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Abstract: The objective of this paper is to propose a reduced-order observer for a class of Lipschitz nonlinear discrete-time systems.
The conditions that guarantee the existence of this observer are presented in the form of linear matrix inequalities (LMIs). To handle the
Lipschitz nonlinearities, the Lipschitz condition and the Young's relation are adequately operated to add more degrees of freedom to the
proposed LMI. Necessary and sufficient conditions for the existence of the unbiased reduced-order observer are given. An extension to
H o performance analysis is considered in order to deal with H, asymptotic stability of the estimation error in the presence of disturb-
ances that affect the state of the system. To highlight the effectiveness of the proposed design methodology, three numerical examples
are considered. Then, high performances are shown through real time implementation using the ARDUINO MEGA 2560 device.
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1 Introduction and preliminaries
1.1 Introduction

Observer and control design for linear and nonlinear
systems has attracted the attention of several researchers
over the past two decades! 9. Generally, the size of the
output vector is smaller than that of the state vector for
several reasons (techmnical implementation, cost, etc.).
Therefore, at a given time ¢, the state can not be de-
duced algebraically from the output measurements. The
purpose of an observer is to give an estimate of the cur-
rent value of the state as a function of the system inputs
and outputs. Particular attention was given to the re-
duced-order observer since it allows the estimation of
only the unavailable components of the statell0 11, Until
today, the majority of existing works on reduced-order
observer design deals only with continuous linear
systems(12-14. On the other hand, there are not enough
works in the discrete casell®l. Returning to reality, it is al-
most impossible to find a system without a nonlinear
part. Furthermore, many physical systems satisfy the
Lipschitz condition, therefore it is the most used for the
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synthesis of nonlinear observers. Some works on state ob-
server design for this class of systems were recently de-
veloped in [16-18].

In this context, the main contribution of this paper is
to deal with reduced-order observers for both discrete-
time and Lipschitz nonlinear systems. A useful decompos-
ition (into two sub-functions) and reformulation of the
Lipschitz property allow us to combine the results of
Lipschitz systems and unknown inputs to synthesize a re-
duced-order observer for this class of nonlinear systems.
Then, thanks to a judicious use of Young's relation, addi-
tional degrees of freedom are included in the linear mat-
rix inequality (LMI) constraints. Indeed, the asymptotic
stability of the estimation error is guaranteed. After-
wards, the obtained result will be extended to the case of
nonlinear systems in the presence of disturbances with
bounded energy.

This paper is organized as follows: Section 2 presents
some preliminaries, the nonlinear discrete-time system
and the considered observer. The conditions of unbiased-
ness of the estimated error are considered and the re-
duced-order observer design for Lipschitz discrete-time
systems is detailed in Section 3. In Section 4, an exten-
sion to Ho, performance analysis is presented. Section 5 is
devoted to emphasizing the effectiveness of the proposed
design methodology through three numerical examples.

Notation. The following notation will be used
throughout this paper:
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i-th T

~ =~
1) Bm(z): 0,---,0, 1,0,---,0 eRm’m>1’

m — components
is a vector of the canonical basis of R™;

2) XT is the transposed matrix of X;

3) X is a square matrix. The notation X > 0 (X < 0)
means that X is positive definite (negative definite);

4) In a matrix, the notation (x) is used for the blocks
induced by symmetry.

1.2 Preliminaries

This section is devoted to presenting some preliminar-
ies that are useful for developing the proposed design
methodology.

Definition 1.1!% Consider the following two vectors:

Tl 8
X=|:]€eR" and Y=|:|€eR".
Tn Yn
For all i=0,---,n, an auxiliary vector XYi € R"

corresponding to X and Y is defined as

S
XY = Yi , for i=1,---,n
Tit1 (1)
L mn -
XY = X.

Lemma 1. Consider a function h: R®™ — R". Then,
the following expressions are equivalent[19:

1) h is globally Lipschitz with respect to its argument,
ie.,

| h(X) = h(V) IS an | X =Y |, ¥X,Y €R".  (2)
2) For all ¢,5 =1,--- ,n, there exist functions
hij: R"xR" —R (3)

and constants a; - and @y, so that V X,Y € R"

h(X) = h(Y) =Y hiyHi; (X =) (4)
Q=1
and
Qps <bh; < Qp,; (5)
where

bij S f]ij(Xijl,XYj) and Hij = 6n(l)eg(])
Lemma 2. Reformulation of Young's lemmal20. Giv-

en two matrices X and Y of appropriate dimensions, then
the following inequality holds for any symmetric positive
definite matrix S of appropriate dimension:

XY +Y7TX < % [X+5Y]"ST X +8Y]. (6)

This lemma will be one of the tools for the main con-
tributions of this paper. It allows us to provide less re-
strictive and conservative LMI conditions for the con-
sidered class of nonlinear systems.

2 Problem statement

As previously stated, we address the problem of the
design of a reduced-order observer for a class of nonlin-
ear discrete-time systems. In the following, we present the
system description, the structure of the observer and a
useful method of decomposing the nonlinear part.

2.1 System description

Let us consider a nonlinear discrete-time system de-

scribed by
ZTk+1 = Az + Buk + h(zgk, uk) (7a)
yr = Cxy, (7b)
zr = Lxg (7¢)

where z € R", ur, € R™ and y, € R? denote respectively
the state, the input and the output vectors. zx € R" is
the vector to be estimated where r <n. A€ R™*",
BeR"™™, CecRP*™ and L€c€R"™™ are constant
matrices of adequate dimensions. h: R" x R™ — R" is
a real nonlinear vector.
Without loss of generality, it is assumed that
1) rank(C )= p;
2) rank(L)= r;

3) rank [S:| =(p+r <n).

2.2 Structureofthereduced-order observer
For system (7), let us consider the following state ob-
server

{Xk+1 =Exi+Jyr + Hhy ([‘g};] ,Uk) + HBuy, (8)

Zr = xx + Gyk

where xr € R" and 2, € R" is the estimate of zx. The
matrices E € R™*", JER™P?, He R™" and G € R™*?
are to be determined such that Z; converge asymptotically
to zk.

An important step to get the solution lies in the de-
composition of the nonlinear function h(zy,ur) into two

@ Springer
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portions: one portion will be considered as a Lipschitz
function with respect to zr and the other portion will be
treated as an unknown input.

2.3 Decomposition of the nonlinear func-
tion

Referring to [18], the nonlinear vector h(xy,uy) is de-
composed as

h(zk,ux) = h1 (0x,ur) + Dha(xx, ur) 9)
where g = [ Zk ] = g }xk € R, D € R™*° and
k

rank(D) = s with 0 < s < n.
The nonlinear functions hi (g, ur) and ha(zy,ux) can
be obtained from the following decomposition procedure.
The vector g can be expressed as

Yk C
Ok = |: 2 :|: { I :|:L‘k:[T O]K:rk:[T O]Uk
(10)
where v, = Kz € R™, matrix T is non-singular and K is

a unitary matrix.
Then, v can be partitioned as

o = { Uik } (11)

V2K

where vix € R®t" and vy, € R P17,

So, o and h(xk,ur) can be written as

ok = Tk (12)

h(zg,ux) = h (KTUk,’U,k) . (13)

Decomposing the right-hand side of (13), we get
(based on works of [18-20]):

h (KTUk, uk) = h1 (‘Qk, uk) + }Nl (’Uk7 uk) (14)

where

T ' ok

hy (o, ur) = h (KT { 0 } , 0) +h(0,u)  (15)

h(zwk,ur) = h (KT’Umuk) — h1 (ok,uk) =

h(an, we) — I ({ ¢ ]xkuk> (16)

Moreover, h(zk, ur) can be expressed as

h(zk,ur) = Dha(zk, uk) (17)

where ha(zk,ur) € R® is treated as unknown input vector

@ Springer

and 0 < s <n is the number of independent unknown
inputs. Without loss of generality, matrix D € R"*° is a
full-column rank.

Otherwise, the following rank decomposition can be
applied to the matrix D:

th(l’k, uk) = DDhQ(l’k, uk) (18)
where D is a
ho(xk,ur) = Dha(xk,ur) can be considered as a new
unknown input vector. Thanks to the decomposition of

full-column rank matrix and

h(zk,ur) in the form of (9), we can combine both the
results of Lipschitz nonlinear systems and unknown
inputs to synthesize a reduced-order observer for this
class of nonlinear systems.

3 New reduced-order observer design
methodology

3.1 Necessary and sufficient conditions

To ensure the convergence of the estimation error and
the existence of the reduced-order observer, the neces-
sary and sufficient conditions are determined in this sec-
tion.

Let H € R™*" be a full-row rank matrix. We define
the error vectors e, € R" and ex € R" as follows:

ex = xr — Hzxy, (19a)

€ = 2k — Zk. (19b)

Then, we introduce the following corollary:

Corollary 1. The estimation error ex converges
asymptotically to zero for the decomposition of the non-
linearity as in (9) for any zo, 2o, ur and all possible set of
the nonlinear function h(zk,ur) € R™ if and only if

1) €k+1, as defined in the following, converges asymp-
totically to zero;

ex+1 = Bep + (EH + JC — HA)zi+
H (7 (8k, ur) = ha (ok, ur) )=
Hth(xk7uk) (20)

with o = [yk} and o = {?k}
Zk Zk
2) The following equations are satisfied

EH+ JC —-HA=0, E is Hurwitz (21a)
HD =0 (21b)
H+GC-L=0. (21c)

Proof. From (7a) and (9), the error vector ;41 can
be expressed as
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Ek+1 = Xk+1 — Hrp11 = Exr+
(JC — HA)CL‘k — HDhQ(IEk, uk)—i—

H (ha (8r, ur) — b1 (0k, ur) ). (22)

From (19a), we have xx = ex + Hxg. Then we obtain:

Ekt1= E8k+(EH+JC—HA)ZEk—HDhQ(SL‘k,uk)—i—
H(h1 (0r,ur) — ha (Qk7uk))~ (23)

From (19b), we can obtain:
er =€k + (H + GC — L):Ck (24)

The unbiasedness of the filter is achieved if and only if
(21a)—(21c). This ends the proof of Corollary 1. O

By substituting (21c) into (21a) and (21b), we obtain
the following equations:

(25)

EL—LA-[ G J—EG][CA}

C

GCD = LD. (26)

Post-multiplying both sides of (25) by the following
full-row rank matrix:

[01 0:]=[L* I.—L*L] (27)

where LT denotes the generalized matrix inverse of L.
This yields the following two equations:

E = LAO, — [GJ — EG) [ gélol ] (28)
LAO, = [GJ — EC] { gé? } , (29)

The augmented matrix equation resulting from (26)
and (29) can be expressed as

CAO, CD

01 -0 | Cor

] = [LAO.LD].  (30)

The equality (30) can be rewritten as

=1 (31)
with
=[G J-EG] (32a)
2= { %AOO; COD } (32b)
II=[ LAO, LD ]|. (32c)

Now, let us introduce Corollary 2.
Corollary 2. There exists matrices GG, J and E such

that (31) is satisfied if and only if

CA CD

C 0 CA CD
k = k
rank | 7 o ran g 8 (33)
L 0
Proof. Equation (31) has a solution if and only if
27 _
rank [ 17 ] = rank (34)
ie.,
CAO2 CD
rank | COs 0 :| = rank [%AOOQ COD} (35)
LAO, LD 2

Then, by post-multiplying both sides of (35) by the
full-row rank matrix:

Faat

it is easy to verify that (35) is equivalent to (33). This
ends the proof of Corollary 2. |

Therefore, if the equality (33) is satisfied, then there
exists a general solution of (31) given by

» =102t + z(I - ') (36)

where 21 = (2702)7'27T is the generalized inverse of (2
and Z is an arbitrary matrix that will be determined
using the LMI approach.

From ¥, we can determine the matrices G, E, H and
J:

[ Il_a
072[0]701 e (37)
with
I
_ +
61~ na- ]
n I
Gy = (20" 1) |,
A
E:LAOle[golol]:EleEg (38)
with
CAO
_ _ + 1
IE1 = LAO, — T2 { co, }
CAO
_ _ + 1
B - 00| G4 ]
H=L-GC=H —ZH, (39)
with
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| +20-009] 0 ]
(40)

3.2 New LMI based reduced-order observer

Since the unbiasedness conditions given in the previ-
ous paragraph are satisfied, the dynamic of the estima-
tion error can be written as follows:

Ek+1 = Fer + HAhqy (41)

with Ahix = h (@k,uk) — h1 (gk,uk).

Or hi(ok,ux) is globally Lipschitz, then from Lemma 1,
there exist functions b;;, constant Qy,. and constant @y, ,
such that

n,p+r

ha (0, uk) — b1 (ok,ur) = > biMai(or — o) (42)

3,j=1

with  ay <biy; <@, by 2 hi(0%71,0%)  and
Hij = en(i)eg+r(j).

We can take Eij = ay, -y, and then we can as-
sume q . = 0 without loss of generality.

Now, let us introduce Corollary 3.

Corollary 3. The reduced-order observer design
problem corresponding to the system (7) and the observ-
er (8) is solvable if there exist matrices R, S;; = ST > 0 and
P = PT > 0 of appropriate dimensions such that the fol-

lowing LMI is feasible:

—-P ETP+ETIR
Y- Th
%) _p ! I <o (43)
(%) —=S
with
CAL*
Ey = LALT — 110"
cL*
CAL™*
Ey=(I—-00%
cL*

@ Springer

CA(I, — L*L) CD
C(I,—L*L) 0

O=[ LAI,—-L"L) FD ]
Yi=[Ba - Bl

Bi = [Sinij [OI};(T} HTP - HQTR]T

= = block — diag( 1, -, n)
=; = block — diag (ib, o iL‘)
hil hin

S = block — diag(Sy,--- ,Sn)

S; = block — diag((S1,- -, (Sr)
when the LMI (43) is feasible, the matrix Z is given by
Z =P 'RT.
Proof. Let us consider the classic quadratic Lyapun-
ov function:

Vk = aEPsk (44)

where P = PT > 0.
The variation AV = Vj41 — Vi of this Lyapunov func-
tion is given by

AV =T (ngT - P) en (45)

T
n,p+r 0
th - E H iq iq pxr
w1 g + Zi,jzl h JH J I
We can deduce that AV < 0 for all e # 0, if the fol-

lowing inequality holds:
grg" —pP<o. (46)

Using Schur's Lemma, the inequality (46) becomes
equivalent to

-P GP
{(*) —P} < 0. (47)
Then, the inequality (47) can be rewritten as the fol-
lowing:
{fPETP ] N
(x) =P
n,p+r 0 0
g |V T
Z his [PH] [H” [ I ] 0] NG M <0, (48)
i,j=1 N—— — —
MT Nij
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Hence, by applying the reformulation of Young's rela-
tion (6), we obtain

MTNU + NEM < % [M + SijNij]T S;l [M —+ SijNij] .
(49)

From (5), inequality (48) is satisfied if

—PNTP +
(*) —-pP
n,p+r [
> M+ SiNy)* %551 [M + Si;Nij] < 0. (50)
ij=1

Then, wusing Schur’s lemma and the notation
R = Z" P, inequality (50) becomes equivalent to (43).

O

Now, we can define the next algorithm to synthesise
the proposed reduced-order observer.

Design algorithm 1.

1) Decompose the nonlinear function h(zk,uy) in (7a)
according to (9) and find D and hi(ok, ur);

2) Check if the condition given in Corollary 2 is satis-
fied. If yes, continue. If not, a reduced-order observer
does not exist;

3) Solve LMI (43) to get the matrices P and R;

4) Get Z from Corollary 3;

5) Get filter matrices from (37) to (40).

4 Extension to H. filtering design

Let us consider the same system described by (7) with
added noise on the state equation:

ZTrp+1 = Az + Bur + h(xk, ur) + Fuws (51a)
yr = Cxp (52b)
2k = Lz (53c)

where z, € R", up € R™, yr € R? and w, € R? denote
respectively the state, the input, the output and the
bounded disturbance vectors. zx € R" is the vector to be
estimated where r <n. A € R"*", Be R"*™, F € R",
CeRP* and LeR™™ are constant matrices of
adequate dimensions. h:R" x R™ — R™ is a real
nonlinear vector. The same assumptions given in Section 2
will be reconsidered in this section.
Now, we consider the following state observer:

{Xk+1 = Exr + Jyr + Hh1 ([gﬂ ,uk) + HBug (52)

2k = Xk + Gyr
where xr € R", 2 € R" is the estimate of z;. The

matrices F, J, H and M are to be determined such that
21 converge asymptotically to zy.

Corollary 4. The estimation error ex converges
asymptotically to zero for the decomposition of the non-
linearity as in (9) for any o, 2o, uk, wi and all possible
set of the nonlinear function h(zy,usr) € R™ if and only if

1) er+1, as defined in the following, converges asymp-
totically to zero;

Ek+1 — E&‘k + (EH + JC — HA)$k+
H (h1 (6r, u) — ha (o, ur) ) —
HDhQ(ZEk,uk) 7Hka (53)

with or = |:yk:| and or = |:yAk:|
Zk 2k

2) The following equations are satisfied:

EH+ JC — HA =0, E is Hurwitz (54a)
HD =0 (54b)
H+GC—L=0. (54c)

Proof. According to (19a) and (19b), it is easy to
prove the results given by Corollary 4. |

If Corollary 4 is verified, then the dynamic of the es-
timation error can be written as follows:

Ek+1 = FEep + HAhy, — HF wy (55)

with Al = h (@k,uk) — h1 (gk,uk).

The aim is to find the reduced-order H., observer
parameters where e, converges H., asymptotically to-
ward zero, i.e., we must search for the parameters that

satisfy the following condition:

e o< Al we Iy, for  €(0) =0 (56)

with a disturbance attenuation level A > 0 that will be
minimized.
So, it is sufficient to find a Lyapunov function Vj so that

AV +efer — Nwrwy < 0. (57)

Corollary 5. For a disturbance attenuation level
A >0, the reduced-order H observer design problem
corresponding to the system (51) and the observer (52) is
solvable if there exist matrices R, S;; = SiT >0 and
P = PT > 0 of appropriate dimensions such that the fol-
lowing LMI is feasible

min A
{(1,1) M - 1o (58)
s.t.
(%) —=S

with

@ Springer
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—P+1 0 —ETP+ ETR
(1L, = (¥ —\1 FTY(HfP - HIR)
(%) (*) -pP
CAL*
Ey = LALT —TI™"
cLt
CAL*
Ey = (I - 00"
cLt

CA(I, —L*L) CD
c(I,—L*L) 0

0= LA(I, - LTL) LD |

Yi=[Bix - Bil

B: = [—Sinij [Opw} 0 —(H{P-— HzTR)}T

I
= = block — diag( 1, , )
=i = block — diag (ézh o ,il,«)
iy ahin

S = block — diag(Sy,-- - ,Sn)

S; = block — diag(S1,- -+, Sr).
When the LMI (43) is feasible, the matrix Z is given
by Z= P 'RT.
Proof. To demonstrate this corollary, it is sufficient

to choose the standard form of the Lyapunov function
Vi = ei Pey, where P = PT > 0. We deduce the LMI (58)

by choosing M = [0 0 HTP], Nij = |:H7jj>< |:01}><7':| 00

and using the convexity principle as in Corollary 3.

O

Now, we can define the following algorithm to syn-
thesize the proposed reduced-order Ho, observer.

Design algorithm 2.

1) Decompose the nonlinear function h(zk,uy) in (7a)
according to (9) and find D and hi(ok, ur);

2) Check if the condition given in Corollary 2 is satis-
fied. If yes, continue. If not, a reduced-order observer
does not exist;

3) Solve LMI (58) to get the matrices P and R;

@ Springer

4) Get Z from the Corollary 5;
5) Get filter matrices from (37) to (40).

5 Simulation results

In this section, three numerical examples are con-
sidered to illustrate the effectiveness of the proposed
design methodology.

5.1 Example1

Consider a nonlinear system as described by (7) with

A=I; +T.A.

—1 0 0 1 0 O 07

2 0 1 -1 1 0 0

o 3 0 0 1 1 0

Ac=10 0 0 -3 0 1 1
o o0 0 o0 1 0 -1

1 00 0 0 -1 0
L O 1 0 O 1 0 —2

1 0 0 0 0 0 O
cC=]1 1 0 0 0 0 O
-1 0 1 0 0 0 O

L= 0o 0 1 1 0 0

Az 4k T 7K
0
0.1$4k$7k
h(wk) = Te |0.45 sin®(zax + 51
0

0
L TakT7k -

where T. = 0.1s is the sample time.
The nonlinear function A can be decomposed accord-
ing to (9) as the following:

r 0 y r47. 7
0 0
0 0.17,
hi(ox) = |0.45 sin2(x4k + z5k) , D= 0
0 0
0 0
L 0 l L 7 |

and ha (k) = Tagp Tk

hi(ok) is a Lipschitz function and satisfies the condi-
tion (42) with @y,, = 0.45T. and ay,, = 0. ha(zx) is con-
sidered as an unknown input.

It is clear that the conditions given in Corollary 1 and
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2 are satisfied. Therefore, the design of the reduced-order
observer for this system can be studied. By solving the
LMIs (43) and from (37) to (40), we obtain:

1.487 5 1.000 0]

G=[-05125
E=08513
H=1[0.0250 —1.4875 —1.0000 1.0000 1.0000 0 0]

J=[-0.0725 —0.5213 —0.2975].

The initial conditions for the system and for the ob-
servers have been chosen as: zo =1 and 2o = —0.5. Fig.1
presents the trajectory of zj; and its estimate.

10 T
[ S — et/
-10 t

Amplitude
b
(=)

|
%)
S

|
N
S

|
wn
S

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Fig.1 Response of 2} and its estimate

As shown in Fig.1, the state is accurately estimated

using the proposed design method.

5.2 Example 2

Let us consider the system described in (7) with

A=1,+T.,A.
—10.2831 1.2341 23192 —1.4869
A = —48.8237 —2.3968  0.4389 2.194 3
©7 ] 1.0023 —1.9102 —20.3486 0.398 1
—3.3421 03041 59023  —3.4609
0.5871  0.2361
B—T. 1.358 8  —2.327 2
—0.6191 1.2552
0.382 1 1.465 2
1 0 0
C=101 0 0]
0 1 1
I [1 00 0]
0 0 0 1

T2k T3k
0
3T2k T3k
0.2 sin(zax)

h(mk) = T8

where T, = 0.01s is the sample time.
Then the nonlinear function h can be decomposed ac-

cording to (9) as the following:

0 T.
0 0
0.2T. sin(zax) 0

and hz(xk) = T2 T3k.

hi(ok) is a Lipschitz function and satisfies the condi-
tion (42) with @y,, = 0.27T, and ay,. = —0.2Tc. Then we
can assume that oy, =0 and b5 = 0.47.

ha(zk) is considered as an unknown input.

It is clear that the conditions given in Corollaries 1
and 2 are satisfied. Therefore, the design of the reduced-
order observer for this system can be studied. By solving
the LMIs (43) and from (37) to (40), we obtain:

—0.645 7

—7.0615 0.5486
—11.553 8

G= [ 1.9159 3.8513
0.026 2

—0.028 4]
0.006 9

E=10"3 [

0.283 0
—0.548 6
—3.851 3

7.061 5

16457
o —1.9159

—0.548 6
11.553 8

—2.851 3

6.9211

~ [-1.9581
o —1.6620

—0.400 3
11.354 5 '

—2.975 2
The initial conditions for the system and for the ob-
T
servers have been chosen as: zp= [0.5 0.5} and

T
20 = [70.5 70.5] . Figs.2 and 3 present the trajectory

of z and its estimate.

0.5 T
~—Zu

[
<
2
2 0f
g
<

-0.5

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Fig. 2 Response of 211 and its estimate
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0.6

04

02

Amplitude
(=)

04 |

—-0.6

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Fig.3 Response of 29k and its estimate

As shown in Figs.2 and 3, the state is accurately es-
timated using the proposed design method.

5.3 Example 3

We reconsider Example 2 with the presence of a dis-
T
turbance. Let F — [0 001 0 0.01] . By solving the
LMIs (58) and from (37) to (40), we obtain

G- —0.6507 —7.0849 0.5502

- |-11.1609 3.6051 3.7203
E—103 [0.011 8 0.007 4]
0.0138 0.229 2

_ | 1.6507 7.0849 —0.5502 —0.5502
~ |11.1609 —3.6051 —3.7203 —2.7203

= {71.965 4

6.9442 —-0.4013
11.824 4 '

-3.3174 —2.8800

In the following, real time implementation using an
ARDUINO MEGA 2560 device is considered. The dia-
gram illustrating the implementation is given in Fig. 4.

Fig. 4 Real time implementation

5.3.1 ARDUINO I/O interface mode
The first mode consists in using the ARDUINO card

@ Springer

as an I/O interface with Matlab Simulink. After loading
the firmware "adioserv.pde" into the Arduino card, we in-
stall the Arduino I/O library to Simulink Libraries.

In this phase of implementation, a noise was added to
the state of the system. The added signal is a sinusoidal
signal with variable frequencies (between 42 Hyz, and 680 Hz).

Figs.5 and 6 present the trajectory of z; and its estim-
ate.

Magnitude (V)
|
&

0 10 20 30 40
Iterations (k)

Fig. 5 Response of 21 and its estimate

Magnitude (V)

0 10 20 30 40
Iterations (k)

Fig. 6 Response of z9f and its estimate

As shown in Figs.5 and 6, the states are accurately es-
timated.

5.3.2 ARDUINO target interface mode

In this mode of programming, the Arduino card be-
comes a target of the Simulink code compiled with the
tool “Run on target hardware”. The Arduino kit oper-
ates completely in an autonomous way. It can also be
managed online via the USB port of the PC (external
mode enable).

In this second phase of implementation, the added
noise is sinusoidal signals with variable frequencies
(between 14 Hz and 1k Hz, 2k Hz).

The reconstruction of the output signals is provided
by sending the desired data to the pulse-width modula-
tion (PWM) outputs. These PWM outputs are then con-
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nected to low pass filters (with R=4.2KQ and
C = 30 uF).

We present, in Figs.7 and 8, the real z1, z2 and its es-
timates 21, Z2, respectively.

0.5 . . . . .
—Zik

0 \/WWHWW I;,zu- ]

-0.5 t ]

Magnitude (V)
|
Wi

-3.5 : : : : :
0 10 20 30 40 50 60

Iterations (k)

Fig. 7 Response of 21 and its estimate

Magnitude (V)

_02 L L L L L
0 10 20 30 40 50 60

Iterations (k)

Fig. 8 Response of 22 and its estimate

As shown in Figs.7 and 8, the states are very accur-
ately estimated.

6 Conclusions

In this paper, a new design methodology of reduced-
order observers for Lipschitz nonlinear discrete-time sys-
tems is proposed. Once the necessary and sufficient condi-
tions for the existence of the unbiased reduced-order ob-
server are satisfied, and with reformulation of both the
Lipschitz condition and the Young's inequality, new LMI
conditions are given. Then, an extension to the H filter-
ing synthesis is provided in order to guarantee the
asymptotic stability of the estimation error in the pres-
ence of disturbances. Numerical examples are given to
show the effectiveness of the proposed design methodo-
logy.

In future work, we plan to generalize the proposed re-
duced-order filter to develop observer-based control laws

for nonlinear systems in the presence of uncertain para-
meters.
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