimal solutions; still, the evolutionary programming

does not equip crossover function. Comparing with the

other two, the evolutionary approaches use a different view

of choosing operators. The particle swarm optimization

(PSO) introduced in 1995 is similar to other evolutionary
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algorithms that initializes with a population of random so-

lutions, however it is based on social behaviour rather the

natural selection[14−16]. Recently, in PSO several modifica-

tions are made and applied in different research fields[17, 18].

Applications of self organizing map (SOM) are wide-spread

and range from vector quantization, adaptive equalization,

and cluster analysis[19]. SOM related studies demonstrate

feasibility to solve the optimization problem of travelling-

salesman problem (TSP)[20, 21].

Su et al.[22−26] proposed a new optimization algorithm

named SOM-based optimization (SOMO) to deal with con-

tinuous optimization issues Recently Wu and Khan[27] gen-

eralized the SOMO algorithm to find m winning neurons

in a single learning process. Wu and Khan[28] proposed

a MaxMin-SOMO algorithm with multiple winners, for si-

multaneously finding two winners, i.e., first winner stands

for minimum and second winner for maximum of the objec-

tive function. Khan et al.[29] proposed the convergence of

SOMO with distance measure.

In this paper, the convergence issue of the MaxMin-

SOMO algorithm with multiple winners is addressed. Par-

ticularly, we prove that with a specific distance measure,

the distance between the winners and the other neurons

in the network decreases with every iteration. And such

distance tends to zero in the learning progress. Numerical

examples are presented to support the theoretical findings

in the paper.

The rest of the paper is organized as follows, in Section

2, a brief introduction of the SOMO with multiple winners

is given. The convergence of SOMO with multiple winners



A. Khan et al. / Convergence Analysis of a New MaxMin-SOMO Algorithm 535

is presented in Section 3. In Section 4, we make some nu-

merical experiments to verify our theoretical results. Con-

clusions are given in Section 5.

2 SOMO with multiple winners

In this section, we discuss the MaxMin-SOMO algorithm

for finding one minimum and one maximum of a function

simultaneously. It is an easy matter to generalize the al-

gorithm for finding two or more minima and maxima re-

spectively. The MaxMin-SOMO algorithm has the same

training steps as those of the original SOMO algorithm, ex-

cept the step of weights updating process with m winners.

The MaxMin-SOMO algorithm is as follows:

Step 1. The initialization of the MaxMin-SOMO is the

same as that of SOMO i.e.

Step 1.1. The weight vectors of the four neurons on the

corners are initialized as follows:

W 1,j =
W 1,N −W 1,1

N − 1
(j − 1) + W 1,1 =

j − 1

N − 1
W 1,N +

N − j

N − 1
W 1,1

W M,j =
W M,N −W M,1

N − 1
(j − 1) + W M,1 =

j − 1

N − 1
W M,N +

N − j

N − 1
W M,1

W i,1 =
W M,1 −W 1,1

M − 1
(i− 1) + W 1,1 =

i− 1

M − 1
W M,1 +

M − i

M − 1
W 1,1

W i,N =
W M,N −W 1,N

M − 1
(i− 1) + W 1,N =

i− 1

M − 1
W M,N +

M − i

M − 1
W 1,N (1)

where i = 2, · · · , M − 1, j = 2, · · · , N − 1 and M and N

are some positive integers.

Step 1.2. Initialization of the remaining neurons

W i,j =
W i,N −W i,1

N − 1
(j − 1) + W i,1

=
j − 1

N − 1
W i,N +

N − j

N − 1
W 1,N (2)

where i = 2, · · · , M − 1, j = 2, · · · , N − 1.

Step 1.3. Random noise

A small amount of random noise is added to each weight

so as to keep the weight vectors from being linearly depen-

dent

W i,j = W i,j + t (3)

for 1 ≤ i ≤ M and 1 ≤ j ≤ N , where t denotes a small

random noise.

Step 2. This step aims to find two different winners, de-

noted by (i∗1, j∗1 ) and (i∗2, j∗2 ) with the best objective func-

tion values among the neurons. For each neuron (i, j),

its corresponding weight W i,j is a vector in Rn, where

1 ≤ i ≤ M and 1 ≤ j ≤ N . For a special input

x = (x1, · · ·xn)T = (1, 1, · · · , 1)T ∈ Rn, the first winner

out of all the neurons is defined as

(i∗1, j
∗
1 ) = arg

1≤i≤M,1≤j≤N
min f(W i,j × x1, · · · , W i,j × xn) =

arg
1≤i≤M,1≤j≤N

min f(W i,j × 1, · · · , W i,j × 1) =

arg
1≤i≤M,1≤j≤N

min f(W i,j) (4)

and similarly the second winner

(i∗2, j
∗
2 ) = arg

1≤i≤M,1≤j≤N
min f(W i,j × x1, · · · , W i,j × xn) =

arg
1≤i≤M,1≤j≤N

min f(W i,j × 1, · · · , W i,j × 1) =

arg
1≤i≤M,1≤j≤N

min f(W i,j). (5)

The idea of MaxMin-SOMO training is applied to the

network such that the weight vector W i∗1 ,j∗1
of the first win-

ner will get closer and closer to the minimum point and

similarly the weight vector W i∗2 ,j∗2
will get closer to the

maximum point during the iterative training process.

Step 3. Weights updating rule

The weights updating rule of the winners and its neigh-

bors is as follows:

For the neurons (i, j) in the neighborhood of the first

winner (i∗1, j
∗
1 ) satisfying p1 ≤ i ≤ p2, q1 ≤ j ≤ q2, where

p1 = max(i∗1 −R1, 1) (6)

p2 = min(i∗1 + R1, M) (7)

q1 = max(j∗1 −R1, 1) (8)

q2 = min(j∗1 + R1, N) (9)

and R1 is sizes of the neighbourhoods, the weights updating

rule is as follows:

W i,j(t + 1) = W i,j(t) + η1β1(i
∗
1, j

∗
1 , i, j)[W i∗1 ,j∗1

(t)−
W i,j(t)] + λ1(1− β1(i

∗
1, j

∗
1 , i, j))p (10)

where

β1(i
∗
1, j

∗
1 , i, j) = 1− d(i∗1, j

∗
1 , i, j)√

M2 + N2
. (11)

For the rest of (i, j) neurons

W i,j(t + 1) = W i,j(t) + η2β2(i
∗
2, j

∗
2 , i, j)[W i∗2 ,j∗2

(t)−
W i,j(t)] + λ2(1− β2(i

∗
2, j

∗
2 , i, j))p (12)

where

β2(i
∗
2, j

∗
2 , i, j) = 1− d(i∗2, j

∗
2 , i, j)√

M2 + N2
. (13)

The learning rates, η1, η2, λ1 and λ2, are real-valued pa-

rameters which could be either constants pre-defined by the

user or time-varying parameters. The vector p is called the

perturbation vector.

Step 4. Go to Step 2 until a pre-specified number of

generations is achieved or the termination criteria are sat-

isfied.
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3 Convergence of SOMO with multiple

winners

In this section, the convergence analysis of SOMO with

multiple winners is presented. For convergence, we define

the maximum distances between any two neurons, i.e.

dk = max
i,j,i′,j′

||W i,j(k)−W i′,j′(k)||

and

dk = max
i,j,i′,j′

||W i,j(k)−W i′,j′(k)||

at k-th iteration respectively, where dk and dk are the max-

imum distances between any two neurons in the neighbor-

hood of first and second winner respectively. Then we prove

that both dk and dk decrease after each iteration simulta-

neously and finally converge zero, i.e., dk → 0, dk → 0 as

k →∞. And we also prove that the function values of the

winners in the network decrease after every iteration. The

following two theorems are the main idea of the paper.

Theorem 1. Let dk be the maximum distance of any two

neurons in the neighborhood of first winner (i∗1, j
∗
1 ) and dk

be the maximum distance of any two neurons in the neigh-

borhood of second winner (i∗2, j
∗
2 ) at k-th iteration. As-

sume that
d(i∗1 ,j∗1 ,i′,j′)√

M2+N2
< 1 and

d(i∗2 ,j∗2 ,i′,j′)√
M2+N2

< 1 for all neu-

rons i′, j′, í, j́ , all iterations and λ1k||p
k
|| ≤ 1

4
(1 − C0)dk,

λ2k||p
k
|| ≤ 1

4
(1 − C0)dk. Then dk → 0 and dk → 0, as

k →∞.

Proof. Let (i1, j1) and (i2, j2) be two neurons in the

neighborhood of first winner (i∗1, j
∗
1 ). The weight updating

for (i1, j1) and (i2, j2) are as follows:

W i1,j1
(k + 1) = W i1,j1

(k) + ηβ(i∗1, j
∗
1 , i1, j1)

[
W i∗1 ,j∗1

(k)−

W i1,j1
(k)

]
+ λ1k(1− β(i∗1, j

∗
1 , i1, j1))p

k
(14)

W i2,j2
(k + 1) = W i2,j2

(k) + ηβ(i∗1, j
∗
1 , i2, j2)

[
W i∗1 ,j∗1

(k)−

W i2,j2
(k)

]
+ λ1k(1− β(i∗1, j

∗
1 , i2, j2))p

k
. (15)

Let dk be the maximum distance between any two

neurons in network at k-th iteration and dk+1 =

max
i1,j1,i2,j2

||W i2,j2
(k + 1) − W i1,j1

(k + 1)|| at k + 1st iter-

ation. We have to show that dk+1 < dk. Subtracting (14)

from (14), we obtain

W i2,j2
(k + 1)−W i1,j1

(k + 1) =

W i2,j2
(k) + ηβ(i∗1, j

∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i2,j2
(k)]−

W i1,j1
(k)− ηβ(i∗1, j

∗
1 , i1, j1)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]+

λ1k(1− β(i∗1, j
∗
1 , i2, j2))p

k
− λ1k(1− β(i∗1, j

∗
1 , i1, j1))p

k
=

W i2,j2
(k) + ηβ(i∗1, j

∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i2,j2
(k)]−

W i1,j1
(k)− ηβ(i∗1, j

∗
1 , i1, j1)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]+

λk((1− β(i∗1, j
∗
1 , i2, j2))p

k
− (1− β(i∗1, j

∗
1 , i1, j1))p

k
).

(16)

We need to take three cases to prove dk+1 < dk.

Case 1. If

β(i∗1, j
∗
1 , i2, j2) = β(i∗1, j

∗
1 , i1, j1) (17)

then (14) becomes

W i2,j2
(k + 1)−W i1,j1

(k + 1) = W i2,j2
(k)−

W i1,j1
(k)− ηβ(i∗1, j

∗
1 , i2, j2)[W i2,j2

(k)−
W i1,j1

(k)] + λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
) =

(1− ηβ(i∗1, j
∗
1 , i2, j2))W i2,j2

(k)−W i1,j1
(k)+

λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
). (18)

Taking the norm on both sides of the above equation, we

have

||W i2,j2
(k + 1)−W i1,j1

(k + 1)|| ≤
(1− ηβ(i∗1, j

∗
1 , i2, j2))||W i2,j2

(k)−W i1,j1
(k)||+

||λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
− (1− β(i∗1, j

∗
1 , i1, j1))p

k
)||

||W i2,j2
(k + 1)−W i1,j1

(k + 1)|| ≤
(1− ηβ(i∗1, j

∗
1 , i2, j2))dk + ||λ1k((1− β(i∗1, j

∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
)||. (19)

By assumption

d(i∗1, j
∗
1 , i2, j2)√

M2 + N2
< α < 1 (20)

we have

β(i∗1, j
∗
1 , i2, j2) = 1− d(i∗1, j

∗
1 , i2, j2)√

M2 + N2
> α > 0 for all i2, j2.

Thus

C0 = (1− ηβ(i∗1, j
∗
1 , i2, j2)) < 1− ηα < 1

⇒ dk+1 ≤ C0dk + λ1k||((1− β(i∗1, j
∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
)|| ≤

C0dk + ||λ1k(1− β(i∗1, j
∗
1 , i2, j2))p

k
||+

||λ1k(1− β(i∗1, j
∗
1 , i1, j1))p

k
||. (21)

Again by assumption

λ1k||pk|| ≤ 1

4
(1− C0)dk (22)

we have

dk+1 ≤ C0dk +
1

4
(1− C0)dk+

1

4
(1− C0)dk =

C0dk +
2

4
(1− C0)dk =

C0dk +
1

2
(1− C0)dk =

1

2
(1 + C0)dk (23)

⇒ dk+1 ≤ 1

2
(1 + C0)dk. (24)
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Case 2. If

β(i∗1, j
∗
1 , i2, j2) > β(i∗1, j

∗
1 , i1, j1)

then add and subtract

ηβ(i∗1, j
∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]

from (16), which follows:

W i2,j2
(k + 1)−W i1,j1

(k + 1) =

W i2,j2
(k) + ηβ(i∗1, j

∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i2,j2
(k)]−

W i1,j1
(k)− ηβ(i∗1, j

∗
1 , i1, j1)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]+

ηβ(i∗1, j
∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]−

ηβ(i∗1, j
∗
1 , i2, j2)[W i∗1 ,j∗1

(k)−W i1,j1
(k)]+

λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
− (1− β(i∗1, j

∗
1 , i1, j1))p

k
) =

W i2,j2
(k)−W i1,j1

(k)−
ηβ(i∗1, j

∗
1 , i2, j2)[W i2,j2

(k)−W i1,j1
(k)]+

η(β(i∗1,j
∗
1 , i2, j2)− β(i∗1, j

∗
1 , i1, j1))[W i∗1 ,j∗1

(k)−W i1,j1
(k)]+

λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
− (1− β(i∗1, j

∗
1 , i1, j1))p

k
).

Taking the norm on both sides of the above equation, we

have

||W i2,j2
(k + 1)−W i1,j1

(k + 1)|| ≤
(1− η(β(i∗1, j

∗
1 , i2, j2))||W i2,j2

(k)−W i1,j1
(k)||+

η(β(i∗1, j
∗
1 , i2, j2 − β(i∗1, j

∗
1 , i1, j1))||[W i∗1 ,j∗1

(k)−
W i1,j1

(k)]||+ ||λ1k((1− β(i∗1, j
∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
)||. (25)

||W i2,j2
(k + 1)−W i1,j1

(k + 1)|| =
(1−ηβ(i∗1, j

∗
1 , i1, j1))dk + ||λ1k((1− β(i∗1, j

∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
)||. (26)

By assumption

d(i∗1, j
∗
1 , i1, j1)√

M2 + N2
< α < 1 (27)

we have

β(i∗1, j
∗
1 , i1, j1) = 1− d(i∗1, j

∗
1 , i1, j1)√

M2 + N2
> α > 0

for all i1, j1.

⇒ dk+1 ≤ C0dk + λ1k||((1− β(i∗1, j
∗
1 , i2, j2))p

k
−

(1− β(i∗1, j
∗
1 , i1, j1))p

k
)|| ≤

C0dk + ||λ1k(1− β(i∗1, j
∗
1 , i2, j2))p

k
||+

||λ1k(1− β(i∗1, j
∗
1 , i1, j1))p

k
||. (28)

Again by assumption

λ1k||pk|| ≤ 1

4
(1− C0)dk (29)

we have

dk+1 ≤ C0dk +
1

4
(1− C0)dk +

1

4
(1− C0)dk =

C0dk +
2

4
(1− C0)dk =

C0dk +
1

2
(1− C0)dk =

1

2
(1 + C0)dk (30)

⇒ dk+1 ≤ 1

2
(1 + C0)dk. (31)

Case 3. If

β(i∗1, j
∗
1 , i2, j2) < β(i∗1, j

∗
1 , i1, j1)

then add and subtract ηβ(i∗1, j
∗
1 , i1, j1)[W i∗1 ,j∗1

(k) −
W i2,j2

(k)] from (16) and the proof of Case 3 is similar to

Case 2.

⇒ dk+1 ≤ 1

2
(1 + C0)dk (32)

From the above three cases, i.e.

dk+1 ≤ 1

2
(1 + C0)dk ≤ (

1

2
(1 + C0))

2dk−1, · · · ,≤

(
1

2
(1 + C0))

kd1. (33)

Hence dk → 0, as k →∞.

For the rest of (i, j) neurons. Let (i1, j1) and (i2, j2) be

two neurons in the neighborhood of second winner (i∗2, j
∗
2 ).

The weight updating for (i1, j1) and (i2, j2) are as follows:

W i1,j1
(k + 1) = W i1,j1

(k) + ηβ(i∗2, j
∗
2 , i1, j1)[W i∗2 ,j∗2

(k)−
W i1,j1

(k)] + λ1k(1− β(i∗2, j
∗
2 , i1, j1))p

k
. (34)

W i2,j2
(k + 1) = W i2,j2

(k) + ηβ(i∗2, j
∗
2 , i2, j2)[W i∗2 ,j∗2

(k)−
W i2,j2

(k)] + λ1k(1− β(i∗2, j
∗
2 , i2, j2))p

k
. (35)

Let dk be the maximum distance between any two neurons

in the neighborhood of second winner at k-th iteration and

dk+1 = max
i1,j1,i2,j2

||W i2,j2
(k + 1)−W i1,j1

(k + 1)||

at k + 1st iteration. The proof of the distance dk is similar

to the dk.

Hence dk and dk approach to zero simultaneously as

k →∞. ¤
Theorem 2. Let W i,j(k) be M ×N neurons in the net-

work, for 1 ≤ i ≤ M , 1 ≤ j ≤ N . Let W i∗1 ,j∗1
(k), W i∗2 ,j∗2

(k)

be the two winners in the network at k-th iteration. As-

sume that λ1k||p
k
|| ≤ 1

4
(1−C0)dk, λ2k||p

k
|| ≤ 1

4
(1−C0)dk.

Then the function values f(W i∗1 ,j∗1
(k + 1)) < f(W i∗1 ,j∗1

(k)),

f(W i∗2 ,j∗2
(k + 1)) < f(W i∗2 ,j∗2

(k)), as k →∞.

Proof. The weight updating of the neurons in the neigh-

borhood of first winner (i∗1, j
∗
1 ) is as follows:

W i,j(k + 1) = W i,j(k) + ηβ(i∗1, j
∗
1 , i, j)[W i∗1 ,j∗1

(k)−
W i,j(k)] + λ1k(1− β(i∗1, j

∗
1 , i, j))p

k
. (36)
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Let

f(W i,j(k + 1)) = f(W i,j(k)− ηβ(i∗1, j
∗
1 , i, j)[W i∗1 ,j∗1

(k)−
W i,j(k)) + λ1k(1− β(i∗1, j

∗
1 , i, j))p) =

f((1− ηβ(i∗1, j
∗
1 , i, j)W i,j(k) + ηβ(i∗1, j

∗
1 , i, j)W i∗1 ,j∗1

(k)+

λ1k(1− β(i∗1, j
∗
1 , i, j))p

k
). (37)

By assumption

λk||p
k
|| ≤ 1

4
(1− C0)dk. (38)

Thus the above equation (37) becomes

f(W i,j(k + 1)) ≤ f((1− ηβ(i∗1, j
∗
1 , i, j)W i,j(k) +

ηβ(i∗1, j
∗
1 , i, j)W i∗1 ,j∗1

(k) +
1

4
(1− C0)dk) (39)

f(W i,j(k + 1)) = f((1− ηβ(i∗1, j
∗
1 , i, j)W i,j(k) +

ηβ(i∗1, j
∗
1 , i, j)W i∗1 ,j∗1

(k)

(since by Theorem 1 dk → 0) (40)

f(W i,j(k + 1)) < (1− ηβ(i∗1, j
∗
1 , i, j)f(W i,j(k))−

ηβ(i∗1, j
∗
1 , i, j)f(W i∗1 ,j∗1

(k))

(By convexity of f) =

(1− ηβ(i∗1, j
∗
1 , i, j)f(W i,j(k))+

ηβ(i∗1, j
∗
1 , i, j)f(W i,j(k)) = f(W i,j(k))

(since f(W i∗1 ,j∗1
≤ f(W i,j(k)). (41)

Hence

f(W i,j(k + 1)) < f(W i,j(k)). (42)

The above equation implies that

f(W i∗1 ,j∗1
(k + 1)) < f(W i∗1 ,j∗1

(k)). (43)

For the rest of (i, j), the weight updating is as follows:

W i,j(k + 1) = W i,j(k) + ηβ(i∗2, j
∗
2 , i, j)[W i∗2 ,j∗2

(k)−
W i,j(k)] + λ2k(1− β(i∗2, j

∗
2 , i, j))p

k

for 1 ≤ i ≤ M, 1 ≤ j ≤ N. (44)

The proof as same as above. Hence

f(W i∗2 ,j∗2
(k + 1)) < f(W i∗2 ,j∗2

(k)). (45)

Hence the function values of the both winners are de-

creasing after every iteration simultaneously. ¤
In summary, we initialized the neurons on four corners,

then after every iteration, the neurons get closer and closer

around the first and second winners. We proved in the

above theorems, that the neurons i.e., (i, j) for 1 ≤ i ≤ M ,

1 ≤ j ≤ N are converging to two different points after every

iteration, and the function values of winners are decreasing

after every iteration simultaneously.

We remark that the MaxMin-SOMO algorithm has an

issue of defining the different neighbourhood for maximum

and minimum winners. We intend to investigate this prob-

lem in future works.

4 Experimental results

4.1 Objective functions

We have carried out simulations with the following func-

tions, to investigate the rate of convergence of the SOMO

with multiple winners.

1) U1 function:

f(x) = 300 sin(2πx) sin(2πy)− sin(πx) sin(πy) (46)

2) Giunta function:

f(x) =

30∑
i=1

(
sin

(16

15
xi − 1

)
+ sin2

(16

15
xi − 1

)
+

1

50
sin

[
4
(16

15
xi − 1

)])
+ 0.3. (47)

4.2 Parameters of simulation

Table 1 tabulated the global minimum, dimensions and

the upper bound of the number of iterations. All simula-

tions conducted with the network size 30× 30 neurons and

the learning parameters are η = 0.2 and λ1k, λ2k are de-

creasing after each proceeding iteration. Fig. 1 shows the

graphs of the two test functions.

Fig. 1 Graphs of the two test functions
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Table 1 Parameters for the test functions

Test function Dimensions Initial range Minimum Number of iterations

U1 function 2 0≤ xi ≤ 10 100

Giunta 30 −10 ≤ xi ≤ 10 ≈ 0.9 100

4.3 Simulations of the SOMO with multi-
ple winners

For each function, each algorithm conducted 30 runs.

The best solutions found for each run after pre-specified

number of generations recorded. Table 2 tabulates the com-

parison of the simulation results. The mean column and

the standard deviation column represent the mean and the

standard deviation of the best solutions of 30 runs. In Ta-

ble 2 we find the minimum and maximum of a function by

running PSO and SOMO twice. But by SOMO with

Fig. 2 Best performance curves corresponding to SOMO algo-

rithm and MaxMin-SOMO algorithm for finding a minimum of

a function

multiple winners we find the both minimum and maximum

of a function simultaneously.

Figs. 2 and 3 show the best performance curves by finding

the minimum and maximum of a function respectively. In

Fig. 2 we compare the minimum of a function obtained by

SOMO and SOMO with multiple winners respectively. In

Fig. 3 we compare the maximum of a function obtained by

SOMO and SOMO with multiple winners respectively. By

SOMO, we find the minimum and maximum of a function

separately by running the algorithm twice.

Fig. 3 Best performance curves corresponding to SOMO algo-

rithm and MaxMin-SOMO algorithm for finding a maximum of

a function
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Table 2 Comparison of MaxMin-SOMO and the original SOMO algorithms for finding minimum and maximum

Test function Algorithm Mean Standard deviation Mean of time Standard deviation of time

U1 Function PSO

Minimum −1.873 2E+002 4.239 5E−012 2.021 4 2.067 9

Maximum 2.312 3E+002 1.348 1E−010 2.693 9 2.959 2

SOMO

Minimum −2.999 9E+002 5.684 3E−014 1.064 2 1.067 2

Maximum 2.999 9E+002 1.718 4E−012 1.051 8 1.030 7

MaxMin-SOMO

Minimum −2.999 9E+002 4.224 6E−011 0.553 8 0.566 4

Maximum 2.999 9E+002 3.821 6E−013

Giunta PSO

Minimum 4.003 5 1.087 0 1.783 1 0.063 0

Maximum 72.031 2 1.092 5 1.635 2 0.059 0

SOMO

Minimum 0.967 0 1.490 1E−09 1.011 6 1.004 9

Maximum 69.031 8 1.480 7E−011 1.151 2 1.142 6

MaxMin-SOMO

Minimum 0.967 0 1.656 5E−010 0.737 2 0.663 6

Maximum 69.031 8 2.288 0E−011

Fig. 4 Value of winners for U1 function

But by SOMO with multiple winners, we find the mini-

mum and maximum of a function simultaneously.

4.4 Simulations for the convergence anal-
ysis of SOMO with multiple winners

The experiments show that the neurons i.e., W i,j for

1 ≤ i ≤ M, 1 ≤ j ≤ N get closer and closer around the

first W i∗1 ,j∗1
(k) and second winner W i∗2 ,j∗2

(k) during itera-

tion process. From Figs. 4 and 5 we observe that the dis-

tance between the winners
(
i.e., (i∗1, j

∗
1 ), (i∗2, j

∗
2 )

)
and other

neurons are decreasing exponentially. It can be concluded

that the distance between winners and other neurons, i.e.,

W i,j for 1 ≤ i ≤ M , 1 ≤ j ≤ N approach to zero as k →∞.

5 Conclusions

Convergence results are established for the SOMO with

multiple winners, with a specific distance measure. We

define a specific maximum distance between neurons, we

proved that this distance approached to zero, i.e, dk → 0

and dk → 0 as k → ∞. Also we showed that all neurons

converge to a winner after each iteration process. Two nu-

merical examples for the algorithm are provided to support

our theoretical findings and demonstrate that the distance

between neurons approaches to zero after each iteration.



A. Khan et al. / Convergence Analysis of a New MaxMin-SOMO Algorithm 541

Fig. 5 Value of winners for the Giunta function
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