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Abstract:   This paper presents a state of the art machine learning-based approach for automation of a varied class of Internet of things
(IoT) analytics problems targeted on 1-dimensional (1-D) sensor data. As feature recommendation is a major bottleneck for general IoT-
based applications, this paper shows how this step can be successfully automated based on a Wide Learning architecture without sacrifi-
cing the decision-making accuracy, and thereby reducing the development time and the cost of hiring expensive resources  for specific
problems. Interpretation of meaningful features is another contribution of this research. Several data sets from different real-world ap-
plications are  considered  to  realize  the proof-of-concept. Results  show  that  the  interpretable  feature  recommendation  techniques are
quite effective for the problems at hand in terms of performance and drastic reduction in development time.
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1   Introduction

According to the Gartner report[1], there will be about

21 billion connected “Things” by 2020. This unpreceden-

ted level of connectivity mandates new ideas and innova-

tions encompassing several domains such as e-governance,

health  care,  transportation,  retail  and  utilities[2].  It  also

enables the development of cross-domain solutions[3–5].

Development  of  Internet  of  things  (IoT)  applications

requires domain knowledge, expertise in sensor signal pro-

cessing and machine learning, knowledge about platforms

and infrastructures,  grasp over programming and design.

This are traditionally known as the four stake holders of

IoT based applications:

1) Domain  expert:  who  understands  the  problem do-

main and can make sense of features of a model for caus-

ality analysis. An example is the mechanical engineer of a

production  plant  with  background  domain  as  machine

prognostics.

2)  Signal  processing  (SP)  expert:  who  can  suggest

suitable signal  processing  algorithms  (such  as  spectro-

gram based feature  derivation)  and their  algorithm level

tuning  parameters  (such  as  spectrum  type  and  window

overlap  form).  This  aids  in  feature  listing  for  the  next

modeling stage.

3)  Machine  learning  (ML)  expert:  who  can  perform

data  analysis,  select  apt  features  from  many  features,

design models for a ML task such as classification or re-

gression.

4) Coder  or  developer:  who  can  construct  a  deploy-

able solution  (to  be  used  by  the  end  users)  by  integrat-

ing  required  modules  based  on  inputs  shared  by  other

stakeholders.

The  typical  steps  of  the  work-flow  for  an  IoT  based

sensor data analytics task as pointed out in a survey[6] is

shown below:

1)  Domain  expert  explains  the  problem′s  goal  (per-

taining  to  the  use  case  and  application  area)  to  the  SP

and ML resource persons.

2) SP expert provides a list of algorithms that can be

used  as  features  (such  as  data  transforms  to  make  the

data easy to analyse) for the given problem and data cat-

egory.

3)  ML  expert  recommends  the  optimal  feature  set

based on analysis of the available dataset and their know-

ledge of solutions in similar problems and scenarios.

4) SP  expert  tunes  the  parameters  of  signal  pro-

cessing algorithms (such as window size, decimation for a

fast  Fourier  transform  algorithm),  and  the  ML  expert

tunes the (hyper) parameters to derive a solution model.

5)  Recommended  feature  set  is  presented  to  domain

expert for validation and verification,  to check if  extrac-

ted features and models are sound and meaningful in the

domain.

6)  If  current  features  and  models  are  unintelligible

(which  is  often  the  case),  then  Steps  2–5  are  repeated

with  a  change  in  strategy  by  incorporating  the  domain

expert′s feedback.

7)  If  current  model  and  features  are  acceptable  in
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terms  of  performance  and  soundness,  final  solution  with

finalized model is deployed by the developer or coding ex-

pert.

Now, the problem of developing such a system is that

each of the stake holders speaks their own language and

terms. Also, it is not possible for a single person to have

this varied knowledge for diversified use cases. Also, due

to  the  boom  in  IoT  and  data  analysis  space,  there  are

more problems to solve than available human resources to

solve them. As a consequence, there is a need for automa-

tion,  so  that  the time to market  and the cost  of  finding

and  hiring  human  resources  with  niche  skill  sets  can  be

reduced. This  paper  addresses  the  aforementioned  prob-

lems and presents a machine learning-inspired solution.

In the literature, there is a limited research effort to-

wards  automation  of  IoT  analytics[7].  An  effort[8] was

made to capture the expert knowledge of a sensor signal

processing  professional:  the  algorithm  which  an  expert

would  have  suggested  is  predicted  by  machine  and  its

corresponding code  is  obtained via  some open source  re-

sources.  However,  the  approach  was  still  manual  and

served as a better way for a developer to stitch together

well-known  algorithms  to  form a  workflow.  An  ontology

based approach[9] was taken for  automation of  IoT Ana-

lytics by modeling the physical world and the knowledge

associated with  it.  However,  scope  of  automation  of  fea-

ture engineering was not addressed there.

In  order  to  identify  the  scope  of  automation,  a

survey[6] was conducted to investigate the following three

points:  a)  the  superset  of  steps  that  are  followed in  IoT

analytics (refer to Fig. 1); b) the pain areas of an applica-

tion  developer  both  in  terms  of  technical  and  domain

knowledge; c) average effort in terms of coding time spent

in relevant sub tasks. The first step in a typical IoT data

analytics task is data collection from various sensors. This

can  be  done  by  a  data  aggregator  by  means  of  on-line

analysis,  or  off-line  analysis  (the  approach  discussed  in

this paper). Next comes the pre-processing step that deals

with  removing  noise  and  outliers,  fixing  missing  value

conditions  and  finally  taking  the  data  to  a  processable

format.  Subsequently,  data  transformations  are  carried

out on the instances of a dataset to derive basic level fea-

tures. Higher level feature extraction for a transform do-

main  and feature  selection  are  next  carried  out.  Finding

an appropriate machine learning-based model for the giv-

en  problem  by  trying  various  hypothesis  and  parameter

tuning is carried out next. Higher level inferences are op-

tionally  explored  by  applying  semantics  on  the  machine

learning models.  Finally,  visualization  helps  the  stake-

holders  to  analyse  results  with  ease.  The  survey  reveals

that the most time consuming step in an intelligent IoT

analytics-based application development is the feature se-

lection  step  where  a  suitable  representation  of  the  input

sensor signal  is  obtained  to  achieve  the  target  classifica-

tion task.  Moreover,  the  participants  of  the  survey  ex-

pressed  that  feature  engineering  requires  the  maximum

technical as well as domain-specific knowledge. Hence, in

automating  IoT  analytics[10],  we  can  have  a  significant

gain in solution time if  the feature selection step can be

automated.

Recent  advances  in  deep  learning  algorithms[11]

namely  variations  of  deep  multi-layer  perceptron  (MLP)

and  convolutional  neural  networks  (CNN)  could  have

been a choice for the purpose of automatic feature selec-

tion[11].  A study[12] was carried out regarding selection of

going deep  or  shallow  for  a  neural  network-based  ma-

chine  learning  task,  mainly  targeted  for  image  datasets.

But, in  the  case  of  IoT  analytics,  especially  in  the  pro-

gnostics domain,  there  is  a  requirement  of  feature  inter-

pretability and hence,  a  method like  CNN based  repres-

entation learning is not a good choice.  For images (2-di-

mensional  (2-D)  signal),  the  representation  layer  (auto-

matically  extracted  features)  of  a  Deep  Network  when

viewed, seems to make sense in terms of edges and gradi-

ents. But,  for  1-dimensional  (1-D)  sensor  signals,  no  ap-

parent  understanding  could  be  mapped  by  visualizing

that representation  layer.  This  paper  attempts  to  auto-

mate the two major steps, namely feature listing and re-

commendation of  features  by  retaining  interpretable  fea-

tures.  A Wide Learning[13] based architecture  is  followed

which consists of two major modules, namely feature gen-

eration  and  feature  selection.  In  the  feature  generation

module, all  the possible features which are so far proven

good  for  different  signal  analysis  tasks  are  generated  at

different  levels.  Features  generated  at  each  level  are

passed to the feature selection module to choose a subset

of  features  that  meets  expected  performance.  Later,  an

exhaustive search  is  done  for  a  limited  number  of  fea-

tures  which  are  recommended  by  the  feature  selection

module.

Issues addressed in this work are enlisted below:

1) It takes a huge time to come up with an IoT ana-

lytics solution, especially in the feature engineering stage.

This costs a significant research and development effort.

2) More  IoT  analytics  problems  exist  than  the  num-

ber  of  trained  analysts  and  domain  experts  to  tackle

them.

3)  Existing  automatic  methods  of  feature  engineering

(like transforms  or  deep  learning)  lose  feature  inter-

pretability,  which  in  the  prognostics  domain  is  usually

unacceptable.

The main contributions of this work are shown below:

1) A Wide Learning-based approach is taken to auto-

mate the feature engineering aspect of data analysis for 1-
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D data.

2) A comparison of predictive accuracy with the state

of the  art  (SoA)  on  standard  datasets  of  multiple  do-

mains is  provided  to  show  the  superiority  of  the  pro-

posed approach.

3) Experimental results show that the proposed meth-

od can produce significant gain in reducing projected hu-

man  effort,  without  sacrificing  the  solution′s  predictive

accuracy.

4) A selection of interpretable features and its useful-

ness in  the  domain  is  shown  through  a  real-world  prob-

lem.

Innovations pertaining to the work are highlighted be-

low:

1) A  Wide  Learning  approach-based  feature  recom-

mendation methodology  for  1-D signals  was  built  by  in-

vestigating ways  to  generalize  automation  of  feature  en-

gineering that can cater to several use cases and domain.

2)  A large number of  features found in the literature

of a domain were curated and a master list was compiled.

This  enabled  more  accurate  feature  selection  based  on

knowledge gathered from domain and application areas.

3) The design of feature interpretation module has en-

abled seamless description of features irrespective of spe-

cific data  windows  where  their  signatures  were  manifes-

ted.

The proposed approach is tested on different data sets

in  the  domain  of  health  care,  psychology  and  machine

prognostics. Five  different  case  studies  have  been  repor-

ted  in  this  paper  as  follows:  a)  classification  of  machine

bearing accelerometer data that is used in manufacturing

domain; b)  classification of  human activity  based on ac-

celerometer data  for  healthy  living  domain;  c)  classifica-

tion  of  coronary  related  disease  on  photoplethysmogram

(PPG)[14] dataset  for  healthcare;  d)  classification  of

phonocardiogram (PCG)[15] heart rate data that is used in

a healthcare  challenge;  e)  classification  of  human  emo-

tion based  on  photoplethysmogram  readings  for  psycho-

logy domain.

The rest of the paper is organized as follows. Section 2

presents the  method  of  generating  and  selection  of  fea-

tures  through  a  suitable  realization  of  a  Wide  Learning

architecture. Section  3  summarizes  the  real-world  data-

sets  that  were  used  to  evaluate  the  proposed  approach.

Experimental setup and results are also presented in this

section. Section  4  illustrates  the  usefulness  of  inter-

pretable features  with  an  example  while  Section  5  con-

cludes the paper.

2   Method description

The Wide Learning system as shown in Fig. 2 accepts

a set of annotated input signal data. The signal data un-

dergoes standard pre-processing steps  like  outlier  remov-

al  and  noise  cleaning.  Automation  of  the  pre-processing

step  is  kept  out  of  the  current  scope  of  work  due  it  its

huge  dependence  on  application  and  domain  demanding

years of research. Data is formatted into a standard mat-

rix format with corresponding labels. Next, data is parti-

tioned into Train, Eval (Dev) and Test in multiple folds

(usually five folds in splits of 60%, 20% and 20%, respect-

ively). The  system  is  programmed  to  automatically  de-

termine the number of folds depending on the number of

data  instances  available,  based  on  threshold  values  and

splitting logic.  The  partitioning  of  data  takes  place  fol-

lowing  Train-Eval-Test  principles[16] in  folds,  with  each

partition  retaining  data  characteristics.  This  is  achieved

by  clustering  the  data  and  assigning  equal  portions  (if

possible)  of  cluster  members  to  Train,  Eval,  Test  as  per

their percentage of total data splitting in folds. The ideal

number  of  clusters  were  determined  based  on  Silhouette

coefficient[17],  a  cluster  quality  metric.  Possessing  similar
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data  attributes  in  Train  is  important  as  unknown  data

signatures  in  Test  will  confuse  the  model,  resulting  in

random  predictions.  The  performance  (say  accuracy)  is

reported on the hidden Test set, while the rest is used for

feature recommendation. The Train data is passed to ex-

tract  the  features  at  various  levels  of  feature  extraction.

The  “Eval”  set  is  used  for  classifier-in  loop  evaluation

(wrapper method  of  feature  selection)  on  obtained  fea-

tures derived from the Train set. The classifiers used are

an ensemble  of  Random Forest  and linear  and Gaussian

kernels  for  support  vector  machine  (SVM)  with  time

bounded  parameter  tuning[18, 19].  The  intuition  is  that

even  using  under-tuned  models,  good  features  reveal

themselves.  The  general  principles[16] integrated  in  the

system to carry out a machine learning task are 1) if res-

ults on Train are not good, then it means a different ar-

chitecture  or  algorithm  type  needs  to  be  tried  out;  2)

next,  if  the results obtained on “Eval” set are not good,

this  usually  means  more  training  data  is  required  and

more effort should be spent in regularization of the mod-

el; 3) next, if results on Test data are not good that usu-

ally  means  that  more  data  representative  of  Test  data

needs to form a part of “Eval” data. The aforementioned

rules of thumb[20] were automated by assigning threshold

values to each stage of the operation. In future, an effort

will  be  made  to  bring  in  a  mathematical  model  of  the

overall process.

Basic  features  reported  in  literature  of  sensor  data

analytics can be mainly classified in three types: a) time

domain  features  (TD);  b)  fourier  transformation  based

features (STFT); c) discrete wavelet transformation based

features (DWT). So, at Level 1, basic features are extrac-

ted and passed on to feature selection module. DWT re-

quires input of a mother wavelet type1 as one of its para-

meters, but automated mother wavelet identification is a

challenging problem. The appropriate mother wavelet for

carrying out the wavelet transform is selected by compar-

ing the input signal with a library of mother wavelets in

terms of having maximum energy to entropy ratio. As the

purpose  of  a  feature  is  to  distinguish  between  two  or

more  groups,  so  an  alternative  distance  based  approach,

which  is  less  error-prone,  is  also  applied.  Here,  each

mother  wavelet′s  energy  to  entropy  ratio  is  ranked  and

the one that has maximum distance to the set of training

classes are added as a feature. In Level 2, spectral,  stat-

istical,  time  domain-based  and  peak-trough  features  are

extracted.  Spectral  features  used  include  centroid,  crest

factor, decrease, flatness, flux, kurtosis, roll-off, skewness,

slope and spread which are computed for each window of

mean  subtracted  signal.  Statistical  features  used  include

mean,  variance,  standard  deviation,  root  mean  square,

skewness, kurtosis. Peak-trough features used include av-

erage peak amplitude, average trough amplitude, average

peak-to-peak distance  and  average  trough-to-trough  dis-

tance. Level  3  features  includes  different  meaningful  ra-

tios and derivatives of the Level 2 features. Feature sub-

sets are selected by iteratively applying a combination of

two powerful feature selection techniques in the wrapper

approach of  feature  selection,  namely  mRMR[21] (minim-

um redundancy  and  maximum relevance)  and  MRMS[22]

(maximal  relevance  maximum  significance).  They  cover

different  aspects  of  feature  selection.  For  instance,

mRMR is classifier-independent whereas MRMS is effect-

ive in reducing real-valued noisy features which are likely

to occur  in  sensor  data.  Other  feature  selection  tech-

niques[23, 24] were  investigated,  but  this  combination  has

been  empirically  found  the  most  effective  for  1-D  signal

analysis. We briefly introduce mRMR and MRMS before

presenting our overall feature recommendation scheme in

details.

mRMR:  In  order  to  select  effective  features,  mRMR

optimizes an  objective  function,  either  mutual  informa-

tion  difference  (MID)  or  mutual  information  quotient

(MIQ),  by  minimizing  the  redundancy  and  maximizing

the  relevance  of  the  features.  MID  (additive)  and  MIQ

(multiplicative) are defined as follows:

MID = max(V −W )

MIQ = max
(

V

W

)
V

W

where  minimizes redundancy by computing F-statistics

and  maximizes  relevance  by  computing  correlation

between a pair of features.

MRMS: This  technique uses  fuzzy-rough set  selection

criteria to select relevant and non-redundant (significant)

features. The objective function is defined as follows:

J = Jrel + βJsig

Jrel

Jsig

β

where  computes relevance of a recommended feature

with  respect  to  a  class  label  and  computes  the

significance  of  a  pair  of  recommended  features  by

computing  their  correlation,  and  is  the  weight

parameter.

The system by design is open to add more feature se-

lectors as per need, as the top “k” (from the union of fea-

tures ranked by feature selectors) are taken to next step.

The  scope  “k”  is  kept  large  initially  to  include  good  as

well as moderate features.

x y

z z = x ∪ y

|z| = k

Let,  and  be the sets of features recommended by

mRMR and  MRMS,  respectively.  Then  the  final  recom-

mended  set  of  features  is ,  where ,  where

.

The  system  finds  two  feature  sets  of  cardinality  “k”

for a particular performance metric (such as one of accur-

acy,  sensitivity,  specificity):  a)  Fe1  –  that  produces  the

highest  performance in  any fold of  cross-validation.  This

means a feature having excellent performance in one fold

1Various  wavelet  family  listing: http://in.mathworks.com/help/

wavelet/gs/introduction-to-the-wavelet-families.html
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τ

2k − 1

and bad performance in rest will be included here. b) Fe2 –

that is most consistent and performs well across all folds.

This is  derived by taking the average performance value

of a feature across different folds. The above steps of fea-

ture selection is done hierarchically – if Layer 1 does not

produce  expected  results  set  by  a  user  defined  preset

threshold  or maximum possible goodness value of a se-

lected  metric  (say  1.0  on  a  scale  of  0  to  1  for  a  metric

such as accuracy), then Layer 2 (higher level features) is

invoked,  etc.  In this  case,  “c” is  a regularizer for “k” to

limit the exhaustive search, and is dependent proportion-

ately on the hardware capabilities of the experimentation

system. For the current system configuration described in

Section  3.3,  “c”  was  set  to  30  to  yield  results  in  a  few

hours for the given datasets. Post feature selection, an ex-

haustive search is done on the finalized “k” features from

“Fe1”  and  “Fe2”  to  find  the  ideal  feature  combination

(best  among  feature  subsets)  for  the  task.  It  has

been shown in the literature that without applying brute-

force, apt feature combination cannot be arrived with cer-

tainty.  This  selected  feature  recommendation  set  “f”  is

passed  to  a  machine  learning  model  that  can  be  any

standard  classifier  like  artificial  neural  network  (ANN),

SVM, random  forest.  Parameter  tuning  by  a  combina-

tion  of  grid  search  and  random  search  is  carried  out  to

derive results on the hidden Test set. The working prin-

ciple of the method is shown in Fig. 3. There is provision

to  add  manually  obtained  features  “m”  in  case  there  is

strong domain-based confidence behind them. This  addi-

tion can be done at two places:

z ∪m

|z ∪m| < c

1) At the time of the exhaustive search, so that “f” is

derived  by  ranking  ( )  features,  subject  to

.

f ∪m

2) At the time of final modeling, so that the model is

built on ( ) features. Addition at second case is not

recommended as weight should be given to data analysis

of earlier step, so that manually added “m” features can

compete fairly with automatically recommended “f” fea-

tures.

3   Experiments

3.1   Dataset

The experiments are performed on five one-dimension-

 

Fetch signal data (optionally meta-data)

Apply pre-processing steps like noise cleaning, anomaly removal

Partition dataset into Train, Eval and Test subsets based on clustering and data balancing techniques

Extract features from level n (initially n=1) are passed on to feature selection block

Select “k” features place based on various feature selection algorithms (FSA)

Features extracted from Train set are evaluated based on wrapper approach on Eval set

Increment “k” No

No

k > c
Yes

Yes

In
cr

em
en

t 
“n

”

Performance ≥ τ

Union of features of FSA to get final list “f”

Finding optimal feature set using exhaustive search

Recommended feature lists (best performance, consistent performance across folds) and manual features

Building parameter tuned machine learning model

Performance obtained on Test set and visualization of final features and model

Feature interpretation of final features by mapping to knowledge base

Final model

Fig. 3     Method of automated feature engineering for 1-D sensor signals
 

 804 International Journal of Automation and Computing 16(6), December 2019

 



al  (1-D)  sensor  signal  datasets  among  which  four  are

openly available  and one is  private,  the specification be-

ing tabulated in Table 1 and described as follows:

1)  D1.1  and  D1.2:  The  National  Aeronautics  and

Space Administration (NASA) Bearing2 data set contains 4

bearing data instances each having 984 records. The first

bearing  fails  after  the  700th  record  among the  total  984

recorded readings.  The  last  two  readings  are  not  con-

sidered due to the presence of missing values. So, we get

282 “bad bearing” (class 0) records as ground truth for a

class, while the remaining 700 of the first bearing and 982

values  each  from  the  rest  3  bearings  that  do  operate

without  failure  form  the  “good  bearing”  class  1.  To

handle data unbalancing and see its effects, we have used

two data-sets:  D1.1:  that  contains  the  full  dataset  in-

stances, D1.2: that comprise a randomly selected equally

numbered  small  subset  of  the  “good  bearing”  instances

along with all  the  “bad bearing” instances.  We have re-

stricted  ourselves  to  binary  classification  tasks  to  get

comparable  results.  State-of-art  (SoA)[25] for classifica-

tion  on  this  dataset,  uses  an  SVM  and  Markov

Model-based approach.

2) D2: The Mobifall3 data set is a popular fall  detec-

tion data-set created by volunteers aged 22–47 years. Al-

though  the  data-set  contains  various  levels  of  activities,

however the data-set was partitioned into “fall” (class 0)

and  “not  fall”  (class  1),  in  order  to  restrict  the  task  to

binary  classification.  The  state  of  the  art  work[8, 26]

achieved an accuracy of 0.976 19. It was based on an ad-

aptive  threshold-based  method  that  used  physics-based

filtering of sensor data.

3)  D3:  The  multiparameter  intelligent  monitoring  in

intensive  care  (MIMIC)[27] PPG-based  coronary  artery

disease (CAD) classification data set is prepared from the

waveform dataset of the MIMIC II4 dataset, after valida-

tion of patient records with ICD-9 codes of disease classi-

fication. Finally, CAD (class 0) and non-CAD or healthy

(class 1) ground-truth is derived. State of the art (SoA)[28]

for  this  work applied a 0.5–10 Hz filter  on the input sig-

nal  and  used  several  time  domain  features  to  build  a

SVM model.

4)  D4:  The  PhysioNet  2016  challenge5 dataset com-

prises  of  PCG  signals  with  the  task  of  abnormal  heart

sound  classification.  The  ground  truth  label  (normal  or

abnormal heart sound) of each record is manually annot-

ated  by  expert  doctors.  Raw  PCG  is  further  down

sampled  to  1 kHz  from  2 kHz, and  the  hidden  semi-

Markov model (HSMM)[29] algorithm is applied. The state

of  art  (SoA)  or  winner[30] for this  challenge  used  an  en-

semble  of  AdaBoost  and  CNN  for  classification.  There

was also a non-automated effort[31] from our team in this

challenge, where 5 different approaches were tried out to

see the efficacy. Among the alternative methods, using a

hierarchical  classification  approach  to  handle  the  noisy

signal separately,  proved  to  be  the  best  performing  ap-

proach.

5)  D5:  Emotion:  This  dataset  (used  to  classify  the

emotion into happy and sad) was generated by recording

the  fingertip  pulse  oximeter  data  of  33  healthy  subjects

(Female:  13  and  Male:  20)  with  an  average  age  of  27

years.  Pulse oximeter was used to detect and record the

PPG signal.  Standard  video  stimuli  was  shown  to  sub-

jects which itself served as ground-truth. The state of the

art  (SoA)[32] for  this  dataset  used  common  time  domain

and frequency  domain  heart  rate  variability  (HRV)  fea-

tures and applied SVM based classification to report ac-

curacy.

3.2   Experiments using PCA and SVM

Principal  component  analysis  (PCA)  is  a  statistical

procedure that  uses  an  orthogonal  transformation  to  de-

rive  principal  components  representative  of  the  features

under consideration.  This  has  two  outcomes:  1)  dimen-

sion of feature space can be reduced by selecting the most

prominent  principal  components;  2)  derived  features  is

supposed to  represent  the  feature  space  better.  Experi-

ments has been carried out with aforementioned datasets

2NASA Bearing set 3 at https://ti.arc.nasa.gov/tech/dash/pcoe/

prognostic-data-repository/publications/#bearing
3Mobifall: http://www.bmi.teicrete.gr/index.php/research/

mobiact
4MIMIC II waveform data at https://physionet.org/mimic2
5PhysioNet challenge at https://physionet.org/challenge/2016

 

Table 1    Description of data sets used for experiments

Dataset (D)
Total number of

instances
Class-0 number of

instances
Class-1 number of

instances
Number of samples Sampling rate (Hz)

Time window
size@(s)

D1.1: NASA all 3 932 282 3 650 20 480 20 000 0.5

D1.2: NASA subset 647 282 365 20 480 20 000 0.5

D2: Mobifall 258 132 126 230 50 1

D3: MIMIC CAD 99 56 43 15 000 125 12

D4: PhysioNet 3 153 665 2 488 10 612* 1 000 1

D5: Emotion 66 33 33 12 000 60 10

* The number of samples per data instance varied in the range of 10 612 to 71 332, hence, truncated for uniformity
@ Time window size is the recommended size as per SoA. It serves as the starting point when trying out various window sizes.
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and both linear and Gaussian kernels are used for SVM-

based  classification.  The  different  dimension  reduction

techniques used are singular value decomposition (SVD),

eigen  value  decomposition  (EIG)  and  alternating  least

squares (ALS). Various numbers of principal components

(in range 5 to 30) were tried to get the best performance,

and for the given dataset selecting the top 5–10 compon-

ents seemed to give the best results across datasets.

3.3   Experiments using deep learning

Experiments  have been carried out using Theano6 on

a  8-core  Intel  2.66 GHz  machine  having  NVIDIA  GTX

1080 GPU with CuDNN7 library support. MLP, CNN and

long short term memory (LSTM) were configured follow-

ing standard rules of thumb and principles to obtain res-

ults on the aforementioned datasets.  For hyper-paramet-

er  tuning[33] grid  search  and  random  search  were  tried

out.  Dropout[34] was  added  at  each  layer  with  varying

range of probabilities (0.1 to 0.3) to prevent model over-

fitting.  Variants  of  stochastic  gradient  descent  (SGD)[35]

with varying learning rate (0.1 to 0.001) was used as the

optimizer.  Some  other  optimizers  such  as  AdaGrad,

Adam, RMSProp were also tried, but SGD performed the

best in the current scenario. Categorical cross-entropy as

the objective function for calculating loss was applied for

model  fitting based on metric accuracy.  Different epochs

(5 to 50) have been tried to see how the weight and bias

update  rate  affects  performance.  Different  activation

functions like  rectified  linear  unit  (RELU)  and  its  vari-

ations, tanh, softmax, sigmoid, etc. has been tried out at

different layer levels to get an ideal architecture for clas-

sification  tasks  for  the  given  problems.  The  dataset  was

reshaped for feeding into CNN with different overlapping

window sizes. The initial CNN layer with an L1 regular-

izer was followed by a Max-pooling layer with pool length

2 and a Flatten layer to again reshape the feature vector

for passage to the next fully-connected NN layers. Simple

RNN (recurrent  neural  network)  as  well  as  LSTM (long

short term memory RNN) was run with varying overlap-

ping  sequence  lengths.  The  range  values  were  influenced

by domain expert′s knowledge for each dataset extracted

from the literature.

3.4   Results and analysis

Table  2 lists  the  obtained  result  for  a  dataset  along

with the corresponding effort for each of PCA (with SVM

as classifier),  MLP, CNN, LSTM, state-of-art  (SoA) and

proposed Wide method. It shows that PCA based meth-

ods (where features are projections and not interpretable)

are  outperformed  by  the  Wide  method.  Deep  learning

(DL)  approaches  were  applied  on  both  raw data  as  well

as  features  recommended  by  the  proposed  method.  It  is

seen  that  DL-based  techniques  fail  when  compared  to

SoA  as  well  as  the  proposed  Wide  Learning  method,

probably because of fewer data instances. The two major

problems with  a  DL-based  approach  for  the  given  prob-

lems were 1) It needs a lot of  data for training which is

often not  available  for  1-D sensor  signals.  Moreover,  the

data  availability  is  skewed  where  mostly  data  of  the

“good”  class  is  available,  with  trace  amounts  of  “bad”

6Theano v. 0.8.2, http://deeplearning.net/software/theano
7CuDNN library for NN, https://developer.nvidia.com/cudnn

 

Table 2    Comparison in terms of accuracy (PCA, MLP, CNN, LSTM, manual SoA, proposed Wide method)

Dataset (D) PCA MLP CNN LSTM$ MLP* CNN* LSTM* SoA Wide

D1.1. NASA prognostics 0.94 0.93 0.93 0.93 0.96 0.97 0.97 0.99 1.0

D1.2. NASA subset 0.52 0.5 0.5 0.5 0.55 0.56 0.56 0.99 1.0

D2. Mobifall 0.51 0.44 0.44 0.44 0.44 0.55 0.44 0.97 0.98

D3. MIMIC II CAD 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.85 0.878

D4. PhysioNet challenge 0.74 0.79 0.8 0.8 0.81 0.8 0.82 0.89W 0.84

D5. Emotion 0.5 0.5 0.5 0.6 0.7 0.7 0.72 0.9 0.91

Approximate effort in person days to
build a solution corresponding to each

dataset

D1.1 2 3 5 6 4 6 7 30 1

D1.2 2 3 5 8 4 6 9 30 1

D2 1 4 7 9 4.2 7.2 9 90 0.2

D3 2 4 7 10 4.5 7.5 10.5 60 0.5

D4 3 6 10 12 8 12 14 120 2

D5 1 3 4 4 5 6 7 60 0.3

Interpretable features No No No No Yes Yes Yes Yes Yes

$ Output of CNN layers are fed to LSTM;
* Performance measured on features extracted by Wide method; W = score of winner of D4 using an ensemble of ANNs; Score of our team for
dataset D4 using manually obtained features was 0.85.
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class (say healthy and failing machine parts); 2) There is

no  way  to  interpret  the  features  for  causal  analysis.  It

was observed that DL techniques classify all  the test in-

stances  into  one  class  that  can  be  found  by  calculating

the  ratio  between  classes  of Table  1 for  NASA  Bearing

dataset D1.1 and D1.2. The performance for the Mobifall

(D2) dataset is not at par in the case of DL that can be

attributed to  the  low number  of  input  vectors  for  train-

ing the deep models. For dataset D3, it was observed that

the deep-learning approach[36] failed to work on raw data

or Wide extracted features,  however the proposed meth-

od outperformed the state of art with a huge reduction of

time to  solution.  For  dataset  D4,  the  deep  learning  ap-

proach  worked  well  owing  to  the  large  number  of

samples.  But,  automated  feature  learning  was  unable  to

beat the proposed method. For dataset D5, due to a small

number  of  training  samples,  the  manual  and  proposed

method surpassed other methods. Another notable obser-

vation is  that,  in no instance,  has classification perform-

ance on  recommended  features  trained  on  a  deep  learn-

ing  model  fallen  in  comparison  with  totally  automated

feature learning. Hence, the proposed Wide Learning ap-

proach  was  found  to  be  effective  for  the  above  varied

cases with a huge reduction of  development time and at

par performance. It is to be noted that the person-day ef-

fort (8 working hours) estimate is based on careful monit-

oring and  logging  of  effort  of  moderately  proficient  per-

sons  for  the  task  at  hand.  Each  of  the  approaches  were

implemented by the same equally skilled persons.

The  reasons  why  the  proposed  Wide  approach  has

beaten state of the art methods in most cases are as fol-

lows:

1)  Usage  of  popular  features:  The  feature  database

used  for  feature  extraction  was  carefully  curated  over

months by studying the usual features used by research-

ers  for  different  problems  and  datasets  targeted  for  1-D

signals. At stage 1 of the task, all features including irrel-

evant ones are extracted, however usage of a union of fea-

ture selection methods will yield the best features at the

final stage for the given task.

2) Discovery  of  unknown  features:  The  features  ex-

tracted at stage 1 form a huge list, including features that

have never  been  tried  out  for  a  given  problem  and  do-

main in the literature. This new features and their deriv-

atives gave the edge over the state-of-art features used.

3) Combination of feature ranking methods: Instead of

relying  on  a  single  feature  ranking  method,  a  study was

conducted on various datasets  to investigate any generic

feature ranking method suitable for most 1-D signal ana-

lytics.  It  was  found  that  a  combination  of  mRMR  and

MRMS methods (used in the proposed approach) yielded

the same best features as reported in the state-of-art for a

number of given tasks.

4)  Exhaustive  search  on  features:  It  is  important  to

carry out exhaustive searches on features, as two moder-

ate features  in  combination  can  beat  a  single  good  fea-

ture. Hence,  instead  of  selecting  just  the  top  good  fea-

tures, a relatively time-consuming search on moderate-to-

good  features  were  carried  out,  so  that  the  best  feature

combination set  can be found.  This  exhaustive approach

has  been  missed  by  the  state-of-art  for  the  classification

tasks on the aforementioned datasets.

4   Feature interpretation

4.1   Feature interpretation module

Tables 3 and 4 show some of the sample feature sets

obtained  for  the  classification  task  in  dataset  D1.1

(NASA Bearing prognostics).  It can be seen that the re-

commended features differ based on the specified window

size. The window size plays a major role which is usually

supplied  by  the  domain  expert  (for  dataset  D1.1  ideal

window  size  is  1 s as  per  literature).  This  listing  of  fea-

tures along with ranges of values obtained for the feature

type aids  the  domain  experts  to  map  the  obtained  fea-

ture values  to  the  physical  world  and  the  problem  do-

main,  so  that  deeper  insights  can  be  gained.  Also  if  the

same  feature  is  recommended  irrespective  of  step  wise

variations of  window size,  then that  feature  can be  con-

sidered as  a robust  good feature for  the task.  In the ex-

ample below, standard deviation of STFT coefficients has

been found to be a robust feature.

 

Table 3    Recommended features for “D1.1”, window = 0.5 s

Number Feature description

1 STFT

Frequency: 1 851.18 Hz

Frequency: 1 853.18 Hz

Frequency: 1 153.11 Hz

Frequency: 1 837.18 Hz

Frequency: 1 845.18 Hz

2
Difference of standard deviation values of windowed

DWT coefficients

3 Standard deviation of STFT coefficients

4 DWT frequency: (harmonic) 14.49 Hz
 

 

Table 4    Recommended features for “D1.1”, window = 1 s

No. Feature description

1 STFT

Frequency: 1 613.58 Hz

Frequency: 1 829.59 Hz

Frequency: 1 830.59 Hz

Frequency: 1 837.59 Hz

2 Kurtosis of DWT coefficients

3 Standard deviation of DWT coefficients

4 Standard deviation of STFT coefficients

5 Zero crossing of DWT coefficients

6 DWT frequency: (harmonic) 14.37 Hz
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From the implementation perspective, any feature set

recommendation  framework  would  recommend  only  the

corresponding indices of the relevant features. Such a fea-

ture  identification  mechanism  is  sufficient  to  trace  back

the  recommended  features  from  the  generated  feature

pool.  However,  such  a  practice  does  not  leave  any room

for further refinement of the recommendation through in-

corporation  of  the  domain  expert′s  opinion.  Also,  when

dealing with  windowed  processing,  often  the  same  fea-

tures  of  different  windows  can  get  reported.  So  there

needs to  be  means  to  identify  features  in  different  win-

dows  and  compress  them  together  instead  of  multiple

window-wise  reporting.  This  is  true  in  cases  of  features

that are not dependent on time variation. To address this

issue, the proposed framework consists of a feature inter-

pretation module as shown in Fig. 4. This module accepts

the  recommended  feature  indices  as  input  and  returns

any granular information that can be obtained by analyz-

ing  its  step-by-step  genesis  process  across  windows  of

data  processing.  While  feature  values  were  derived  to

form an input-derived feature pool, a mapping table is it-

eratively  maintained  that  stores  the  details  of  the  steps

through which each indexed feature value is being gener-

ated.  The  steps  of  each  indexed  value  generation  would

typically  include  information  regarding  the  domain  of

transformation, transformation technique, location of the

feature value in the transformed vector,  and so on. This

is in contrast to a hard-coded repository of feature names

tagged to unique identifiers, so that new feature-extract-

ing modules can be added and the meta-data update hap-

pens at the time of component plug-in. A format for fea-

ture extraction algorithm entry in the database is  main-

tained,  that  includes  algorithm  description,  and  value

ranges which can aid in interpretation later. Another fea-

ture is that domain experts can add weights to those fea-

tures which seem to have a physical world connection, so

that  related  feature  space  can  be  explored  with  more

weightage. As an example, if domain experts tag spectral

features as relevant, more algorithm level parameter tun-

ing will be carried out on a variety of spectral features.

4.2   Physical interpretation example

Traditionally,  a  feature selection method is  a manual

effort  where  at  step  1,  domain  expert(s)  identifies  some

features  using their  domain expertise  and experience.  At

step 2, the domain expert plots them for various class la-

bels to conclude whether the features are relevant or not

for a  given  problem.  In  line  with  that,  the  NASA Bear-

ing dataset (D1.1) is selected here for interpretation ana-

lysis.  Similar  interpretations  were  also  found  in  other

data sets under consideration. The automated feature re-

commendation method predicted features at 14 Hz (DWT

feature) harmonic space of the fundamental frequencies of

the bearings rotating elements as reported below. There-

fore  the  recommended  features  can  be  mapped  to  the

physical world elements for further introspection and ana-

lysis by the in-loop domain expert. The bearing physics[37]

as per the literature suggests fundamental frequencies as:

1) Outer race frequency = 236.4 Hz

2) Inner race frequency = 296.9 Hz

3) Rolling element frequency = 279.8 Hz

4) Shaft frequency = 33.33 Hz

5) Bearing cage frequency = 14.7 Hz.

In  this  case,  it  can  be  predicted  that  bearing  fault

may  arise  because  of  all  possible  reasons  other  than  the

problem  in  shaft  frequency  (features  do  not  reveal  that

frequency as  a  differentiator),  whereas  bearing  cage  fre-

quency  seems  to  be  the  most  causally  related  to  failure.

Hence,  the  reasons  of  failure  can  be  suggested  to  the

manufacturer  by  physical  mapping  of  the  recommended

features  and tallying their  approximate values  for  future

bearing defect prevention.

5   Conclusions

This  paper  presents  a  novel  machine  learning-based

approach for efficient automation of IoT analytics. One of

the most time consuming and expertise-hungry methods,

namely, feature recommendation, has been automated by

using a Wide Learning technique.  The outcome of  inter-

pretable  features  is  another  significant  achievement  of

this  research.  Six  different  datasets  covering  five  real-

world problems have been used to evaluate the efficiency

of the approach. Experimental results show the effective-

ness  of  the  proposed  feature  recommendation  method  in

terms of both performance as well as drastic reduction in

time to develop a solution. The current focus of the work
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was for  1-D signals,  future  work  will  explore  similar  ap-

proaches for 2-D (image) and 3-dimensional (3-D) (video)

signal  processing.  Integration  with  knowledge-bases

(OWL based  sensor  and  domain  ontologies)  and  reason-

ing  approaches[38] for  improved  interpretation  is  planned

in future. In future, human-in-loop system for IoT applic-

ations is also planned so that sub steps for a given task in

which automation does not seem to perform well, can be

improved by involvement of human experts.
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