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Abstract: The purpose of this paper is to propose a synthesis method of parametric sensitivity constrained linear quadratic (SCLQ)

controller for an uncertain linear time invariant (LTI) system. System sensitivity to parameter variation is handled through an

additional quadratic trajectory parametric sensitivity term in the standard LQ criterion to be minimized. The main purpose here is

to find a suboptimal linear quadratic control taking explicitly into account the parametric uncertainties. The paper main contribution

is threefold: 1) A descriptor system approach is used to show that the underlying singular linear-quadratic optimal control problem

leads to a non-standard Riccati equation. 2) A solution to the proposed control problem is then given based on a connection to the

so-called Lur′e matrix equations. 3) A synthesis method of multiple parametric SCLQ controllers is proposed to cover the whole

parametric uncertainty while degrading as less as possible the intrinsic robustness properties of each local linear quadratic controller.

Some examples are presented in order to illustrate the effectiveness of the approach.
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1 Introduction

Finding a parametric sensitivity constrained linear

quadratic controller by including a quadratic trajectory sen-

sitivity to the standard quadratic functional cost is still of

major importance from a practical point of view. Previous

papers of this author[1, 2] have given a new insight on such a

control problem taking explicitly into account the paramet-

ric uncertainties of an uncertain linear time invariant (LTI)

system. Following the same lines the current paper gives a

revised proof.

Since the seminal works of Kreindler[3] or Newmann[4],

the system sensitivity to parameter variations was handled,

in the literature, in various ways through criterion sensitiv-

ity, closed-loop eigenvalues sensitivity or trajectory sensitiv-

ity measures (see e. g. [3−6] and references therein). The

sensitivity to parameter variation remains a relevant control

design criterion as attested by the large number of refer-

ences on the subject see, e. g. [7−9]. In particular, finding

a parametric sensitivity constrained linear quadratic con-

troller by including quadratic trajectory sensitivity terms

to the standard quadratic criterion is still a meaningful con-

trol problem to the design engineers. Moreover, when the

bounds on parameter deviation are not a priori known, it

is still of interest to be able to reduce the potential perfor-

mance degradation that results from uncertain parameter

deviation (with respect to some nominal values)[10].

Research Article
Manuscript received January 23, 2015; accepted June 17, 2016; pub-

lished online January 18, 2017
Recommended by Associate Editor Victor Becerra
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag Berlin Heidelberg 2017

Furthermore, such a control problem can pave the way

to a potentially new parametric sensitivity constrained H2

control design due to the well-known superposition princi-

ple. Even if many attempts have been carried out in the

literature in order to solve this problem in the H2 con-

text (see e. g., [11−13]), the existing methods are still either

computationally unwieldy or suffer from an augmentation

of the controller order. Hence, we believe that reconsider-

ing the singular linear quadratic control problem underly-

ing the proposed parametric sensitivity constrained linear

quadratic control problem— henceforth denoted sensitivity

constrained linear quadratic (SCLQ) in the sequel— may

lead to a promising new solution that is computationally

tractable.

In a first step, as a contribution of this paper we show

that the SCLQ problem leads to a singular infinite-horizon

LQ optimal control problem (i.e., where the matrix, con-

ventionally denoted by R, weighting the input in the cost

function is only positive semi-definite). Thus, relying on

a descriptor system approach[14, 15], the link between the

SCLQ control problem and a non-standard Riccati equa-

tion—with a pseudo-inverse of the weighting matrix R in-

stead of its inverse— is explicitly investigated as a second

contribution of this paper. It should be noted that the non-

standard Riccati equation is known in the literature as a

generalized Riccati equation (see [16] for some of its prop-

erties and the paper [17] for the connection between this

generalized Riccati equation and the solution of the singu-

lar LQ optimal control problem).

Then, a new solution for the SCLQ problem is proposed

based on a Lur′e matrix equations formulation of the un-

derlying non-standard Riccati equation.
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If the SCLQ controller reduces the trajectory sensitivity

it has, however, to retain the advantages of the linear op-

timal control. Particularly, the robustness margins degra-

dation and the extent of the parametric area on which acts

the sensitivity reduction are directly linked to the choice of

the weighting matrices.

Moreover, dividing the entire parametric uncertainty into

small local subsets[18], in relation with the level of paramet-

ric sensitivity has not yet received adequate attention in the

literature. To overcome these difficulties, we focus, in the

last part of the current paper, on how to design a parsimo-

nious partition of the uncertainty simultaneously with a set

of SCLQ controllers in order to improve the total insensi-

tivity to parametric variations while preserving, as far as

possible, the classical robustness margins of the standard

linear quadratic controllers.

This paper is organized as follows. Section 2 states the

SCLQ control problem. It also recalls some existing at-

tempts to solve such a control problem. Section 3 is de-

voted to the link between the SCLQ control problem and

a nonstandard Riccati equation. A Lur′e matrix equations

based solution is also presented in this section. Section 4 is

devoted to the multiple SCLQ control problem formulation

and the particle swarm optimization (PSO) based algorithm

dedicated to solving this problem.

Furthermore, some examples are presented in Section 5

in order to demonstrate the applicability of the proposed

approach. Finally, some concluding remarks take place in

Section 6.

Notations. Hereafter ⊗ denotes the Kronecker product

of matrices. ◦ is the element wise multiplication of vec-

tors. The matrix In is the identity matrix of dimension

n × n. diag(·) is a block-diagonal matrix formed from the

arguments. Mg (resp. Mφ, Mr and Mm) denotes the gain

margin (resp. the phase margin, the delay margin and the

modulus margin) of a given LTI system.

Finally, M+ denotes the Moore-Penrose pseudo-inverse

of the matrix M .

2 SCLQ control problem

2.1 Problem formulation

Consider the uncertain linear system given by

ẋ = A (θ) x + B (θ) u, x (0) = x0 (1)

where A ∈ Rn×n, B ∈ Rn×m are matrix functions of a

time-invariant parameter vector θ = [θ1, · · · , θq] ∈ Rq.

In this paper, we focus on a parameter dependence such

that A (θ) , B (θ) are matrix functions with all entries of

class Cnθ , nθ ≥ 1. The system given by (1) is assumed to

be controllable. Let us also define the trajectory sensitivity

xθ = ∂x
∂θ

due to parametric deviation from a nominal value

θ = θ0. To simplify the presentation only the first-order

derivative term will be considered in the sequel although

the results easily extend to the higher-order derivative case.

Problem 1. Standard SCLQ control problem

SCLQ control problem consists of finding a control law u

that minimizes a modified linear quadratic cost functional

including a quadratic trajectory sensitivity given by

JSC =

∫ ∞

0

xTQx + uTRu + xT
θ Qθxθdt (2)

with Q, Qθ are positive semi-definite matrices and R is a

positive definite matrix. The trajectory sensitivity function,

when differentiating the state space equations of (1) with

respect to θ, taking into account a small deviation from the

nominal value is described by the following state equation

ẋθ = Aθx + (Iq ⊗A)xθ + Bθu + (Iq ⊗B)uθ

xθ (0) = 0 (3)

with Aθ = ∂A(θ)
∂θ |

θ=θ0
, Bθ = ∂B(θ)

∂θ |
θ=θ0

and A = A
(
θ0

)
, uθ =

∂u
∂θ

.

2.2 SCLQ problem as a structure con-
strained LQ control problem

As mentioned in the introduction, various scholars have

attempted to solve the SCLQ problem. Fleming and New-

mann proposed in [5], by augmenting the state vector x

with the sensitivity vector xθ, a full state-feedback control

law of the form

u = Kx + Fxθ. (4)

Hence, to implement such a control law the trajectory

sensitivity vector xθ has to be simulated. Partially differ-

entiating (4) with respect to θ gives

uθ = Kxθ + F
∂xθ

∂θ
(5)

and substituting (4) and (5) into (3) leads to

ẋθ = (Aθ + BθK) x + (Iq ⊗B)F ( ∂xθ
∂θ

)+

((Iq ⊗A) + (Iq ⊗B)K + BθF ) xθ. (6)

Thus, Fleming and Newmann proposed to neglect the

second-derivative term ∂xθ
∂θ

in order to implement the con-

trol law (5). Unfortunately, neither the optimality nor the

robustness of the resulting dynamic state-feedback control,

due to this approximation, was discussed. In fact, note that

the real control law in this case is of the form

u = (F (sInq − (Iq ⊗A) + (Iq ⊗B)K + BθF )−1

(Aθ + BθK) + K)x. (7)

Authors in [6, 19] were the first to propose to constrain

the control law (4) as follows:

u =
[

K 0
] [

xT xT
θ

]T

(8)

so as the SCLQ problem can be formulated as an optimal

structure constrained LQ problem that consists of finding

a state feedback gain K ∈ Rn×m such as the structured

control law given by

[
uT uT

θ

]T

= (Iq+1 ⊗K)
[

xT xT
θ

]T

(9)
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minimizes an approximated objective function of the form

J =

∫ ∞

0

(
x̄TQ̄x̄ + ūTR̄ū

)
dt

x̄T =
[

xT xT
θ

]
, ūT =

[
uT uT

θ

]

R̄ = diag (R, εIm) , Q̄ = diag (Q, Qθ) , 0 ≺ ε ¿ 1 (10)

under the following constraints

˙̄x = Āx̄ + B̄ū, x̄0 =
[

x0 0
]T

Ā =

[
A 0

Aθ (Iq ⊗A)

]
, B̄ =

[
B 0

Bθ (Iq ⊗B)

]
.

(11)

Note that the cost functional J is a standard LQ cost func-

tion since matrix R̄ > 0. This problem can obviously be

formulated as an optimization problem of a linear objective

under body mass index (BMI) constraints. The underly-

ing optimization control problem is hard to handle owing

to the type of structure imposed by (9). One can note that

the difficulty is accentuated in the case where higher-order

trajectory sensitivity is considered.

3 A new solution to the SCLQ control

problem

The purpose of this section is to investigate the singu-

lar linear quadratic control problem underlying the SCLQ

problem associated to the cost functional (2). Hence, char-

acterizing the solution of this singular LQ problem will lead

to a new formulation of the SCLQ problem where the struc-

ture constraint (9) is simplified. Thereby, based on a con-

nection to the Lur′e matrix equations, an alternative solu-

tion to the SCLQ problem will be proposed. Let us consider

the singular LQ problem (SCLQ) that consists of finding a

control law minimizing an objective function of the form

Js =

∫ ∞

0

(
x̄TQ̄x̄ + ūTR̄ū

)
dt

R̄ = diag (R, 0m) , Q̄ = diag (Q, Qθ) . (12)

The first contribution of this paper is to characterize the

solution of this singular LQ problem paving the way to a

new solution to the SCLQ problem.

Theorem 1. Let the symmetric matrix X∗ > 0 be

the maximal solution of the following nonstandard Riccati

equation

ĀTX + XĀ−XB̄R̄+B̄TX + Q̄ = 0 (13)

where X ∈ Rn(q+1)×n(q+1), X > 0 is the unknown matrix,

then all solutions of the infinite-horizon SCLQ problem are

given by

ū∗ (t) = −R̄+B̄TX∗x̄ (t) + V Tũ (t) (14)

where ũ ∈ L2 is an arbitrary function and V =
[

0 Im

]
.

Moreover, the optimal cost is given by J∗s = x̄T
0 X∗x̄0.

Proof. Consider the following augmented descriptor sys-

tem defined by

(Σ)





Ea

[
˙̄x

ξ̇

]
= Aa

[
x̄

ξ

]
+ (Eax̄0) w + Baū

z = Ca

[
x̄

ξ

]
+ Dw + Daū

(15)

with

Ea =

[
In(q+1) 0

0 0m

]
, Aa =

[
Ā 0

0 −I

]
, Ba =

[
B̄

V

]

Ca =

[
diag

(
Q̄

1
2 , 0m

)

V

]
, Da =

[
0

diag
(
R

1
2 ,−Im

)
]

D = 0
and w is a virtual exogenous input.

One can easily verify that
∫ ∞

0

zTzdt =

∫ ∞

0

(
x̄TQ̄

1
2 uTR

1
2 0

)



Q̄
1
2 x̄

R
1
2 u

0


 dt =

∫ ∞

0

x̄TQ̄x̄ + uTRudt =

∫ ∞

0

x̄TQ̄x̄ + ūTR̄ūdt = Js.

According to Lemma 10 in [15], the descriptor system (Σ)

given by (15) verifies the following sufficient conditions[
x̄T

0 0
]
Ker

(
ET

a

)
= {0} and D = 0 under which the

static gain matrix

K∗ = −
(
DT

a Da

)−1 (
DT

a Ca + BT
a P

)
. (16)

Minimizes Js with the matrix P as a stabilizing solu-

tion for the following generalized algebraic Riccati equation

(GARE)

ET
a P = PTEa

AT
a P + PTAa + CT

a Ca −
(
CT

a Da + PTBa

)
(
DT

a Da

)−1 (
DT

a Ca + BT
a P

)
= 0. (17)

Note that the sufficient solvability conditions for the GARE

(17) (see [20]) obviously hold for the system (Σ) given by

(15). Let us now partition the matrix P as follows:

P =

[
X P1

P2 P3

]
, P3 ∈ Rm.

Thus, the first equation of (17) leads to X = XT, P1 = 0

and the second one leads to the following equalities

ĀTX + XĀ + Q̄− (
XB̄ + PT

2 V
)

(diag (R,−I))−1(XB̄ + PT
2 V

)T
= 0 (18)

P2 +
(
I + PT

3

)
V (diag (R,−I))−1

(
XB̄ + PT

2 V
)T

= 0

(19)
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P3 + PT
3 + I +

(
I + PT

3

)
V (diag (R,−I))−1

V T (I + P3) = 0. (20)

From equation (20), it follows that

P3 = 0. (21)

Hence, substituting (21) into (19) we have

V B̄TX = 0. (22)

Since the following equality holds

(
XB̄

)
(diag (R, I))−1(XB̄

)T
=(

XB̄
)
(diag (R, I))−1(XB̄

)T
+

(
XB̄

)
V TV

(
XB̄

)T

equation (18) leads to (13). Furthermore, according to (16)

the optimal state-feedback gain is given by

K∗ = −
[

R−1 0

0 −I

] [
B̄TX∗ V T

]
.

Thus, using (22) we have

ū (t) = K∗
[

x̄

ξ

]
=

[ ([
−R−1 0

0 0

]
+

[
0

V

])
B̄TX∗ V T

] [
x̄

ξ

]
=

[
−R̄+B̄TX∗ V T

] [
x̄

ξ

]
= −R̄+B̄TX∗x̄ + V Tξ.

Moreover, on account of the structure of the matrix R̄,

a control law parameterized as in (14) is obviously optimal.

Finally, according to Theorem 11 in [15], the optimal cost

in this case is given by J∗s = x̄T
0 ET

a PEax̄0 = x̄T
0 X∗x̄0. ¤

Remark 1. Theorem 1 allows characterizing all optimal

solutions of the singular LQ problem underlying the ex-

act SCLQ control problem. Nevertheless, neither the non-

standard Riccati (13) nor the GARE (17) allow to solve

numerically the SCLQ problem because of the structure

constraint (8). The following result provides the second

contribution of this paper, which is a new linear time in-

variant (LMI) formulation of a suboptimal SCLQ control

problem relying on the Lur′e matrix equations that were

first introduced by Lur′e in [21] (interested readers can re-

fer, for instance, to [22] and references therein).

Theorem 2. Suppose that the following matrix equa-

tions are solved for X ∈ Rn(q+1)×n(q+1) and K0 ∈ Rm×n





ĀTX + XĀ + Q̄ = diag
(
KT

0 K0, 0qn

)

XB̄ = diag
(
KT

0 R
1
2 , 0qn×m

)

X = XT > 0 (23)

then u∗ = −R−
1
2 K0x is an optimal solution for the SCLQ

problem.

Proof. According to Theorem 1, the SCLQ problem

admits ū∗ given by (14) as an optimal solution with X∗ > 0

the maximal solution of (13). Thus, X∗ is also a maximal

solution for the following Lur′e equations

ĀTX + XĀ + Q̄ = KT
1 K1

XB̄ = KT
1 L1

R̄ = LT
1 L1 (24)

where (K1, L1) ∈ Rp×(q+1)n ×Rp×m with p ≤ m as small

as possible. Moreover, since R̄ = diag (R, 0m) , R > 0 we

have L1 =
[

R
1
2 0

]
.

The solution of (24) implies that K1x̄ + L1ū = K1x̄ +

R
1
2 u = 0. At this stage, it is worth noting that a suf-

ficient condition for obtaining a structured state-feedback

gain of the form (8) is K1 =
[

K0 0
]
. Hence, it is easy

to see that (24) reduces to (23). u∗ = −R−
1
2 K0x is an

optimal solution for the SCLQ problem since the choice

ũ = −
(
Iq+1 ⊗

(
R−

1
2 K0

))
xθ can be made without loss of

the optimality according to the result in Theorem 1. ¤
Remark 2. Equation (23) may be regarded as a neces-

sary and sufficient condition for the existence of a structure

constrained solution to the optimal SCLQ problem.

If the equations (23) do not admit a solution it is possi-

ble to find a suboptimal SCLQ controller. In fact, suppose

that the symmetric matrix X∗ is a maximal solution for the

Lur′e matrix equations (24) (i.e., X∗ ≥ X for all solutions

X of (24)). According to the LMI formulation of the LQ

problem (with a reversed inequality) first introduced in [23]

and recalled in [24] (page 115), solving the following opti-

mization problem with a linear objective under LMI/LME

(LME stands for linear matrix equality here) constraints

max
X,K0

x̄T
0 X∗x̄0

ĀTX + XĀ + Q̄ ≥ diag
(
KT

0 K0, 0qn

)

XB̄ = diag
(
KT

0 R
1
2 , 0qn×m

)

X = XT > 0 (25)

leads to a suboptimal SCLQ controller of the form u∗ =

−R
1
2 K0x.

Remark 3. The Lur′e equations allow formulating a

suboptimal SCLQ problem as an optimization problem of

linear objective under LMI/LME constraints while taking

explicitly into account the structure constraint (8).

4 Multiple SCLQ controllers design

4.1 Parsimonious tuning parameters

In order to have a reduced number of tuning parameters

we use, hereafter, the well-known finite time controllability

Gramian and some additional sensitivity reduction param-

eters associated to each parameter θi, i ∈ {1, · · · , q}. Thus

we propose the following weighting matrices:

R = Tc

∫ Tc

0

(
eAtB

) (
eAtB

)T

dt, Tc ∈ R+∗

Q = In

Qθ = diag (σ1, · · · , σq)⊗ In, σi ∈ R+∗. (26)
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The set of tuning parameters σi ∈ R, i ∈ {1, · · · , q} have

a direct effect on the sensitivity reduction from a nominal

value θ = θ0 and the extent of the parametric area on which

it acts.

4.2 Problem formulation

Assume that N balls of predetermined, sufficiently small,

radiuses δθj centred on θ = θj , j ∈ {1, · · · , N} and given

by

Θθj

(δθj ,Rq) =

{
θ ∈ Rq

‖θ − θj‖2
≤ δθj

}
(27)

are uniformly distributed in the search space (i.e., parame-

ter set). As an initialization step, it is supposed that

0 < δθj <
( ε

2

) ∥∥∥θj − θj+1
∥∥∥

2
, ∀j ∈ {1, · · · , N}

for some 0 < ε < 1. For each nominal value, namely θ =

θj , an SCLQ controller, minimizing a criterion Jj of the

form (12), is synthesized by means of the following set of

tuning parameters: Tc, σ
j
i∈{1,··· ,q} ∈ R where Tc is fixed

and σj
i∈{1,··· ,q} = δθj .

Problem 2. Multiple SCLQ controllers design

The multiple SCLQ control problem consists of deter-

mining a set of radiuses δθj and tuning parameters σj
i , i ∈

{1, · · · , q}, j ∈ {1, · · · , N} solution of the following opti-

mization problem

max
δj>0,σ

j
i ,i∈{1,··· ,q},j∈{1,··· ,N}

N∑
j=1

δθj

max
j

M j
g < M̄g

max
j

M j
φ < M̄φ

max
j

M j
r < M̄r

max
j

M j
m < M̄m

σ
m

j
i
≥ αδθj (28)

with M̄g, M̄φ, M̄r and M̄m are some predetermined upper

bounds on different margins, α > 1, σ
m

j
i

= min
i

σj
i and M j

g ,

M j
φ, M j

r , M j
m are the margins obtained with the SCLQ con-

trollers minimizing criterions Jj and synthesized by means

of Tc, σ
j
i∈{1,··· ,q}.

Remark 4. The number of decision variables is

N (1 + q).

Remark 5. The proposed margin constraints in

Problem 2 can be considered entirely or in part. In fact,

in some cases only the constraints on Mφ, Mr are needed

since Mg and Mm are slightly degraded.

Remark 6. To reduce the number of decision variables

it is possible to substitute the last constraint in (28) by an

equality constraint of the form ∀i ∈ {1, · · · , q} , σj
i = αδθj

with some given α > 1. In other words, it is possible to

limit the decision variables to the radiuses of the N small

l2 balls given by (27).

Remark 7. The parameter α allows reducing or expand-

ing the space search for the parametric sensitivity reduction

tuning parameters and from thence it has a direct impact

on the global computation time.

One can note that maximizing the criterion
∑N

j=1 δθj im-

plies a maximization of the sensitivity tuning parameters

σj
i , i ∈ {1, · · · , q} which is, indeed, needed for the sensitivity

reduction. In opposition, it is also the margin constraints

in (28). Moreover, the sample generation problem which

consists of generating real vector samples θj ∈ Rq, uni-

formly distributed in the search space Θ, can be reduced

to multiple random vector generation for which the tech-

nique borrowed from [25] can be used. In fact, the al-

gorithm used in this note, for this purpose, is borrowed

from the randomized algorithms control toolbox (RATC)

(http://ract.sourceforge.net).

4.3 A PSO based algorithm

Firstly introduced by Eberhart and Kennedy[26], PSO is

inspired by the social behavior, for instance, of bird flocking

or fish schooling. Let us consider the following optimization

problem:

min
x∈Λ

f(x) (29)

particles are moving in the search space Λ. Each particle

has its own position (xk
p: position of particle p at itera-

tion k) and velocity (vk
p : velocity of particle p at iteration

k). It can remember where it has found its best position

(bk
p = arg min(f(x)), x ∈ {bk−1

p , xk
p}: best position found

by particle p until iteration). Each particle has also some

“co-particles” (V (xk
p) ⊂ {1, 2, · · · , P} set of “co-particles”

of particle p at iteration). gk
p = arg min f(x), x ∈ {bk

i , i ∈
V (xk

p)} denotes the best position found by the co-particles

of particle p until iteration k.

The particles move in Λ according to the following tran-

sition equations:

vk+1
p = c0.v

k
p + c1 ◦ (bk

p − xk
p) + c2 ◦ (gk

p − xk
p)

xk+1
p = xk

p + vk+1
p . (30)

In this equation c0 is the inertia factor and c1 (respectively

c2) is a random number in [0, c̄1] (respectively in [0, c̄2]). To

guarantee the convergence of the PSO algorithm the choice

of parameters (c0, c1, c2) is central[27]. It is well-known that,

in case of a large number of decision variables, the PSO al-

gorithm may suffer from undesirable convergence to local

minima. This can be the case when dealing with the mul-

tiple SCLQ control synthesis. To overcome this difficulty,

some recent PSO modified versions have been proposed.

The underlying idea is to modify the rules (30) so as to

bring a random movement towards the best particle. Par-

ticularly, a step is considered as a success if the best value

found by the particles is improved and a failure otherwise.

Then the number of consecutive successes and failures is

used in the modified transition rule.

Following the lines of the algorithm presented in [28], the

new transition rules are reconsidered as

vk+1
p = c0.v

k
p + (gk

p − xk
p) + ρk(1− 2r [0,1])

xk+1
p = xk

p + vk+1
p (31)
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where r [0,1] denotes a random vector in [0,1]. The value of

ρk is updated at each iteration according to the following

equation:

ρk+1 =





2ρk, if nb success > sc

0.5ρk, if nb failure > fc

ρk, otherwise (32)

where nb success is the number of consecutive successes

and nb failure the number of consecutive failures. sc and

fc are some additional tuning parameters.

The following algorithm sketches in few lines the pro-

posed method for solving Problem 2.

Algorithm 1.

Step 0. Fix Tc, α > 1, ε < 1, N and a maximum itera-

tion number k̄.

Step 1. Initialization

Generate N real vector samples θj ∈ Rq, uniformly dis-

tributed in Θ. Choose randomly N parameters δθj such

that

0 < δθj <
ε

2

∥∥∥θj − θj+1
∥∥∥

2
.

Fix σj
i∈{1,··· ,q} = δθj j ∈ {1, · · · , N} .

Step 2. PSO optimization

Associate the particle positions in the perturbed PSO

algorithm, with the transition rule given by (31), to

xp =
[
δ1, · · · , δN , σ1

1 , · · · , σN
1 , · · · , σ1

q , · · · , σN
q

]
.

Optimize (28) until a stopping criterion is verified or k̄ is

reached.

Step 3. Uncertainty set covering test

Generate randomly N2q points in Θ. If all these points

belong to
⋃
j

Θθj

stop. Else set N = N +1 and go to Step 1.

Remark 8. Note that when the local regions overlap one

can use the SCLQ controller associated to the ball with the

closest center to the considered point.

5 Numerical examples

5.1 Example 1

Let us consider the system with a rational parametric

dependence given by

ẋ =


 θ2 −0.1

θ
−1 −θ


 x +

[
2θ

1

]
u

x0 =

[
1

1

]
, |θ − θ0| ≤ 0.5 (33)

where θ0 = 1. The standard LQ controller designed, ac-

cording to (26), for Tc = 1.5 leads to

u∗ = [−1.128 5 0.064 8] x. (34)

Solving the LMI/LME problem with σ1 = 10 (note

that LMI/LME programming was done using YALMIP

parser[29] and solved with SeDuMi solver[30]) leads to the

following suboptimal SLQ controller

u∗ = [−3.885 5 1.470 3] x. (35)

The effect of the sensitivity reduction on the closed-loop

system trajectory is easily noticeable when comparing the

two controllers (LQ and SCLQ) for θ = θ0 and θ = 0.5 (see

Fig. 1). The gain and phase margins are somehow preserved

(i.e., gain margins are ∞ for two controllers and phase mar-

gins slightly decrease from Mφ = 61.12◦ to Mφ = 53.42◦.
In contrast, the delay margin is markedly reduced from

Mr = 0.55 s to Mr = 0.19 s.

5.2 Example 2

Consider the second order system with a polynomial

parametric dependence given by

ẋ =

[
θ2 0

1 −θ

]
x +

[
1

2θ

]
u, x0 =

[
1

1

]
(36)

where θ0 = 1. The standard LQ design, for Q = I2, R = 1

leads to

u∗ =
[
−2.899 6 −0.167 6

]
x (37)

when θ = θ0. The Lur′e equations (23) for Q = Qθ =

I2, R = 1 do not admit a solution. Solving the LMI/LME

problem (25) leads to the following suboptimal SCLQ con-

troller

u∗ =
[
−4.022 7 0.052 3

]
x. (38)

Fig. 1 Closed-loop behavior with the SCLQ controller vs. the

standard LQ controller for Example 1
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Note that all LMI/LME programming was done using

YALMIP parser[29] and solved with SeDuMi solver[30].

Comparing the two controllers for θ = θ0 and θ = 1.35

(see Fig. 2) it is easy to see that the closed-loop system

trajectory deviates less from the nominal trajectory for the

suboptimal SCLQ controller given by (38).

5.3 Example 3

Let us consider now the second order system with a ra-

tional parametric dependence given by

ẋ =


 θ3 − 1 0

1
−1

θ


 x +

[
1

2θ

]
u, x0 =

[
1

1

]
(39)

where θ0 = 1. The optimal control law (standard LQ prob-

lem), for Q = I2, R = 1, is found to be

u∗ = −
[

0.857 2 0.557 1
]
x (40)

when θ = θ0. Here, we have made the choice of considering

a SCLQ problem with a first and a second-derivative of the

trajectory sensitivity such as

JSC =

∫ ∞

0

xTQx + uTRu + xT
θ Qθxθ+xT

θθQθθxθθdt (41)

with xθθ = ∂xθ
∂θ

. The objective is to find a structured state-

feedback gain of the form

u =
[

K 0 0
]



x

xθ

xθθ


 (42)

Fig. 2 Performances obtained with the LQ controller (1st col-

umn) and SCLQ controller (2nd column) for Example 2

minimizing an objective function of the form

J =

∫ ∞

0

(
x̄TQ̄x̄ + ūTR̄ū

)
dt

x̄T =
[

xT xT
θ xT

θθ

]
, ūT =

[
uT uT

θ uT
θθ

]

R̄ = diag (R, 02m) , Q̄ = diag (Q, Qθ, Qθθ)

(43)

under the following constraints

˙̄x = Āx̄ + B̄ū, x̄T
0 =

[
xT

0 01×2n

]

Ā =




A 0 0

Aθ (Iq ⊗A) 0

Aθθ 2Aθ (Iq ⊗A)


 , Aθθ = ∂Aθ

∂θ

B̄ =




B 0 0

Bθ (Iq ⊗B) 0

Bθθ 2Bθ (Iq ⊗B)


 , Bθθ = ∂Bθ

∂θ
. (44)

Solving the associated LMI/LME problem, with Q =

I2, Qθ = Qθθ = 0.1I2, R = 1, leads to the following sub-

optimal SCLQ controller

u∗ =
[
−1.595 0 0.009 8

]
x. (45)

Fig. 3 shows a performance comparison of the two con-

trollers for θ = θ0 and θ = 1.2. Clearly, the standard LQ

controller leads to instability when θ = 1.2 while closed-loop

with the SCLQ controller is not only stable but deviates

slightly from the nominal value θ = θ0 case.

Fig. 3 Performances obtained with the LQ controller (1st col-

umn) and SCLQ controller (2nd column) for Example 3

5.4 Example 4

The following example, dealing with a robust vehicle dy-

namics control as considered in [31], shows the applicability



560 International Journal of Automation and Computing 16(4), August 2019

of the proposed method for solving Problem 2. In this ex-

ample the lateral velocity (Vy) and the yaw velocity (ψ) of

a vehicle have to be controlled through two control inputs,

namely the yaw moment (Cz), obtained by differential brak-

ing, and the rear steering (α). The vehicle must stay near to

the desired trajectory even in the presence of some distur-

bance efforts acting on it and represented by a lateral force

and a yaw moment. The well-known “bicycle model” pa-

rameterized by the road friction parameter and the vehicle

longitudinal velocity, is considered. A normalization of the

problem is used in order to have two uncertain parameters

henceforth denoted θ1 and θ2 such that

Θ
(
1,R2) =





θ =
(

θ1 θ2

)T

∈ R2

‖θ − θ0‖2 ≤ 1

θ0 =
(

1 1
)T





.

At Step 0 of Algorithm 1, the following data is fixed

Tc = 1, α = 10, ε = 0.1 and N = 10. This leads, according

to Step 2, to the distribution of the centers illustrated by

Fig. 4.

With radiuses:
[
δθ1 · · · δθ10

]
= 10−2 [ 4.34 3.98 4.80

5.32 2.81 5.47 5.10 3.28 6.68 8.28]. Step 3 is carried out

with the following upper bounds M̄g = 8dB, M̄φ = 45◦,
M̄r = 1 s and M̄m = 0.5.

After 6 iterations of Algorithm 1 the entire uncertainty

set was substantially covered by 16 disks of different ra-

diuses as shown in Fig. 5.

Fig. 4 10 disk centers uniformly distributed in Θ (1,R2)

Fig. 5 10 disk centers uniformly distributed in Θ (1,R2)

Therefore, 16 SCLQ controllers are designed which prac-

tically cover the entire uncertainty set.

The SCLQ controller (Fig. 6) designed for the associated

local region clearly improves the parametric robustness in

comparison with the standard LQ controller (Fig. 7).

Fig. 6 Closed-loop behavior with the SCLQ controller

If these examples show an undeniable effect of the para-

metric sensitivity reduction they also point out clearly the

contribution of the proposed algorithm to the im-

portant question of the weighting matrices choice (see for

instance [32]).

Fig. 7 Closed-loop behavior with the LQ controller

6 Concluding remarks

This paper shows that reconsidering the singular lin-

ear quadratic control problem underlying the parametric

SCLQ control design problem leads to a new formulation

and, by the same token, to a necessary and sufficient condi-

tion of the optimal SCLQ controller existence. A subopti-

mal parametric SCLQ controller is then obtained by means

of a computationally tractable optimization problem under

some LMI/LME constraints.

Furthermore, a new synthesis method for multiple para-

metric SCLQ controllers is proposed. These controllers

are designed to cover the entire parametric uncertainty set

while degrading as less as possible the intrinsic robustness

properties of each local linear quadratic controller. An ad-

equate PSO based algorithm was presented to find the best
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distribution of the local design regions simultaneously with

the set of the sensitivity reduction tuning parameters.
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