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Polytope to Analyze Root Indices of Robust Control Quality
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Abstract: The research deals with the methodology intended to root robust quality indices in the interval control system, the para-
meters of which are affinely included in the coefficients of a characteristic polynomial. To determine the root quality indices we propose
to depict on the root plane not all edges of the interval parametric polytope (as the edge theorem says), but its particular vertex-edge
route. In order to define this route we need to know the angle sequence at which the edge branches depart from any integrated pole on
the allocation area. It is revealed that the edge branches can integrate into the route both fully or partially due to intersection with oth-
er branches. The conditions which determine the intersection of one-face edge images have been proven. It is shown that the root quality
indices can be determined by its ends or by any other internal point depending on a type of edge branch. The conditions which allow de-
termining the edge branch type have been identified. On the basis of these studies we developed the algorithm intended to construct a
boundary vertex-edge route on the polytope with the interval parameters of the system. As an illustration of how the algorithm can be
implemented, we determined and introduced the root indices reflecting the robust quality of the system used to stabilize the position of
an underwater charging station for autonomous unmanned vehicles.
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1 Introduction

Major challenge in modern industrial production is the
development and design of high-quality automated con-
trol systems capable at operating when its parameters are
unstable and not determined. In the real control systems
the object parameters are often undetermined. It is con-
nected with measuring errors, equipment ageing, and oth-
er disturbances impacting the object characteristics. Like-
wise, there are some systems, parameters of which can
change in certain intervals. In both cases it is fair to ap-
ply the interval parameters approach to control systems
synthesis. The systems, encompassing the control objects
with interval parameters, are called interval control sys-
tem (ICS)[ 2. Such systems can be introduced with the
interval characteristic polynomials (ICP), the coefficients
of which include the interval parameters of a control ob-
ject. The character of how the interval parameters of ICS
integrate into the ICP coefficients identifies a type of
these coefficients uncertainty. There are four types of ICP
coefficients uncertainty(l-3l: interval, affine, polylinear and
polynomial.

The presence in ICS of non-stable parameters, which
vary within certain intervals, can lead to a dynamic prop-
erties change in a system and result in its instability. The
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first research studies devoted to solving problems related
to the analysis of ICS stability were performed by S.
Dezoir, L. Zadeh and S. Faedo. The fundamental out-
come in the field of ICS stability analysis with the focus
on ICP coefficients was achieved by V. Kharitonovl4 5.
Among the studies addressing the analysis of the robust
stability are worth mentioning follows: J. Tsypkin, I.
Vyshigorodsky, Yu. Neimark, B. Polyak, P. Shcherbakov,
Yu. Petrov, J. Ackermann, B. R. Barmish, J. Kogan, R.
Tempo, A. Packard, J. C. Doyle and others. In stu-
diesl6-2l], the evaluation of ICP stability is performed
within the frequency approach and probability approach.
The studies based on p-analysis are conducted in [22-25].
The studies based on Lyapunov functions are conducted
in [26-28].

It is clear that ICS must be stable and support manip-
ulated variables in allowable limits. Therefore, to date it
stands more for the analysis of the robust quality than
the analysis of the robust stability in ICS. In this field a
root approach is the most illustrative onel2938), when
based on the allocation areas of ICP roots we can determ-
ine the requested indices of the robust quality — the de-
gree of robust stability and the degree of robust oscilla-
tion. The simplest approach for it is the approach based
on the edge theorem with the concept on a base of ver-
tex-edge polynomials. A good development of this ap-
proach is performed in studiesB6-40) where ICS is intro-
duced with characteristic polynomials containing interval
coefficients. These studies resulted in the methods accord-
ing to which evaluation of the robust quality root indices
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requires the analysis of only those vertices of coefficients
polytope, which are depicted on the border of the alloca-
tion area of ICS poles.

It should be noted that the methods based on reduc-
tion of characteristic polynomial coefficients to an inter-
val form (by rules of the interval analysis) leads to a con-
servative solution in case of ICS with the real interval
parameters. Therefore, in order to increase the accuracy
of ICS quality analysis it is necessary to consider the real
interval physical parameters included in a certain way in-
to the characteristic polynomial coefficients. Let us con-
sider ICP, the coefficients of which integrate linearly into
the physical parameters:

D(s) = ) [T:]Ai(s) + B(s) (1)

i=1

where [T;] = [Ts; T;]. Such ICP are called polynomials
with affine coefficients uncertainty. Example on how the
ICP roots with affine coefficients uncertainty are
projected on the complex plane is shown in Fig. 1.

(b)

Fig.1 Image of a parametric polytope with affine uncertainty
of ICP coefficients. (a) Projections of a parametric polytope
vertex on a complex plane; (b) Projection of an inner point of a
parametric polytope edge on a complex plane.

As seen in Fig.1, the required indices of ICS robust
quality conform to the worst root indices when the inter-
val parameters in prescribed limits are changed. In this
case unlike the cases with the interval ICP coefficients
uncertainty can be defined not only by the polytope ver-
tices Pr (Fig.1(a)), but also by the internal points of its
edges (Fig.1(b)). However, to depict all edges is a very
complicated task. Considering the fact that the borders of
the allocation area for ICP roots are not the images of all
polytope edges Pr, but some of them, the interest is to
determine the vertices and edges Pr, comprising a bound-
ary vertex-edge route.

Hence, for ICS with affine ICP coefficients the task is

set to develop the algorithm able to determine the robust
stability and robust oscillability degree on the basis of
boundary vertex-edge route.

2 Projection of an ICS parametric
polytope on a root plane

ICP (1), whose coefficients include m interval para-
meters, form a rectangular  hyper-parallelepiped
Pr ={T,; ’L <T; <T;,i=1,m}, with 2™ vertices and
m2™ 1 edges. Let us define the vertices of Pr via V,
g =1,2™, where q is a number of vertices. Coordinates of
every point of P, edge in relation to a vertex Vg,
g =1,2™ can be determined with the following formula:

T = Tiq + AT, i=1m
(T, - T?) < AT, < (T - TY) (2)

where AT; is the increment of i-th interval parameter, T}
is its value in vertex V;. Based on introduced indices, we
define the edge Pr via R}. Each edge of Pr is reflected on
the complex root plane (Fig.2) on the basis of the equation

where DI(s) = Znil T{ - A;(s) + B(s) is the vertex char-
acteristic polynomial.

Fig. 2 Parametric polytope edges

If ICS with characteristic polynomial (3) has unity
feedback, then its open-loop transfer function can be
presented as

WIH(AT;, s) = Di(s) (4)

Whereupon the root locus theory, when AT; changes
within the interval (2) the roots (3) form one-parameter
interval root locus, the branches of which are called edge
branches (RSY), their starts and ends — a root node (Ug).
Herewith, the expressions are correct: ¢(RY) = RS},
o(Vg) = Us.

It is obvious that if two interval parameters T; and T}
are changed, then, from one vertex V; a rectangular face
Pr is formed, which can be depicted through G;j, and its
image as GS;; (Fig.3).
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T

Fig.3 Parametric polytope faces

When each ICS interval parameter is changed along
the edge of any boundary vertex, the polynomial roots
start moving along the edge branch, which departs from a
vertex image at a corresponding angle. Let us define this
angle as ©7. Based on the root locus theory, at increas-
ing of T; the angle O can be calculated with the formula

a_ ° n vz .

6] =180° — Zpol:l Opot + 225:1 O.c, at decreasing of
: a_ n vz

T;, we use the formula 07 = Zpol:l Opot + 226:1 Oz,

where {Opo; 11 O} is angles defined by the vectors com-

ing from U, corresponding to pol-th pole and to ze-th
zero of transfer function (4). It should be noted that the

value Zn Opor for all T; is equal, therefore to determ-
pol=1
ine the sequence of edge branches departure angles with
T; value, Zn Opor can be neglected. In case of in-
pol=1

creasing T;, we will get

O =180°+ > 0. (5)

ze=1

by decreasing T;, we get

o7 = Z O-e. (6)

ze=1

Depending on the values found for the departure angles
©f, there can be constructed the sequence of how T;
parameters are changed from boundary root node. The
example on roots departure at changing parameters T,
i=1,2,3 from the vertex V; is shown in Fig.4.

Due to the fact that the node U, will be boundary
node GUy, it is needed that the root motion vectors with
minimum O} ? and maximum ©),? departure angles will
form the boundary angle, lying in a range [0°, 180°]. In-
troduce this statement on the basis of edge branches de-
parture angles that have been calculated from a positive
semiaxis

’@Xﬂ —6Y1| < 180°. (7)

@ Springer

Fig.4 Root motion direction at changing parameters from
vertex of Pr

In so doing, a condition (7) allows defining the vertex
Pr, the image of which belongs to an allocation area bor-
der S, of a complex root.

3 Probability analysis on edge branches
intersection belonging to one face

Suppose the prototypes RS; m RS; are the edges of
one face. Consider the angles RS; and RS; departing from
the root nodes of one boundary edge branch as GRSy. If
the sequence of these departure angles at the ends of the
edge branch is of the same value, then, RS{ and RS} will
not intersect (Fig.5). If for all faces of Pr with the com-
mon vertex, the same condition is fulfilled, then, the bor-
ders of the allocation area of a complex root are determ-
ined by non-intersected edge images of Pr.

Re

Fig.5 A case of non-intersecting edge branches along 77 and T»

If at the ends of the boundary edge branch the se-
quence of departure angles RS} and RS is not kept (Fig. 6),
then, RS{ and RS} are not intersected.

In this case the border of the allocation area of a com-
plex root will consist of edge branches parts, which will
be determined by the intersection points (Fig. 7).

Im

Fig.6 A case of intersecting edge branches along T} and T3
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Im

Re

Fig. 7 Image of a parametric polytope when edge branches
intersect

Let us define the conditions of edge branches intersec-
tion. Write down the equation reflecting face plane G;;:

TiAi(s) + Ty A;(s) + > _ TR Ax(s) + B(s) =0.  (8)

If in (8) we pose s =s, =a+jB, r € 1,n and derive
real and imaginary components, we will get the system of
two linear equations, which connects s, with two wvari-
ables T; and T}

T;ReA;(a, B) + TjReA;(a, B)+
ZTgAk(s) + B(s)

k
TZIIIlAz (a, ﬂ) + TjImAj (O[, ,B)+

Re =0

Im =0.

Z T Ak(s) + B(s)

k

Solving the system (9), two cases can be obtained:

1) The system has the single solution T; =717,
T; =T;. Then, ¢ '(s;) = P*, P* = (T;", T}) and, con-
sequently, the point P* € G7..

2) The equations are dependent and differ with a con-
stant multiplier. In this case on the plane G;j, there is a
straight line h (¢ '(s-) = h), defined by any equation
from the system (9).

Let us determine the composition of border area S, of
a complex root allocation, if ¢™'(S.) = Gij. Tt is clear
that the coordinates P* is the single possible solution (9),
then, RS{ is the single branch coming through s,. In this
case the borders S, consist of non-intersected edge im-
ages G;j;. If a prototype of root s, is the straight line A,
which is in the edge G;; marks the interval Pi P (points
Py and P> belong to the edges G;j), then, through s, (we
call it the intersection node U™) many root locus branches
go along T; and 7T}, which lie between two intersected
edge branches in s,. In this case the borders S, will con-
sist of intersected edge images G;;.

It is obvious that the required condition for the inter-
section node U™ € S, is the straight line h, at least in one
from the planes Pr, which have a common vertex. In or-
der to find the equation linear relationship (9), testifying

about the straight line h in the parameters’ space T; and
T, and its reflection in U*(a, jB), it is needed to verify
the equation.

ReA; (o, 8) _ Red; (o, 8) _
ImA; (o, 8) ~ ImA; (o, )

> T Ak(a, B) + B(a,ﬁ)]

k

Im

> T Ax(a, B) + B(e, 5)]

k
from (10) we obtain the following equation system:
Redi (a, B) ImA; (a, f) — ReA; (e, 5) ImA; (e, ) = 0

ReA; (a, 8)Im | > T¢Ax(a, B) + B(a, B)

k

ImA; (o, B) Re

> T Ak(e, B) + B(e, 5)] =0.
' (1)

If the system (11) does not have a solution when
[ # 0 for all interval parameters combinations, then, in
S, there is no U* and the borders of S, consist of non-in-
tersected edge branches.

Suppose A; (s) = ZZ:O awis”, Aj(s) = ZZC:O ac;s”.
It has been defined if the degree z and ! of polynomials
A; (s) and Aj (s) at interval parameters T; and T} are not
higher than the second order, then, the analysis geared at
the possibilities for edge branches intersection RS} and
RS does not require to solve the system (11), rather to
check the condition fulfillment, which has been pointed
out within the following statements.

Statement 1. If A4; (s) and A; (s) are the first order,
then, there is no edge images intersection for face G .

Proof. The edge images intersections for face G;; are
possible, if (10) are dependent. Based on Moivre formula,
we write down the first equation (10) in trigonometric
form

z l
Z awils|” cos(wep) Zacj|s|ccos(c<p)
w=0 __c=0

z - 1 .
Z awils|” sin(wep) Zacj|s\csin(c<p)
w=0 c=0
The equation from this equality is
z 1
Z awils|” cos(we) Z acjls|®sin(cp) =
w=0 c=0
z l
Z awils|” sin(we) Z ac;|s|® cos(ep).
w=0 c=0

On the base of which the other equation can be made

@ Springer



832 International Journal of Automation and Computing 16(6), December 2019

z,l

Z awiaeils|“Tesin ((c —w) @) =0, w #c.  (12)

w=0,c=0

Suppose z = 1; | =1, then ag;a;|s| sin(¢) — aisa0; %
|s|* sin(¢) = 0. Thus, sin(p) # 0, then, in solving this
equation, we will obtain ap;a1; = a1:a0;. The result says
that when T; and Tj are changed, the edge branches RS
and RS;Z depart from the vertex image at the same angle
and coincide with each other. O

Statement 2. If A;(s) and A; (s) are the second or-
der, then, there is no edge images intersections for face
Gij in case when the inequations are fulfilled for all pairs
of the interval parameters as T; and Tj

(aria2j — aziar;)(aviarj — ariao;) > (aoiaz; — aziao;)’
aiiaz; — azia; <0

4(a0ia1j — auaoj)(aliagj — a2ialj) > 0.
(13)

Proof. Suppose z = 2; [ = 2. Then, based on (12) let
us write down

aoiarj|s| sin(@) — ariaos|s| sin(e) + aosaz;|s|? sin(2p)—

aziao;|s|? sin(2p) +aiiaz;|s|® sin(p) —aziar;|s|® sin(p) =0.

After the equation rearrangement, we obtain sin(¢)x
(aoia1; — ariao; + a1:az2;|s|” — aziar;]s|”) + 2sin(p) cos(p)x
(avsag;|s|' — aziaos|s|") = 0.

The solution |s| (see the equation at the bottom) for
this equation will be real and positive.

If the following conditions are fulfilled.

1) ai;a2; — azia1; > 0.

2) 4dcos®(p)(aoiaz; — azian;)® — 4(aviar; — aisaof) ¥

(a1:a2; — aziaqj) >0, consequently, cos? (o) >

(aviar; — ariaoj)(ariaz; — aziay;)
(a0iaz; — asiao;)’

(aviarj — arian;)(ariaz; — aziauy)
(agias; — asiao; )’

condition (amalj —auao]')(aliagj —a2~;a1j) <

cos?(p) < 1,

. Thus,

then, < 1. Hence, the

second
(aoiaz; — azian;)>
3) 2cos(p)(aziao; — aoiazj)—

\/4cos2(g0)(a0ia2j — aziao;)” — 4(aviar; — ariao;)(ariaz;)x
v/ —az2a1;) > 0, hence, after the rearrangement it follows
that 2c0s%(¢) (aoiag; — aziao;) > (aoia1; — a1iao;) X
(a1:a2; — azia1;j).

(avia1; — ariao;)(ariaz; — aziay)

Then, cos?(ip) >

2(apiaz; — a2ia0j)2 ’

(apia1; — a1sa0;)(aria2; — a2:a1;5)

3 < 1. Inso do-
2(aoiaz; — aziao;)

and, hence,

ing, the third condition is (ag;a1; —a1:a0;)(a1ia2; —aziai;) <

2(&010,2]' — a2ian)2~
4) 2 cos(p)(aziao; — aviaz;)+

\/46082(30)(0!0@0,2]' - agiaoj)Q - 4(a0ia1j - auaoj)(auazj - agialj)
>0

Then, the fourth condition is 4(ao;a1; — a1:a0;)(a1ia2;—
agialj) < 0. O

Statement 2 leads to two conclusions.

Conclusion 1. If z =1, [ = 2, then, there is no edge
images intersections in face G;; in case when the inequa-
tions are fulfilled for all pairs of the interval parameters
as T; and Tj

ariazi(aoiar; — aiiao;) > (aoiaz;)’
4a1ia2j(aoia1j — aliaoj) Z 0. (14)

Conclusion 2. If z =2, [ =1, then, there is no edge
images intersections in face GG;; in case when the inequal-
ities are fulfilled for all pairs of the interval parameters as
Ti and Tj

aziarj(aiao; — aoiaiy) > (aziao;)’
4a2¢a1j(a1iaoj — a0¢a1j) Z 0. (15)

Consequently, the methodology on the possibility ana-
lysis geared at edge images intersection for face G;; con-
sists of the following stages.

1) Write down ICP as (1).

2) If the degree of all polynomials at interval paramet-
ers is not higher than the second order, then, it is neces-
sary to check if the conditions (13)—(15) are properly ful-
filled.

3) If the conditions (13)—(15) are not fulfilled, then,
there is edge images intersections for face Gj;.

4) If among polynomials at interval parameters, there
are polynomials of the third order and higher, then, it is
necessary to choose an optional vertex V;, ¢ € 1,2™ and
to solve the equation system for all faces concurrent in it

(11).
4 Analysis of edge branches types

If the edge branch point, which is the nearest one to
an imaginary axis, is one of the edge ends as shown in
Fig.8(a), then, this edge branch can be classified as the
first type. If the nearest to an imaginary axis is one of the
inner roots of the edge branch, it is referred to the second
type (Fig.8(b)). The types of boundary edge branches
are important to know when defining the root quality in-
dices. For example, if the branch is of the first type, then,
in order to define the minimal degree of stability and the
maximum degree of oscillability, there is no need to build
this edge branch, but it is enough to define the roots at
the edge ends.

2 cos(p)(azian; — aoiaz;) £ \/ 40082(90)(a0ia2j — a2¢a0j)274(a()ia1j — a1;a05)(a1:a2; — aziai;)

|s| =

@ Springer
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(a) Edge branch of the first type (b) Edge branch of the second type
Fig. 8 Edge branches of parametric polytope

Condition 1. If polynomials A;(s) at interval para-
meters T; are the polynomials of the first degree or of
even and odd degree s, as well as a product of two poly-
nomials, then, the edge branch RS? is the branch of the
first type. For other polynomials A;(s), the following con-
dition is valid.

Condition 2. If the condition is fulfilled as

Qarg((T: — T:)A«(iB)) _ |sin(2arg((T: — Ts)A:(i8)))

B 2B

(16)

then, the edge branch RS} can be the first-type one.
Consequently, when these conditions are used, we can

define the type for all edge branches arriving into the
boundary route.

5 Methodology used to determine the
root indices of ICS robust quality

Considered research resulted in the methodology,
based on constructing a vertex-edge route, applicable to
determine the root indices of ICS robust quality. The
methodology includes the following stages:

1) Deriving an ICP (1).

2) Defining the coordinates of polytope Pr vertices.

3) Calculating a polynomial complex root U, for the
arbitrary V;, g € 1,2™.

4) Finding m angles ©f, i € 1I,m for U, based on (5)
and (6).

5) Verification of inhering U, to the border S, based
on (7). If at least one condition (7) is not fulfilled, it
should be chosen the other vertex Pr and repeat the at-
tempt, points from 3) to 5) above.

6) For the value found GU, the consequence of depar-
ture angles based on the interval parameters T; for edge
branches should be composed.

7) Based on the consequence ©f, i € 1,m the direct
edge route can be built, which will depart from GU, and
include 2m of edges.

8) Defining faces G;j, edge images RS}, which can in-
tersect.

9) If two consequent edges R] and R] of the edge
route are the edges of face G;; and their images can inter-
sect, then, two opposite edges of this face should be ad-
ded to the direct edge route.

10) If while constructing the route we get repeated
edges, they should be united.

11) Defining the type of edge branches entering the
constructed edge route.

12) If the edge branch RS} is referred to the first
type, then, it is deleted from the edge route. If the edge
branches of the first type are connected consequently,
then, in the route only vertices connecting them are left.

13) Introducing a boundary vertex-edge route to the
root plane and defining the root indices of ICS robust
quality (a degree of robust oscillability and stability) ac-
cording to allocation areas of ICP roots.

6 Numerical illustration

Let us consider a system responsible for automated
position stabilization in a charging station to be merged
with a tether for autonomous unmanned underwater
vehicles. The structural scheme is described in Fig.9.

® el CHXs Fy

Js s
F, *
1
D
Keng
— T, s+l kamp Wy |=— Kk, |=

Fig.9 System structural diagram

In Fig.9, keng is the voltage transfer coefficient of an
engine; kqmp is transfer coefficient of an amplifying

device; C:% is tether hardness coefficient, C; = 10° N

is specific tether hardness coefficient; x :% is the relat-

ive loss coefficient for tether elasticity, x1 = 10" N -s is

specific coefficient of tether elasticity loss; r = 0.1 m is
hoist drum radius; k1 = 1—transfer coefficient of PI-con-
troller, k2 =0.01 is time constant for PI-controller,
m = [50; 500] kg is charging station mass and underwa-
ter vehicle 1 =1[50; 100 m is tether length;
k = kamp * keng - kv =[5; 15] is transfer coefficient of elec-
tric drive.

mass;

As a result of structural transformations we obtain the
interval characteristic polynomial:

D(s) = [da]s” + [ds] - 8 + [da] - " + [] - s + [do]  (17)

where [do] = [m] Cyo [k] k17?; [di] = (Cyo(J + [m]r?(1 + ko
(kD)) +xyo[mlr*kak);  [da] = (TnCya(r*[m] + J) + xyo (J+
[m]r? (1 + k2k)))slds] = (J[1][m] + Tmxyo (r*[m] + J);[da] =
J[[m] T

The interval parameters [m], [I], [k] are linearly in-
cluded into ICP coefficients (17) (set the affine coeffi-
cients uncertainty) and are formed interval parametric
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polytope Pr. The polytope Pr possesses 8 vertices:
Vilm Lk),  Va(my, L k),  Va(m, 1K),  Va(m, L k),
Vs(m, 1, k), Ve(m, 1, k), Vz(m, 1, k),Vs(m, l, k). Then,
ICP (1) with the affine coefficients uncertainty looks as

1

[T1] - Ax(s) + T - A2(s) + [T5] - As(s) + B(s) =0 (18)
where [Th] = [I}; [T2] = [m]; [T3] = [k]; Ai(s) = Js*(Tns+
1); Aa(s) = Js((Tms +1)(x15+ C1));  As(s) = r*((x1s+

C1)(k2s +k1)); B(s) =rs((x15+ C1)(Tms +1)). Tt is
necessary to determine the vertices and edges of the
polytope Pr, which will help to define the root indices of
the robust quality in a system able to stabilize a position
of a charging station to be merged.

According to the algorithm, the polynomial roots in
the first vertex have been defined in (18) [-10; —31.3; —6.3
— j4.88; —6.3 + j4.88], and the roots of polynomial A;(s)
as well: [0; 0; 0; —10], A2(s): [0; 0; —10], As(s): [-100; —10].
Further, for the image of the first vertex U; = —6.3+
j4.88 based on (5) and (6) the departure angles of the
edge branches have been calculated with the following in-
terval parameters: @¥11 = 146.34°, 9}/21 = 93.94°, 97‘{31 =
82°. As long as the condition (7) is fulfilled, then, U; is a
boundary vertex and belongs to the edge route. By vir-
tue of the fact that @};1 < 9¥21 < 9}/11, then, in the edge
route the interval parameters depart from the vertex V)
T35 =T - T — T —
T — Th. This consequence accords with the direct edge

in the following consequence:

route as shown in Fig. 10.

I:t it

T} T
A R
Fig. 10 Direct edge route

Let us verify if boundary edge route has intersected
edge branches. In the vertex Vi three faces G3s2, G21, G31
meet, where the indices comply with the indices of the in-
terval parameters. Given that the polynomials A;(s),
Az(s) have a higher than the second degree, then, for
faces G's2, G21, G31 three equation systems can be com-
posed in (11). Having solved these equations, we obtain
two roots: si,2 = —5.55 £ j8.96, corresponding to the co-
ordinates of a possible intersection for the edge images of
faces G32, G21, G31. In so doing, boundary edge route will
be viewed as shown in Fig.11.

As a final stage let us define the type of edge branches
in the edge route to be constructed. For the polynomial

@ Springer

Fig. 11  Edge route

Ai(s) the condition 1 is fulfilled, hence, the branches
along 77 have the first type. However, this condition does
not cover the polynomials A2(s) and As(s). Therefore, in
order to define a branch type along 15 and T3 we need to

verify the condition (16) and we will get
Odar <(i—i>A (ﬁ)) sin(2ar ((i——)A ﬂ)
g T 2 g T 2(] ‘

o8 2p ‘

|
darg ((T5 — Ts) As(jB)) . sin(2arg((T3 — T3)A3(jB8))

op 26
shows that the edge branches along 7> and 73 are the

)

second type ones. Consequently, the vertex-edge route
has the view as seen in Fig.12.

Vy T v,

Fig. 12 Boundary vertex-edge route

With the aim of defining the root quality indices we
put the route on the root plane (Fig.13). As seen in
Fig. 13, the degree of the robust system stability respons-
ible for the stabilization of the charging station at mer-
ging is a = 1.62, the degree of its robust oscillability is p =
8.13; it corresponds to a sector with the angle ¢ = £82°.
These quality indices are defined by a vertex image.
Vo(T1; To; Ts). It should be noted that sufficiently high
oscillability in a merged station position stabilization can
be explained by tether elasticity properties in combina-
tion with a low coefficient of damping effect.

Fig. 14 presents transient processes in two vertices of a
boundary route, one of them corresponds to a minimum
oscillability degree of the system stability (V6), the
second one - to maximal value of oscillability degree (V4).
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Fig. 14 Vertexes and edges in boundary route

As seen in Fig. 14, the minimum constant time is tmax =
0.58 (in Vi(T1; To; T3)), and the maximum constant time
is tmax = 1.98 (in V{s(ﬁ; Ty; T3)) The latter index corres-
ponds to the found degree of the robust stability « that
proves the correctness in evaluation of the system qual-
ity root indices.

7 Discussions

The research gives the ground to conclude that when
using the interval and affine uncertainty of ICP, the more
accurate root allocation area is obtained with affine un-
certainty. It is located inside the area constructed after
reducing ICP coefficients to the interval view. It states
that in transmitting from the interval parameters to-
wards the interval coefficients as ICP, the control quality
indices can be significantly decreased. Let us reaffirm this
conclusion with the comparison of the robust quality ana-
lysis accuracy of the system studied above, when ICP has
the affine uncertainty of the coefficients. For the second
case, in Fig.15, we introduced the polynomial vertices of
ICP coefficients obtained through construction of the ver-
tex route.

The figure illustrates that the system, which is relat-
ively stable at affine uncertainty of ICP coefficients, and
is responsible for charging station position stabilization in
merging process, turned out to be non-stable after the
coefficients have been reduced to the interval view.

Fig. 15 Vertexes of boundary route

8 Conclusions

For ICS with affine uncertainty of ICP coefficients the
following properties of boundary vertex-edge route of a
parametric polynomial have been set:

1) The route can be composed of non-intersected edge
branches RS} in the ordering corresponding to the depar-
ture angles sequence RS from any boundary pole;

2) The route can include intersecting edge branches
RS} and RS}, which can be defined via the algebraic con-
ditions in the view of the proven statements;

3) The first type edge branches can be deleted from
the route, having left only their boundary root nodes.

On the basis of the properties presented above, we de-
veloped the algorithm enabling to construct a boundary
vertex-edge polytope with the interval system paramet-
ers. Its projection to the root plane defines the root ro-
bust quality indices of ICS.

It is shown that in transmitting from the interval sys-
tem parameters towards the interval ICP coefficients the
root allocation area of ICP is significantly enlarged. That
results in reducing the robust quality indices of the sys-
tem.
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