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Abstract—This paper describes an information measure toolbox 
for  classifier  evaluations  based  on  an  open-source  software 
platform Scilab. Twenty four normalized information measures 
are given in the toolbox, which are derived from three types of 
information  definitions,  namely,  mutual  information, 
information  divergence,  and cross  entropy.  Different  from the 
conventional performance measures which apply the heuristic or 
empirical  formulas,  the  information  measures  are  more 
theoretically  sound  with  a  higher  degree  of  applicability,  say, 
classifications including a reject option. The specific attention is 
paid  to  the  singularity  aspect  in  the  implementation  of  the 
toolbox.  With  the  toolbox,  users  are  able  to  test  the  included 
numerical  examples  on  binary  and  three-class  classifications 
easily. The toolbox developed in this work provides users a useful 
tool of assessing classifiers from an information theoretic basis. 
The  complete source code of the toolbox is available at website 
“OpenPR”:  http://www.openpr.org.cn/  with  a  file  name  of 
“confmatrix2ni.zip”.
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I.  INTRODUCTION

Classifier  evaluation  has  been  a  wide  and  long  time 
concern  in  the  studies  of  pattern  recognition  [1]  and  data 
processing  [2].  In  recent  years,  it  becomes  a  hot  topic  in 
machine  learning,  data  mining,  and  web  search  [3-5].  A 
selection  of  proper  evaluation  measures  is  still  an  open 
problem  in  machine  learning.  This  is  particularly  true  for 
classifications.  If  considering binary classifications,  one can 
find out over thirty measures available for uses [5]. However, 
most of these performance measures are unable to handle the 
generic classifications including a rejected class.

In engineering and medical practices, a reject option is a 
common  scheme  which  often  improves  the  classification 
accuracy  [6-9].  In  this  case,  the  terms  of  “abstaining 
classifiers” are often used to describe the classifiers [8].  This 
scheme  is  well  adopted  in  the  tests  of  medical  diagnosis 
because  abstaining  from making  a  prediction  may  be  more 
desirable than making a wrong classification.  When applying 
this  scheme, one  may  employ  an  “Error-Reject”  curve 
technique  for  objective  evaluations  of  abstaining  classifiers 
[10]. The “area under the curve (termed  AUC)” is calculated 

as  a  quantitative  measure  for  a  comparison  between  two 
classifiers. The larger value of the AUC measure, the better the 
classifier. If two classifiers, denoted by CA and CB, have only a 
single-point observation, say,

A(CA) = 0.8 when Rej(CA)= 0.2,            
A(CB) = 0.9 when Rej(CB)= 0.4.  

where A is for “Accuracy” and Rej for “Rejection” (also called 
“Abstention”), a measure, Eff for “Efficiency”, is used for the 
classifier assessment [11]:
          Eff = (A-Rej+1)/2.
Then,  one  is  able  to  rank  the  two  classifiers  from  the 
calculations of 
       Eff (CA) = (0.8-0.2+1)=0.80,
       Eff (CB) = (0.9-0.4+1)=0.75.
and conclude that the classifier CA is better than CB due to its 
higher value on the  Eff measure. In principle, one can derive 
that both  Eff and  AUC measures are equivalent for a single-
point observation. 

  The  classifier  evaluation  becomes  more  complicated  if 
considering  both  error  types  and  rejection  types  in 
classifications. Mackay [10, page 533] showed two classifiers 
for discussion about evaluation measures. The two classifiers, 
denoted here by  CD and CE respectively,  were given by  the 
following corresponding confusion matrices [10]:

where 

and within the binary classifications,  TP is denoted for “True 
Positive”,  FP for “False Positive”,  FN for “False Negative”, 
TN for “True Negative”, U1 and U2 for the unknown class from 
Class 1 and Class 2 samples, respectively.  The conventional 
performance measures will show the following results for the 
two classifiers:
       A(CD) = 0.830,  Rej(CD) = 0.110, Eff (CD) = 0.860,
    P(CD) = 1.000, R(CD)    = 0.822, F1(CD)   = 0.902,
       A(CE) = 0.830,  Rej(CE) = 0.110,  Eff (CE) = 0.860,
    P(CE) = 1.000, R(CE)    = 0.867,  F1(CE)   = 0.929. 
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where  P is  for  “Precision”,  R for  “Recall”  and  F1 for  “F1 
measure”,  respectively.  The  two  classifiers  share  the  same 
values on accuracy and rejection rates (also for efficiency and 
precision  measures),  implying  an  equivalence  of  the  two 
classifiers if using an “Error-Reject” curve technique. Further 
checking  on  the  results  from  the  recall  and  F1  measures 
indicates  that  CE is  a  “better”  classifier.  However,  through 
comparing  the confusion  matrices  carefully,  we may mostly 
consider  CD to  be  “better”  than  CE since  it  has  a  higher 
accuracy  on  a  smaller  class.  The  implication  behind  this 
conclusion is attributed to the considerations about the error 
types and class distributions. That is, a miscalssification for a 
smaller class will suffer more lost than that for a larger class.

In  classifier  evaluations,  if  considering  error  types  and 
rejection types, most investigators may resort to the subjective 
approach. Taking a binary classifier in abstaining classification 
for  example  [6,9,11],  one  needs  to  provide  a  complete 
information about the cost matrix in a form:

where  λij is  the  term  of  the  cost  in  associated  with  the 
confusion matrix. For example, for the Bayesian classifiers [6], 
the given λij will directly control the decision boundary for the 
classifications. Without this information, one will be unable to 
minimize the expected (or Bayesian) risk. 

When the different  values to the different  terms of  λij are 
known, one is able to distinguish classifiers with respect to the 
error types and rejection types. If a measure is defined by  free 
parameters (like  λij), it is called subjective measure [12]. The 
main difficulties for using subjective measures in evaluations 
may come from: 

     a) the issue between “subjectivity” and “consistency”, or
     b) the exact knowledge about the free parameters.   

Different  from  the  subjective  evaluation  approach, 
information-theoretic measures provide  a promising objective 
solution to distinguishing classifiers with respect to error types 
and  rejection  types  [12].  The  pioneer  works  of  introducing 
information  measures  for  classifier  evaluations  may  be 
attributed to the studies by  Kvålseth [13] and  Wickens [14], 
respectively. More  studies  appeared  in  recent  years, 
particularly  in  the  area  of  remote  sensing  [15]  (although  a 
contingency table is used). 

This work is an extension of our early studies [16-18,12] on 
developing the information measures for classifier evaluations, 
particularly  on  the  programming  implementation.  From  the 
author's knowledge, there does not exist any toolbox/toolkit in 
the public on the related subject. Therefore, this work, under 
the soon-coming OpenPR Project [19], aims to build up a novel 
toolbox of information measures for classifier evaluations on 
open-source software  Scilab [20].  We select  Scilab platform 
due to its powerfulness and flexibility in applications from both 
research and educational purposes. It is also the author's belief 
that  open-source  culture  and  practice  will  greatly  foster 
scientific progress,  which should be much encouraged in the 
research community [21,22]. 

This paper is organized as follows. In Sections II, the basic 
formulas  used  in  the  toolbox  are  given.  All  information 
measures appeared in [12] are included into the toolbox. The 
general descriptions and implementation of the toolbox on the 
open-source Scilab are presented in Section III. The results on 
the  two  numerical  examples  in  this  section  are  shown  in 
Section IV. Closing remarks are given in Section V.

II. FORMULAS

The toolbox in this paper provides all information measures 
in  [12].  For  readers  to  follow up  the  formulas  used  in  the 
toolbox, the basic equations are given in this section. Readers 
can  refer  [12]  for  more  detailed  descriptions  about  the 
formulas. 

We  presume  that  the  basic  data  available  for  classifier 
evaluations  is  only  a  confusion  matrix.  For  a  generic 
classification problem, an augmented confusion matrix,  C, is 
considered below in which one column for a rejected class is 
added on a conventional confusion matrix [17]: 

   C=[
c11 c12 ... c1m c1 m1

c21 c22 ... c2m c2 m1

...
cm1 cm2 ... cmm cm m1

] ,         (1)

where  cij represents the sample number of the  ith class that is 
classified as the jth class. The total class number is m. The row 
data  corresponds  to  the  exact  classes,  and  the  column data 
corresponds  to  the  prediction  classes.  The  last  column 
represents a rejected, or unknown, class.

An  empirical  joint distribution  pe(t,y) between the  output 
(or prediction) data set  y and  target data set  t for a classifier 
can  be obtained from the confusion matrix  in the following 
form [17]:

pe t , y =1
n

C ,                (2)

where n is the total number of samples in classifications. Then 
the three basic  definitions are used for  forming information 
measures. The first definition is mutual information [23]:

I T , Y =∑
t
∑

y

p t , ylog2

p t , y
p t  p  y

,              (3)

where p(t) and p(y) are the marginal distribution. The second 
definition is from information divergences, we tried to include 
mostly-commonly  used  information  divergence  measures, 
such as KL divergence [23]:

KLT ,Y =∑
z

pt  z log2

pt z 

p y  z
,          (4)

where  we  apply  the  following  notations  for  defining  the 
marginal distributions:

p t= pt  z=t = pt  z .            (5)

The third definition is the cross-entropy:

H T ;Y =−∑
z

pt z log2 p y  z.          (6)

=[TP FN U1

 FP TN U2
] ,



For realizing an objective  evaluation,  we apply Shannon 
entropy [24]  for  the  definitions  above.  Due  to  the  different 
normalization  schemes,  twenty  four  normalized  information 
measures,  denoted  by  NIk (k=1,2,  ...,  24),  are  formed  for  a 
systematic comparison. Tables I-III list all measures used in the 
toolbox, and readers can see the original reference sources in 
[12] for  some measures.  

III. DESCRIPTION AND IMPLEMENTATION OF THE TOOLBOX 

In this section, we will describe the general information of 
toolbox first and then discuss its implementation. 

A. Genearal Description

The toolbox is available on the website of OpenPR [19], 
which  stands  for  “Open  Pattern  Recognition  Project”.  The 
toolbox is  given by a file called “confmatrix2ni.zip”. 
Within this zip file, three individual function files are included 
(Table  IV).  The  total  number  of  24 normalized  information 
measures,  NIk,  (k=1,...,24),  are  calculated  in  the  respective 
function files. All programs are coded by Scilab language and 
released under the BSD open-source license. The toolbox, still 
in  a  preliminary  stage,  can  be  extended  easily  from  using 
Scilab language for including more information measures.  

For a convenient use of the toolbox, each function file is 
designed by including two parts. The first one is the function 
itself,  and  the  second  one  is  the  numerical  examples  for 
running the included function. Scilab software enables users to 
apply “copy” and “paste” operations to the file for running the 
examples directly. Among the total fifteen examples given in 
the  function  files,  the  first  six  examples  are  for  binary 
classifications and the remaining nine examples for three-class 
classifications. Users are able to test their own examples easily 
by giving the confusion matrix. If for a formal calling of the 
function,  the  second  part  on  numerical  examples  should  be 
removed.

Because of its feature of being a high-level language, Scilab 
provides a simple and flexible platform for extensions. One can 
easily add new information measures and other conventional 
performance  measures  for  a  wider  comparison.  The  present 
toolbox  using  Scilab  can  be  easily  transferred  into  other 
computer languages. 

B. Implementation

In the implementation of the toolbox, the specific attention 
is made on the singularity aspect. When calculating entropy, 
one may encounter two types of singularities, namely

  a)  removable singularity (say, 0*log0 = 0), and
  b)  absolute singularity (say, a*log0 = -∞, a > 0).    

Removable  singularity  is  a  specific  feature  for  some 
function  at  the  singularity  point  where  the  function  is 
undefined,  but  its  limit  exists  at  this  point.  We  call  the 
“absolute singularity” if it has no limit. 

Scilab program applies command:  ieee(k) for handling 
singularity calculations by three modes (k=0,1, or 2). The 
default  mode is  ieee(0)  for  warning and stopping when 
encountering singularity. In the program of the toolbox, a mode 
ieee(2) is suggested in which the program will run until the 
normal  ending  even  it  encounters  the  calculation  for 
singularity. If users want to know the occurrence of removable 
singularity  for  some  measure(s),  they  can  select  the  mode 
ieee(0) with the specific  code on singularity examination 
during  the  calculations.  The  present  toolbox  includes  such 
specific code, but users may need to add code for outputting 
the singularity (or warning) message to the specific measure(s). 

Running the program of the toolbox, one can find that the 
difficulty from removable singularity is overcome by using the 
strategy above. All normalized information measures should be 
fall  within the normal range from 0 to 1. However,  specific 
cases do occur to some measures. When one measure shows 

TABLE I. NI MEASURES WITHIN THE MUTUAL-INFORMATION BASED GROUP [12]. 

No. Name Formulas on NIk

1 NI based on mutual information NI 1T ,Y =
I T ,Y 

H T 

2 NI based on mutual information NI 2T ,Y =
I Y∩T T ,Y 

H T 

3 NI based on mutual information NI 3T ,Y =
I T ,Y 

H Y 

4 NI based on mutual information NI 4T , Y =
1
2 [ I T ,Y 

H T 


I T , Y 

H Y  ]
5 NI based on mutual information NI 5T ,Y =

2 I T ,Y 

H T H Y 

6 NI based on mutual information NI 6T ,Y =
I T ,Y 

 H T H Y 

7 NI based on mutual information NI 7T ,Y =
I T ,Y 

H T ,Y 

8 NI based on mutual information
NI 8T ,Y =

I T ,Y 

max H T  ,H Y 

9 NI based on mutual information
NI 9T ,Y =

I T ,Y 

min H T  ,H Y 



the  calculation result  like “Inf” after running the program,  it 
means  that  the  current  measure  encounters  the  absolute 
singularity from the given confusion matrix. In this case, that 
measure becomes inappropriate for achieving the meaningful 
evaluation to the classifier investigated.  

For keeping the program code simple and understandable, 
the present  toolbox does not include the code for input data 
checking on a confusion matrix. One needs to make sure that 
the given matrix should satisfy the following constrains for a 
proper evaluation of a classifier [17]:

C i=∑
j=1

m1

c ij , C i0, c ij≥0, i=1,. .. , m , j=1,. .. , m1.  (7)

The constraints require that the matrix be given in a size of m 
by (m+1), each term of the matrix be nonnegative, and each 
class number be bigger than zero.

IV. NUMERICAL EXAMPLES

Users are able to test  all  fifteen examples attached in the 
individual function file of the toolbox. The confusion matrices 
in  the  examples  are  specifically  designed  so  that  users  can 
examine  the  effects  of  error  types  and  rejection  types, 
respectively. Although we engage an objective evaluation, our 
intuitions  do  exist  for  error  types  and  rejection  types  for 
unbalanced  classifications.  Numerical  solutions on the given 
examples  present  a  direct  observation on which information 
measure satisfies our intuitions. The detailed discussions about 
the fifteen examples are given in [12].

In this paper, we only discuss the two classifiers given in the 
introduction,  CD and  CE.  The  two examples  were  originally 
given  by  Mackay  in  [10].  Although  the  two  examples  are 
artificially designed, they do demonstrate the meaningful and 
important issue behind the classifications with a reject option. 

TABLE II. INFORMATION MEASURES WITHIN THE DIVERGENCE BASED GROUP [12].  

No. Name of Dk Formulas on Dk, NIk=exp(-Dk)

10 ED-Quadratic Divergence D10=QDED T ,Y =∑
z

 pt  z −p y z 
2

11 CS-Quadratic Divergence D11=QDCS T , Y =log2

∑
z

p t  z2∑
z

py  z2

[∑
z

 p t  z py  z]
2

12 KL Divergence D12=KL T ,Y =∑
z

p t  zlog2

pt  z

p y  z

13 Bhattacharyya Distance D13=D BT ,Y =−log2∑
z
 pt  z p y z 

14 χ2 (Pearson) Divergence D14=
2
T ,Y =∑

z

 pt z −p y z 
2

py  z

15 Hellinger Distance D15=H 2T ,Y =∑
z

 pt  z− py  z
2

16 Variation Distance D16=V T ,Y =∑
z
∣ pt  z−p y z ∣

17 J divergence D17=J T ,Y =∑
z

p t  zlog 2

p t  z

py  z
∑

z

py  z log2

p y z 

p t z 

18 L (or JS) divergence D18=L T ,Y =KL T ,M KL Y ,M  ,M =
 p t  z py  z

2

19 Symmetric χ2  Divergence D19=S
2
T ,Y =∑

z

 p t  z−py  z2

p y  z
∑

z

 p y z −p t  z2

p t z 

20 Resistor Average Distance D20=D RAT ,Y =
KLT ,Y KL Y ,T 

KL T ,Y KL Y ,T 

TABLE III. NI MEASURES WITHIN THE CROSS-ENTROPY BASED GROUP [12]. 

No. Name of NIk Formulas on NIk

21 NI based on cross-entropy NI 21=
H T 

H T ; Y 
, H T ; Y =−∑

z

pt z log2 py  z

22 NI based on cross-entropy NI 22=
H Y 

H Y ; T 
, H Y ;T =−∑

z

py  z log2 pt z 

23 NI based on cross-entropy NI 23=
1
2


H T 

H T ;Y 


H Y 

H Y ; T 


24 NI based on cross-entropy NI 24=
H T H Y 

H T ; Y H Y ;T 



Mackay [10]  suggested to apply mutual information measures 
for evaluation, but did not present the numerical results. Table 
V shows the results of all 24 information measures on the two 
classifiers. One can see that some measures may fail to fulfill 
the  evaluations  since  the  absolute  singularity  occurs  in  the 
calculations (Symbol “S” for singularity result in Table V). At 
the same time, the measures showing zero values also indicate 
(by singularity checking with ieee(0)mode) the occurrence 
of removable singularity during the calculations for the given 
examples. However, most information measures are applicable 
and  effective  for  realizing  the  evaluations  without  such 
difficulties.

One still can try to apply the conventional (or performance) 
measures listed in [5]. Then, one may observe that the most 
conventional measures will fail to conduct such evaluation task 
on the given examples. The examples shown in [10] do support 
the  need  of  resorting  information  measures  for  an  objective 
evaluation of abstaining classifiers.

In  comparing the two classifiers  with NIk,  a  higher  value 
indicates  a  better  classifier.  It  is  interesting  to  see  that  the 
conclusion may change due to using different measures. Within 
the  mutual  information  group,  the  normalized  information 
measures support Classifier CD to be better than CE. However, 
the   measures from other two groups will prefer the selection 
of  Classifier  CE,  instead  of  CD.   In  [12],  we  proposed  and 
discussed  the  “meta-measures”  (or  “measures  about 
measures”) from a high level of evaluation knowledge. 

The numerical examples here demonstrate that the toolbox 
will provide users a useful tool to examine and understand the 
differences among the information measures. Readers can test 
more  complicated  examples,  say,  multi-class  problems. 
Numerical investigations will be helpful for reaching empirical 
guidelines in the selection of measures.    

In [18], we derived for a first time the nonlinear relations 
between  NI1 and  conventional  performance  measures.  From 
using the toolbox, one will be easy to see that the nonlinearity 
exist for all other information measures.  

V. CONCLUSIONS

This  work  introduces  an  open-source  toolbox  of 
information measures for classifier evaluations. To the author's 
knowledge, this is the first toolkit on the  subjects in the public. 
The toolbox includes 24 normalized information measures for 
objective evaluations. Applying the toolbox, users are able to 
obtain  the  empirical  findings  about  cons  and  pros  of  each 
measure  from  the  numerical  examples.  The  toolbox  was 
developed  on  the  open-source  software  Scilab  so  that  it 
provides  users  a  better  degree  of  flexibility  in  their 
applications.  Users  are  fully  free  in  open-source  senses  for 
testing  their  own  examples,  or  modifying  the  toolbox  from 
their needs. 

This work does not mean that information-based measures 
will  replace  the  conventional  measures  for  classifier 
evaluations.  Information-based  measures  do  open  a  wider 
perspective for our deeper understanding of the mechanism of 
learning  machines.  However,  a  more  systematic  comparison 
with other heuristic measures (say, similarity measures [25, 26] 
such as Jaccard coefficient, Dice coefficient, and Rand Index) 
will  be  necessary.  As  discussed  in  the  introduction  of  this 
paper,  classifier  evaluations  are  still  an  open  problem  in 
machine learning. We need not only theoretical study but also 
numerical  tools.  In  the cases  of multi-class  classifications,  a 
toolbox  will  be  more  proper  and  important  for  numerical 
investigations.  It  is  the  author's  hope  that  the  information 
measure  toolbox  developed  in  this  work  will  promote more 
systematic  studies  on  the  comparisons  among  both 
information-based measures and performance-based measures. 
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TABLE IV. FUNCTION FILE LIST IN THE TOOLBOX. 

Function File Name NIk Description of NIk Applied

confmatrix2ni_mi.sci NI1 - NI9 Defined from Mutual Information

confmatrix2ni_id.sci NI10 - NI20 Defined from Information Divergence

confmatrix2ni_ce.sci NI21 - NI24 Defined from Cross Entropy

TABLE V. RESULTS OF INFORMATION MEASURES FOR THE EXAMPLES SHOWN IN [10].  S = ABSOLUTE SINGULARITY .

Model NI1 NI2 NI3 NI4 NI5 NI6 NI7 NI8 NI9 NI10 NI11 NI12

CD 0.586 0.586 0.254 0.420 0.355 0.386 0.215 0.254 0.586  0.961 0.959 0.822

CE 0.534 0.393 0.255 0.395 0.345 0.369 0.209 0.255 0.534 0.974 0.971 0.842

Model NI13 NI14 NI15 NI16 NI17 NI18 NI19 NI20 NI21 NI22 NI23 NI24

CD 0.913 0.851 0.884 0.726 S 0.879 S S 0.706 0.0 0.353 0.0

CE 0.918 0.879 0.892 0.787 S 0.890 S S 0.732 0.0 0.366 0.0
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