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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting social, communicative, and repetitive behavi-
or. The phenotypic heterogeneity of ASD makes timely and accurate diagnosis challenging, requiring highly trained clinical practition-
ers. The development of automated approaches to ASD classification, based on integrated psychophysiological measures, may one day
help expedite the diagnostic process. This paper provides a novel contribution for classifing ASD using both thermographic and EEG
data. The methodology used in this study extracts a variety of feature sets and evaluates the possibility of using several learning models.
Mean, standard deviation, and entropy values of the EEG signals and mean temperature values of regions of interest (ROIs) in facial
thermographic images were extracted as features. Feature selection is performed to filter less informative features based on correlation.
The classification process utilizes Naive Bayes, random forest, logistic regression, and multi-layer perceptron algorithms. The integra-
tion of EEG and thermographic features have achieved an accuracy of 94% with both logistic regression and multi-layer perceptron clas-
sifiers. The results have shown that the classification accuracies of most of the learning models have increased after integrating facial

thermographic data with EEG.

Keywords: Autism spectrum disorder, facial thermography, EEG signal processing, machine learning, decision support system,

ASDGenus.

1 Introduction

Autism spectrum disorder (ASD) is a complex
neurodevelopmental condition characterized by deficits in
social, communicative, and repetitive behaviorlll. ASD is
a heterogeneous condition wherein the symptoms and
their severity are unique to each individual. Currently,
there are no medical tests for ASD.

Studies reveal that early diagnosis has a positive im-
pact on the child's response to treatment(? 3l. However,
ASD symptomatology makes early detection complex, re-
quiring a comprehensive evaluation of the child, includ-
ing input from multi-disciplinary experts. This process
can take a considerable amount of time, which results in
a delayed intervention. In order to overcome these short-
comings, several behavior-independent, data-driven classi-
fication approaches have been proposed over the years
which utilize machine learning in the statistical analysis
of physiological measures such as electroencephalogram
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(EEG), and functional magnetic resonance imaging
(fMRI) for the classification of ASDM. Such approaches
have the potential to reduce the time and cost of ASD
diagnosis and serve as a support system in the diagnostic
process.

Neuroimaging techniques such as EEG and fMRI rely
heavily on brain dynamics. This study proposes a novel
approach by integrating physiological measures, facial
thermographic data with EEG, to improve the classifica-
tion of ASD as an extension of the tool ASDGenus that
we developed in our previous study!.

Although several ASD classification approaches based
on EEG data have been proposed in related studies, none
of them has attempted to incorporate thermographic
data. Moreover, literature provides strong evidence for
the existence of thermoregulatory abnormalities in ASD
and the influence of temperature on EEG activity. Thus,
the primary motivation for the integration of thermo-
graphic data with EEG is based on evidence of thermore-
gulatory abnormalities in ASDI®l including anecdotal re-
ports of the “fever effect”, in which children with ASD
sometimes show improvements in social and communicat-
ive abilities during fever(” 8. Such anecdotal reports have
received relatively little attention from researchers to
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date but nevertheless warrant attention, given that tem-
perature impacts many parameters of neuronal function-
ingl¥, including EEG activity[l% 11, Interestingly, two pre-
vious studies employing infrared thermography of the face
found that temperature change in specific facial regions
correlated with social-cognitive abilities in non-ASD
samples(!2 13, Thus, infrared thermography during social
interaction may enhance the feature sets used for the
classification of ASD.

Accordingly, the data had to be processed in multiple
phases before reaching the classification phase as we used
raw EEG signals and facial thermography. Multiple tech-
niques were employed to remove the artifacts from the
raw EEG signal during the pre-processing phase. In the
feature extraction phase, we calculated mean and stand-
ard deviation which are the statistical attributes of a sig-
nal and the entropy valuesll. For the facial thermo-
graphy, after identifying regions of interest (ROIs) of the
face to represent the skin surface temperature, the mean
temperature of each ROI was calculated. Finally, the ex-
tracted features are used to derive the feature sets for the
classification. The proposed model can be used as a de-
cision support system (DSS) for ASD identification.

2 Background
2.1 Theoretical overview

2.1.1 ASD diagnosis in practice

Current clinical diagnostic criteria require the pres-
ence or absence of specific behaviors in the child. This
analysis involves direct observation of the child and the
collection of information from the parents. ASD diagnos-
is is a multi-step process. In most cases, parents and/or
teachers are the ones who initially raise concerns about a
child's social development. These children are then
screened during well-baby check-ups to ensure that there
are no delays in their development. If screening reveals
delays, then children undergo a comprehensive evalu-
ation by specialists. Instruments such as Autism Dia-
gnostic Observation Schedule, 2nd edition (ADOS-2) and
the Autism Diagnostic Interview-Revised (ADI-R) are
used to assess the severity of ASDI4 15 Such compre-
hensive evaluations can take a prolonged period of time.
Additional factors such as disparities in accurate diagnos-
is among minority groups and overlapping symptomato-
logy of ASD and ADHD can make timely diagnosis even
more challengingl9l. Thus, there is a need for a novel ap-
proach that can drive costs down and expedite the dia-
gnostic process for children and families impacted by
ASD.
2.1.2 Importance of bio-health informatics

Healthcare challenges are becoming more diverse and
complex, making them almost impossible to be solved by
medical practitioners alone. However, unlike in the past
decades, we have access to an enormous amount of med-
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ical data and modern technology. Bio-health informatics
is an interdisciplinary field that utilizes this advantage by
borrowing expert knowledge from the fields of biology,
mathematics and computer science with the goal of ana-
lyzing and understanding biological data to address critic-
al healthcare problems(!7l. Research in bio-health inform-
atics involves, but is not limited to, mathematical model-
ing and simulation, developing tools to support data ana-
lysis, and designing decision support systems to assist
clinical diagnosis(!8l. This field of research has made im-
pactful contributions to neurodevelopmental disorder dia-
gnosis, exhibiting a promising future.

2.1.3 Psychophysiological measures

EEG is a technique of recording the spontaneous elec-
trical activity of the brain during a given time period,
measuring the voltage fluctuation of the ionic current
within the neurons using multiple electrodes placed on
the scalpl4. Abnormalities in these recordings can be ob-
served and used to diagnose epilepsy, depth of anesthesia,
coma, encephalopathies, and brain death. Before magnet-
ic resonance imaging (MRI) and computed tomography
(CT), EEG was employed as a first-line diagnosis tech-
nique for tumors, strokes, and other brain disorders/19.
Significantly lower cost hardware, availability, safety, and
non-invasiveness are some of the advantages of EEG com-
pared to the other techniques that are used to study the
brain. At the same time, poor signal-to-noise ratio, low
spatial resolution, and the execution time for a test are
considered to be the main disadvantages/20].

Poor signal-to-noise ratio is one of the major chal-
lenges related to EEG data processing, resulting in the
need for a considerable amount of experience to clinically
interpret the EEG readings. Raw EEG data is usually
contaminated with different types of artifacts, mainly cat-
egorized as biological and environmental. Environmental
artifacts are mainly caused by sources outside the body,
such as 50-60Hz AC line artifact (based on the standard
frequency of the country) due to the poor grounding of
the electrodes and other electromagnetic interferences to
the electrodes(2!ll. Biological artifacts are mainly caused by
eye blinks, heart beating (cardiac) and muscle move-
ments of the participant.

Thermography is a method that can be used to de-
tect patterns of heat and blood flow by detecting in-
frared radiation emitted from the skin. This method in-
volves an infrared thermographic camera to detect sur-
face radiated heat that can be captured and visualized as
a “thermogram”. Thermography is a useful tool for
studying variations in skin surface temperature. Fever
screening using infrared thermal detection systems?2 can
be considered an existing application of thermography in
medical diagnosis.

2.1.4 Decision support systems

Decision making includes three key components: intel-
ligence, design, and choice. However, several challenges
are associated with system engineering such as cognitive
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constraints, cost issues, temporal constraints, communica-
tion or collaboration limits, and low trust issues in de-
cision making(23l. In order to overcome such hurdles, com-
puters are integrated with systems to support decision
making that is collectively called DSSs. Such systems
have been used widely in the healthcare domain, espe-
cially in the field of neuroscience, because of their ability
to analyse a large amount of data efficiently and evalu-
ate infinite possibilities. DSSs compare the patient pro-
file with an existing knowledge base and generate patient-
specific recommendations. Studies have shown that DSSs
have made a significant impact in reducing serious medic-
al errors, and improving services and practicel2426], AS-
DGenus, a DSS to classify ASD with the minimum num-
ber of EEG channels proposed in our previous workld],
demonstrates the usefulness of automated systems in clas-
sifying neurodevelopmental disorders.

2.1.5 Computational learning models

Deep learning, which integrates machine learning with
artificial intelligence, has revolutionized learning and
problem-solving in the medical field26l. It provides us
with the required tools and know-how to identify a wider
range of patterns and to build complex models from exist-
ing data. The machine learning based applications mainly
have three phases: 1) data pre-processing, 2) feature ex-
traction, and 3) classification. In the pre-processing
phase, noise filtering and data transformation are per-
formed. After pre-processing the data, different features
are extracted, and less informative features are removed.
Finally, in the classification phase, a model is trained,
and the results are evaluated. Even though the inter-
pretability of the results produced by such models re-
mains questionable, the extent to which they expand the
boundaries of learning and decision making outweighs the
existing drawbacks.

The Naive Bayes classifier is considered as the gold
standard by the machine learning researchers since it is
used as a benchmark against which the models are com-
pared. It is based on Bayes' theorem and considered naive
because of the naive assumption of the class conditional
independencel?”. The Naive Bayes algorithm has been
able to produce reasonable and satisfactory results, even
though the assumption does not hold in many real-world
problems. The Naive Bayes classifier requires relatively
smaller amount of training data, and because of its
scalability, simplicity, easy implementation, and speed,
many classification problems are addressed using it, in-
cluding ASD classification[28; 29,

Logistic regression originated in the field of statistics
during the 19th century. The machine learning com-
munity has extensively explored and employed logistic re-
gression frequently for binary classification problems, in-
cluding classifying ASD and no-ASDBY. Logistic regres-
sion models are trained while reducing the loss, and for
the prediction, the output is a probability where a
threshold is set in order to get the output class. Logistic

regression is considered to be a simple algorithm which
requires comparatively low computational power. The
studies(?8: 29 have used logistic regression to diagnose
ASD.

Random forest is an ensemble algorithm which gener-
ates the overall result by combining the results of mul-
tiple models built using the input datal3ll. It develops a
collection of decision trees from randomized subsets of the
training data, and during classification, the result is gen-
erated by combining the results of each decision tree. The
objective of building several models is to increase the
quality of the result by reducing the noise and other bi-
ases. Although building many decision trees can delay the
classification, studies have obtained reasonable results us-
ing random forest for ASD classification[2% 32,

Neural networks are built imitating the human
nervous system. A typical neural network consists of an
input layer, one or more hidden layers and an output lay-
er which can perform classification, clustering, prediction,
etc. The weighted sums of the inputs are fed into each
node of the first hidden layer, and the output of each
node in the layer is decided by the activation function. If
x is the input vector, w is the weight vector and f is the
activation function, then the output of a node is defined
by f(wz). The weighted sums of the outputs of the nodes
in the first hidden layer become the inputs to the next
hidden layer (if one exists). The final output is generated
by the output layer. Despite the neural network's ability
to build complex relationships and to avoid issues such as
the curse of dimensionality[33, their “black box” nature
hinders the interpretability of the system. However, neur-
al networks are widely used for EEG based health applic-
ationsB4 including ASD classificationl(28; 35, 36],

2.1.6 Neuroimaging data pre-processing

Neuroimaging is a term for a set of methodologies and
techniques, which could image the structure and function-
alities of the nervous system. Some of the popular
neuroimaging techniques are fMRI, positron emission
tomography, magnetoencephalography (MEG) and elec-
troencephalography (EEG)!IS: 37 Tt is challenging to use
these techniques in creating the knowledge base for com-
putational learning models, because of the inherited noise
which affects the signal. Hence, neuroimaging data need
to be pre-processed before utilizing them to extract fea-
tures and train the learning modell8l. However, the
chances of losing valuable information along with the
noise during the process are high.

Different techniques such as neuroimaging correction,
noise removal, normalization, smoothing, and image regis-
tration are used in pre-processing the electrophysiological
datal% 18, 39 Machine learning based ASD classification
approaches employ many methods to extract features
from EEG data, entropy functions such as multiscale en-
tropy (MSE) and Shannon's entropy, discrete wavelet
transform, fast Fourier transform (FFT) and statistical
methods such as mean, standard deviation, etc.[4]
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2.2 Related work

Recent related works on computational models for
ASD classification have made significant strides[!sl. For
example, Bosl et al.32 used a data-driven approach for
ASD detection. They collected 64 channels or 128 chan-
nels of EEG data from 188 participants. EEG was recor-
ded while the experimenter blew bubbles. From this
sample, 89 were low-risk controls (LRC), three of which
were diagnosed with ASD. In the high risks for ASD
(HRA) group, there were 99 subjects among which 32
were diagnosed with ASD. Nine features namely sample
entropy, detrended fluctuation analysis, entropy derived
from recurrence plot, max line length, mean line length,
recurrence rate, determinism, laminarity, and trapping
time were extracted for each channel. Then the less in-
formative features were removed using a recursive fea-
ture elimination algorithm. Using support vector ma-
chine (SVM), this approach managed to distinguish ASD
subjects from LRC subjects with 100% accuracy. The
HRA subjects were also classified with high accuracy but
classifying subjects who are placed close to the decision
boundary were found to be challenging. One significant
contribution of this study was generating severity scores
in the range of 1 to 10 with a high resemblance to the ac-
tual ADOS-2 scores. Unlike most other studies, the avail-
ability of data from many subjects increases the reliabil-
ity and statistical significance of the results. One of the
important goals of similar research is diagnosing ASD as
early as possible. However, the datasets used by most of
the other studies were collected from older subjects and
hence might not reflect the brain functionality of young-
er children. Further, the participants were between 3 and
36 months of age, which is a unique feature of this study
with regard to the above issue.

In a previous study, Bosl et all40l. demonstrated that
modified multiscale entropy (mMSE) could be used as a
biomarker for ASD classification. Their dataset consisted
of 64 channel EEG data from 79 subjects between 6 and
24 months of age including 46 HRA and 33 controls. The
data were collected multiple times from the same sub-
jects at different ages and they were considered independ-
ent data. In total, the dataset consists of 143 independ-
ent sets of data. Thus, similar to their work in [32], the
results have relatively higher statistical power due to
sample size. The data were collected while the experi-
menters were blowing bubbles to draw the infants’ atten-
tion. SVM, K-nearest neighbors (K-NN) and Naive Bayes
classifiers have used to distinguish the ASD subjects from
typically developing ones. Two unique features of this
study were: 1) girls and boys were classified separately
and as a unified group and 2) children at different ages of
6, 9, 12, 18 and 24 months were classified separately.
When boys and girls were classified separately, SVM pro-
duced the best accuracy of 100% for the boys at the age
group of 9 months and 80% accuracy for the girls at the
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age group of 6 months. When boys and girls were classi-
fied together, k-NN produced an accuracy of 90% for the
age groups of 9 and 18 months.

In [41], several experiments were carried out to ana-
lyze the functional connectivity and temporal relation-
ship between ASD and brain activity for ASD classifica-
tion and severity score prediction. EEG data was recor-
ded from 17 subjects between 5 and 17 years of age
among which eight were diagnosed with ASD. Two sets
of training data were generated to capture short-term and
long-term trends in the temporal relationship. The EEG
signals were decomposed into five frequency bands (delta,
theta, alpha, beta, and gamma) and five corresponding
feature sets were created. Each feature set consisted of
the amplitude and power for each electrode. For the first
experiment, the features of all the channels were used.
Out of the 43 classifiers that were used, accuracies of
98.06% and 98.00% were produced by JRip and random
forest, respectively, when evaluating the short-term de-
pendencies. For the second experiment, only the selected
channels of F7, F8, T7, T8, TP9, TP10, P7, P8, C3, and
C4 were used. The random forest classifier produced
97.04% accuracy. The ADOS-2 scores were also pre-
dicted where bagging yielded the highest correlation coef-
ficient of 0.9079 with a root mean squared error of 2.93.
To evaluate the long-term dependencies, a convolutional
neural network (CNN) was used and achieved accuracy of
over 90%. This is one of the few works which successfully
generated a severity score similar to the ADOS score to
measure the severity of ASD in addition to classifying
them as ASD versus no-ASD. Evaluating 43 classifiers for
classification is another unique feature of Jayarathna et
al. study. However, the smaller dataset does impact the
statistical power of the results.

Thapaliya et al.[28] have proposed an ASD classifica-
tion methodology that combines EEG and eye-tracking
data collected from 34 subjects while they watched video
clips that engendered joint attention. The EEG data were
recorded from 128 channels. This was the first attempt to
combine two different datasets (EEG and eye-tracking)
for the classification of ASD. Multiple sets of features
combining eye-tracking data with various EEG features
(e.g. mean and standard deviation, discrete fast Fourier
transform, and entropy) were used to train the learning
models. Feature selection was performed using principal
component analysis (PCA) and sequential feature selec-
tion. Several classifiers including SVM, logistic regression,
deep neural network (DNN), and Gaussian Naive Bayes
were used for classification. A resulting 100% accuracy
was achieved by the logistic regression algorithm while
using EEG standard deviation and eye-tracking data
without PCA as the features. Although these results are
promising, acquisition of 128 channels of EEG data from
toddlers (as an early screening method for ASD) can im-
pose significant challenges in real-world practice.

Grossi et al.29 have proposed a multi-scale ranked or-
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ganizing map (MS-ROM) coupled with an implicit func-
tion as squashing time (I-FAST) algorithm for the classi-
fication of ASD. One distinct feature of this integrated al-
gorithm is that it does not require any preliminary pre-
processing. Resting-state EEG data were collected from
25 participants (15 ASD and 10 typically developing)
while they were closing and opening their eyes. The I-
FAST algorithm consists of three phases: squashing
phase, noise elimination phase, and classification phase.
In the squashing phase, features were extracted using
MS-ROM and multiscale entropy (MSE). In the noise
elimination phase, irrelevant features were filtered using
the TWIST (training with input selection and testing) al-
gorithm. Finally, in the classification phase, seven learn-
ing algorithms (sine net neural networks, logistic regres-
sion, sequential minimal optimization (SMO), K-NN, K-
contractive map, Naive Bayes, and random forest) were
used as classifiers. One hundred percent accuracy was ob-
tained consistently using a training-testing approach.
However, the leave-one-out approach produced only
92.8% accuracy while using random forest.

Ahmadlou et al. have proposed three different tech-
niques that are based on fractality®?], improved visibility
fractality[43l and fuzzy synchronization
likelihood3%. In the fractality based approach, they have

graph

introduced the idea of using fractal dimensions as fea-
tures. Their dataset contained 19-channel EEG data from
17 subjects, 9 ASD and 8 typically developing children.
Statistically significant fractal dimensions were chosen us-
ing analysis of variance (ANOVA) and classification was
performed using radial basis function neural network.
This approach has achieved a 90% average accuracy with
a variance of 0.15%. In the improved visibility graph
fractality based approachl43l, the effectiveness of the

power of scale-freeness of visibility graphs (PSVG) and
improved PSVG for ASD classification was evaluated.
For this study, the same dataset used in [42] was used.
Using ANOVA for feature selection and enhanced prob-
abilistic neural network (EPNN) for classification, im-
proved power of scale-freeness of visibility graphs (PSVG)
and PSVG produced average accuracies of 95.5% and
84.2% with variances 1.7% and 1.8% respectively. For the
fuzzy synchronization likelihood-based approachl3], a
dataset that contains 18 subjects, 9 ASD and 9 typically
developing children, was used. In this study, ANOVA
and EPNN were used for feature selection and classifica-
tion. Similar to their previous study[43, this approach also
produced an average accuracy of 95.5% with a variance of
1.2%. All three studiesl35 42 43] utilized 19-channel EEG
which
samples. Further, data pre-processing applications con-
sisted of bandpass filters and discrete wavelet transforms

recordings increase feasibility with younger

which are simple and easy to implement and interpret.

All of the related works reviewed in this section have
shown accuracies greater than or equal to 90%, as given
in Table 1. Here, SN denotes sine net neural network,
SMO states sequential minimal optimization, K-CM de-
notes K-contractive map and ASR stands for artifact sub-
space reconstruction. The percentages of the dataset used
for training and testing in the holdout method are
provided.

Most of the studies have used bandpass filters and
wavelet transformation for preprocessing the EEG signal,
especially to remove noise and to decompose the signal
into frequency bands. Machine learning algorithms such
as SVM, logistic regression, random forest and Naive
Bayes have been used often in these classification studies.
Different types of neural networks have also been widely

Table 1 Summary of related studies on ASD identification using EEG data.

Description of the related study Pre-processing techniques

Learning model Evaluation technique

A data driven approach to
classifying ASDI32]

Bandpass fier, wavelet transform

Classifying ASD based on EEG
and eye movement datal28]

Makato's pre-processing pipeline,
visual inspection

Classifying ASD using MS-ROM/
I-FAST algorithm[29]

I-FAST algorithm

An EEG based objective measure
of ASDI1]

Baseline drift & AC noise removal,

&re-referencing, wavelet transform,
ICA

ASD diagnosis using fuzzy
synchronization likelihood[35]

Bandpass filter, wavelet transform

Visibility graph fractality for ASD Low-pass filter, wavelet transform
diagnosis*3]

Classifying ASD using channel

optimized methodl?] wavelet transform

EEG complexity as a biomarker
for ASDI40]

Bandpass filter

ASD diagnosis using fractal
dimensions/42l

Low-pass filter, wavelet transform

ASR, channel rejection, interpolation

Voltage thresholding, visual inspection,

K-NN, random forest, SVM Leave-one-out, cross-validation

Naive Bayes, logistic regression,
SVM, DNN

10X 2 cross-validation, holdout
method (80%, 20%)

SN, logistic regression, SMO, K-NN, Leave-one-out cross-validation,
K-CM, Naive Bayes, random forest holdout method (68%, 32%)

Naive Bayes, logistic regression, 10-fold cross-validation
SVM, DNN, AdaBoostM1, random
forest, linear regression, bagging,

JRip, REP tree

Enhanced probabilistic neural
network

Holdout method (78%, 22%)

Enhanced probabilistic neural
network

Holdout method (80%, 20%)

Logistic regression, SVM, Naive 10-fold cross-validation

Bayes, random forest

SVM, k-NN, Naive Bayes 10-fold cross-validation

Radial basis function neural
network

Holdout method (80%, 20%)
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used as classifiers because of the neural network’s ability

to learn complex relationships better than other classifica-

tion algorithms. However, one major limitation in almost

all these prior studies is the small dataset size. The diffi-

culty of finding available subjects with ASD (who can

tolerate EEG) certainly imposes limitations to sample size

and therefore reduces the statistical power. As a result,

the risk of overfitting is high when using neural networks

that are trained on small datasets.

Another limitation is that many machine learning ap-

proaches for ASD classification heavily rely on brain dy-

namics (via EEG, fMRI). This approach is inherently

problematic because the human brain is a stochastic, con-

text-dependent system. Given the enormous complexity

of the human neural activity, there is likely no sample

large enough that can model an exact activity pattern

that is specific to all the dynamic brains of individuals
with ASD. Thus, building a feature set that integrates
other levels of human physiology (thermal homeostasis,

heart rate, movement, etc.) including brain activity may

be a beneficial strategy towards developing algorithms

that achieve higher levels of sensitivity and specificity.

Currently, no studies have integrated thermal fea-

tures with EEG features for ASD auto-classification. Here

we combine facial thermography with EEG to evaluate

how the integration of features from different physiologic-

al systems might reduce the risk of overfitting.

3 System design and methodology

The proposed approach is designed with three main

modules, namely pre-processing, feature extraction, and

classification. Fig.1 shows the abstract view of the pro-

posed system addressed in this paper. The workflow of

the proposed approach is shown in Fig.2. The descrip-

tion of the process is explained in Sections 3.3 and 3.4.

[

Data acquisition layer

A
EEG data
acquisition

Facial thermogram
acquisition

This approach has considered both facial thermo-
grams and raw EEG data as inputs. The output of the
approach is the set of accuracies for the used learning
models for each feature set with the objective to evaluate
the effect with the addition of thermographic features.
The raw EEG data of a subject contains 32 sequences of
voltage values for the 32 channels, sampled at 250Hz.
This data is stored in a 2D array with 32 subarrays rep-
resenting the 32 channels. The pre-processing pipeline
contains four main steps explicitly for EEG noise remov-
al that outputs cleaned EEG data.

The feature extraction module extracts entropy and
statistical features such as mean and standard deviation
from the cleaned EEG data. Then the extracted EEG fea-
tures are directed through a correlation-based feature se-
lection process to filter out the insignificant features. At
the same time, thermographic data processing initiates in
the feature extraction module, where the region selection
of the thermograms and the mean temperature calcula-
tion of the selected regions is conducted. The mean tem-
perature values of each ROI are taken as the thermo-
graphic features of a subject. The selected EEG features
(FS1, FS2, FS3) and the thermographic features are then
concatenated to build feature sets for the classification
module. The feature selection process is described in
Section 3.3.2.

In the classification module, four learning algorithms
are employed, namely Naive Bayes, random forest, logist-
ic regression, and multi-layer perceptron neural network
(MLP) to evidently show the effect of thermographic fea-
tures. The classification module yields the accuracy for
each model which then gets validated to obtain the res-
ults. These results show the impact of the addition of
thermographic features comparatively, evidencing the
feasibility of using skin surface temperature, in classify-
ing ASD using EEG data.
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Fig.1 Abstract view of ASDGenus system
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Fig. 2
3.1 Materials

This study considers both EEG and thermograms for
the identification of ASD. Data acquisition was carried at
Indiana University-Purdue University, Columbus, USA.
Both EEG and thermal data were recorded during the
administration of the ADOS-2M44. ADOS-2 is a standard-
ized assessment of communication, social interaction,
play, imagination, and stereotyped behaviorsi45. The
ADOS-2 was used as a social interaction platform to
maintain the social context consistent for each parti-
cipant throughout the data acquisition process.

The EEG data were acquired using a 32-channel
LiveAmp wireless EEG system[%] with active electrodes
and a digital sampling rate of 250Hz (Brain products,
GmbH). All the channels were uninterruptedly recorded
for each participant throughout the administration of
ADOS-2, using the frontal central zero (FCz) electrode as
the reference. The wireless system allowed for the head
movement of the participants, and the active electrodes
allowed for recordings at higher impedances thereby facil-
itating the speed of the application. Fig.3 is a plot of the
32 channels of a raw EEG sample.

Fig.3 Raw EEG sample

High-resolution infrared thermograms of the parti-
cipants' faces were captured using high-resolution in-
frared cameras (ICI, Inc.). The infrared instruments used

for thermography measure the radiated thermal energy of

Workflow diagram of ASDGenus

the participant's face to generate a temperature of each
pixel remotely, based on the algorithm that maps the
pixel value of the thermograms to the corresponding tem-
perature. These generated temperature values of each
thermogram were stored in a separate comma-seperated
values (CSV) file which was used for the mean temperat-
ure calculation. Fig.4 shows a facial thermogram sample
used for this study.

Fig. 4 Sample facial thermogram

As stated in Table 2, the overall dataset of this study
contains data of 17 participants (10 male and 7 female)
between the ages of 5 and 17 years. The target class
(ASD diagnosis) was obtained by separating the parti-
cipants with respect to prior ASD diagnosis disclosed by
parents upon enrolment in the study.

3.2 EEG data pre-processing

3.2.1 Channel re-referencing

The raw EEG data were acquired using the FCz chan-
nel (electrode) as the reference channel. The amplitudes
of the EEG data for each channel depends on the refer-
ence used in the data acquisition. The channels that are
located closer to the reference are likely to have similar
voltage readings, resulting in low voltage differences,
while the channels that are located distantly to the refer-
ence are likely to have more substantial voltage differ-
ences, subsequently showing larger amplitudes in EEG
data.
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Table 2 Participant details

Participant ID Sex Age ADOS-2 Diagnosis
2 M 10 19 ASD
4 M 17 12 ASD
11 M 6 11 ASD
12 M 9 16 ASD
18 M 5 20 ASD
20 M 15 9 ASD
13 F 11 16 ASD
15 F 10 7 ASD
5 M 11 5 Non-ASD
16 M 8 4 Non-ASD
19 M 15 2 Non-ASD
21 M 6 4 Non-ASD
7 F 9 0 Non-ASD
8 F 6 5 Non-ASD
14 F 16 0 Non-ASD
17 F 6 0 Non-ASD
22 F 8 0 Non-ASD

In order to avert this bias, we used the average refer-
ence for re-referencing the channels. The average referen-
cing was achieved by generating an average over all the
channels as given in (1) and subtracting the resultant sig-
nal from each channel as given in (2). Here, n represents
the number of channels and Uorg[i] denotes the voltage of
channel ¢, which against the original reference, FCz chan-
nel. After the re-referencing, the amplitudes of each chan-
nel were reduced, having an unbiased contribution to the
new referenceld’l. Fig.5 shows the plotting of FP1 chan-
nel (a) before (raw signal) and (b) after re-referencing
raw signal to average reference.

" Uorglt
Average reference : u = %Ogm. (1)
Define u[i] as voltage of channel ¢, which against the

average reference :
uli] =Usorgli]—T. (2)

3.2.2 Low-frequency baseline drift removal

Baseline drift is the effect where the base axis of the
signal appears to drift up and down from the straight z-
axis, resulting in a drift of the whole signal from the
baseline. The main reason for the baseline drift can be at-
tributed to improper channels caused by the electrode-
scalp impedance and head movements of the partici-
pant[48l. The baseline drift frequencies are usually low and
can be removed using a 1Hz high-pass filter[4l. Fig.6
shows the EEG signal after removing the baseline drift.
3.2.3 AC powerline noise removal

The electromagnetic interference caused by the AC
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Fig. 6 EEG signal after baseline drift removal

power transmission line is one of the prevalent artifacts
that affect the quality of biomedical signals like EEG.
The power line frequency depends on the standard of the
country where the data acquisition is carried out and, in
this research, it is 60 Hz, which is the standard of North
America. We used a 60Hz notch filter which is a com-
monly used method to remove this artifactll. Fig.7
shows the EEG signal (a) before and (b) after removing
the AC line noise on the FP1 channel.
3.2.4 Eye-blink removal

As illustrated in Fig.8(a), eye blinks in an EEG sig-
nal have a unique pattern of irregular voltage values
which limit to a small-time range. In order to remove the
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Fig. 8 Eye-blink removal

eye-blink artifact without affecting the attributes of the
signal, we have discarded the time intervals of the eye
blinks using a custom algorithm, as the discarded time in-
terval can be considered insignificant(5. The algorithm it-
erates the EEG signal, detecting voltage values that ex-
ceed the threshold (200-500pV), which is set uniquely to
each signal after visual inspection. Then a time interval
of 0.4ms is discarded around the detected voltage values
in order to remove the whole eye blink since the duration
of an eye blink is 0.4ms. Fig.8(b) shows the EEG sig-
nal after the eye blink removal.

3.3 Feature extraction and selection

3.3.1 EEG feature extraction

In this research, we used statistical and entropy func-
tions for the EEG feature extraction. Statistical values
comprise the mean and standard deviation. Mean and
standard deviation are the most widely used statistical
features in recent studies of ASD classification using
EEGH 5 32, Standard deviation was calculated using (3),
where n is the signal length and T and x; represent the
signal mean and the amplitude respectively, at a given
point <.

T IR N2
Standard deviation = ] ; (xi—Z)". (3)

The entropy value quantifies the amount of regularity
and the unpredictability of fluctuations of a signal over
time, thus, it considers as the primary attribute to ex-
plore the abnormalities of the EEG signals as it can be
used to measure the level of the chaos of the signall30l.
The entropy is calculated using (4), where p; is the prob-
ability of the i-th amplitude value.

n
Shannon's entropy = — Zpilongi. (4)
k=0

The statistical features and the entropy values were
calculated for each channel and created two feature vec-
tors for each participant.

3.3.2 EEG feature selection

The statistical feature vector contains 64 features
(mean and standard deviation for 32 channels) and the
entropy feature vector contains 32 features. A third fea-
ture vector was created concatenating the statistical and
entropy feature vectors which contain 96 features. In or-
der to reduce the dimensionality and to improve the clas-
sification, we employed a correlation-based feature selec-
tion (CFS) technique on EEG features. The technique
evaluates all the subsets of the features, preferring the
subsets that are highly correlated with the target class
(ASD diagnosis) while having low intercorrelation using
three different measures of relatedness: minimum descrip-
tion length (MDL), symmetrical uncertainty, and relief/!.
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Next, the CFS technique was used to select the 3 fea-
ture sets, from statistical features, entropy features and a
combination of both, to be used for the classification. The
best subset is yielded as the selected feature set as fol-
lows.

FS1 was obtained from the 64 statistical features. CFS
was used to select the channels P3, O1, C4 from the
mean features and the channel C4 from the standard de-
viation features. Thus, FS1 contains 3 channels.

FS2 was obtained from the 32 entropy features. CFS
was used to select the channels C3, P3, FC6 from the en-
tropy features. Thus, FS2 contains 3 channels.

FS3 was obtained from the combination of 64 statist-
ical features and 32 entropy features. CFS was used to se-
lect the channels P3, Ol, C4 from the mean features,
channel C4 from the standard deviation features, and
channels P3, FC6 from the entropy features. Thus, FS3
contains 4 channels.

The feature selection process outputs three feature
sets for the three feature vectors as shown in Fig.2: selec-
ted statistical features (FS1), selected entropy features
(FS2) and selected features of the concatenated feature
set (FS3).

3.3.3 Thermographic feature extraction

One of the novelties of this research is exploring the
ability of processing thermographic data for feature ex-
traction and ASD classification. Initially, several ROIs of
the face that represents the internal temperature of the
participant are identified. Ng et al. [52 showed a high cor-
relation between internal body temperature and the sur-
face temperature of the eye region. They concluded that
the temperature of the eye region is the site that correl-
ates most highly with internal body temperature. The
thin skin in the eye region makes it a preferred area to
approximate the core body temperature. Therefore, eye
region was focused more, and six sub-regions were selec-
ted in the eye region; eye left/right (EL/ER), inner can-
thus area left/right (ECL/ECR) and the supraorbital
area left /right (ESL/ESR).

Apart from the eye region, we have chosen the nose
(N), left cheek (CL), and right cheek (CR). Marinescu et
al.53] have identified the nose and the forehead as ideal
sites for skin temperature measurements. Or and Duffy[54
have found out that there is a strong correlation between
nasal temperature and mental workload which made the
nose a potential region. Shearnet al.’®l has concluded
that the cheek temperature responses are significantly
high during blushing and in [56], they have stated that
physiological signs like blushing are rarely observed in
ASD which led us to select cheeks as regions of interest
for this research.

Therefore, the nine ROIs: eye (EL/ER), inner can-
thus (ECL/ECR), supraorbital area (ESL/ESR), nose
(N) and cheeks (CL/CR), were selected based on the re-
lated studies that have addressed the temperature effect
of eye regionl®2, nosel®® 54 and cheeks®5. The selected
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ROIs were carefully marked on each thermogram manu-
ally, as the face of each participant was located (magni-
fication, placement) uniquely. Then, the average temper-
atures of each marked ROI of the face were calculated as
the facial thermographic features of each participant.
Fig.9 illustrates the selected regions of the face.

Fig.9 Selected regions of the face

Fig. 10 plots the temperature values obtained for each
region. According to the plot, the highest and the lowest
values were recorded from the left inner canthus and the
nose regions, respectively. The most extensive distribu-
tion of the temperature was recorded in the nose region.
At the same time, obtaining higher temperatures for the
eye region was a precise observation.

3.4 Classification

Our approach is designed with several classification
models as we consider two different sets of EEG features,
combined with thermographic features and multiple
learning algorithms, as shown in Fig.11.

There are mainly three EEG feature sets: FS1, FS2,
and FS3. Each of these feature sets is combined with
thermographic features resulting in a total of six feature
sets. Thermographic features are only used as an addi-
tion to the EEG data since the objective was to compare
the accuracy values for each EEG feature set before and
after the addition of the thermographic features. We em-
ployed four learning algorithms, trained separately for
each feature set, resulting in a total of 24 models. The
performances of the 12 models trained using EEG feature
sets were compared with the 12 models trained using
EEG feature sets concatenated with thermographic fea-
tures.

In order to further evidence the effect of the thermo-
graphic features, we used multiple types of learning al-
gorithms: a generative linear classifier (Naive Bayes), a
decision tree classifier (random forest) and two discrimin-
ative linear classifiers (logistic regression and MLP).
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Naive Bayes is considered to be the standard in machine
learning applications?”l, therefore we have used Naive
Bayes to obtain the benchmark performance for the re-
search. Then, logistic regression was used because of its
simplicity and the low computational resources consump-
tionB%. We used a multinomial logistic regression model
with a ridge estimator in order to improve the parameter
estimates and to reduce the error furthermore. Consider-
ing the recent studies that are focused on ASD classifica-
tion, reasonable results were produced using random
forestl 29, 32 Therefore, a random forest classifier was
also used to obtain the results. Finally, we used a multi-
layer perceptron neural network where sigmoid activa-
tion was used in all the nodes with a learning rate of 0.3.
We dynamically changed the number of hidden layers for
each model according to the number of features in the
feature set used to achieve high performances.

3.5 Implementation aspects

The main modules of the proposed approach can be

Classification process of ASDGenus

identified as pre-processing, feature extraction, and classi-
fication. Cartool software by Denis Brunet, and python
were used for the implementation of data pre-processing.
In the thermographic feature extraction section, the re-
gion selection was carried out using image processing soft-
ware, and the mean temperature calculation was imple-
mented using Python and OpenCV library7. The calcu-
lation of the statistical and entropy values for the EEG
feature extraction was implemented using python, be-
cause of the wide availability of third-party libraries. For
the feature selection and the classification modules, the
WEKADBPS software package was used, due to its compre-
hensive collection of data pre-processing and modeling
techniques. Fig.12 shows the system tool stack used for
the implementation of the ASDGenus system.

4 Results and evaluation

For this research, we have employed the leave-one-out
cross-validation method. Cross-validation is a useful eval-
uation technique when it comes to handling datasets with
a limited number of data samples®. In k-fold cross-valid-
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ation, the dataset is divided into k partitions of approx-
imately equal sizes. The evaluation performs iteratively,
for k iterations. During each iteration, one partition is
used for testing while the rest ones are used for training.
The overall accuracy is calculated by averaging all the ac-
curacies, obtained for each iteration. This accuracy is
used as the primary evaluation performance metric of the
learning model. Table 3 shows the comparison of the ac-
curacies for EEG feature sets (FS1, FS2, and FS3), be-
fore and after the addition of thermographic features.

Considering FS1, which is the statistical features of
EEG data, the highest accuracy was achieved using lo-
gistic regression for the feature set obtained after the ad-
dition of thermographic features. Both logistic regression
and MLP models were improved with the addition of the
thermographic features. The performance of the Naive
Bayes model was reduced from 70 to 64, and the random
forest model's performance remained unchanged.

For FS2, which is the entropy features of EEG data,
the accuracies from all the models were improved with
the addition of the thermographic features, achieving the
highest accuracy of 94%, using logistic regression for the
feature set obtained after the addition of thermographic
features.

For FS3, the accuracies of both logistic regression and
MLP models are improved. The accuracy from the MLP
model achieved are highest accuracy of 94% with the ad-
dition of thermographic features, while the performances
of Naive Bayes and random forest models remained un-

Facial thermogram
acquisition

: Feature extraction

changed.

Thus, according to the classification accuracy values,
all the three feature sets FS1, FS2 and FS3 have shown
the highest accuracy of 94% with thermographic data,
with different classifiers and the different number of selec-
ted channels. That is, the highest classification accuracy
can be obtained by either FS1 or FS2 or FS3 with ther-
mographic data.

Fig. 13 summarizes the performances of the models.
The performance of eight models was improved, while the
accuracy of only one combination was decreased and the
accuracy of three combinations remained unchanged.

For all three feature sets, the performances of the lo-
gistic regression and MLP models were improved, and the
concept of confounding is a possible reason for this. In
that case, it is possible to assume that the relationship
between the EEG features and the diagnosis class im-
proves with the presence of the thermographic features,
which performs as confounding features. At the same
time, the behavior of the Naive Bayes model with FS1
can be justified by the assumption made by the Naive
Bayes algorithms, that the features are independent of
each other. Here, the EEG features and the thermograph-
ic features may be dependent on each other, being the
cause for the enhancement of the classification. This as-
sumption can rule out any sort of dependencies between
the EEG and thermographic features, resulting in re-
duced performance.

Thermographic  Feature extraction

Ps| Lo

Region Mean temperature
selection calculation
Pre-processing EEG feature Feature Classification
pipeline extraction selection

Fig. 12 System tool stack diagram of ASDGenus

Table 3 Accuracies for EEG feature sets before and after the addition of thermographic features in ASDGenus

FS1 FS1 + thermo FS2 FS2 + thermo FS3 FS3 + thermo
Naive Bayes 70% 64% 64% 82% 70% 70%
Logistic regression 70% 94% 76% 94% 76% 82%
MLP 70% 88% 76% 82% 76% 94%
Random forest 76% 76% 76% 88% 88% 88%
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5 Discussions

The current study is an exploration of the ability to
improve EEG-based classification. We employed raw
EEG data, and infrared facial thermograms, which cap-
ture the skin surface temperature as the input data and a
simple pre-processing and feature extraction methodo-
logy for classification. The primary objective of this re-
search is to introduce analysis and a comparison of com-
bining EEG data with facial thermographic data for ASD
classification. We have used four learning algorithms with
three EEG feature sets and illustrated the association
between EEG and thermographic data in ASD classifica-
tion and the potential to use the combination of data to
improve the classification process of ASDGenus proto-
type.

Because of the originality of the concept of improving
ASD classification using non-invasive quantification of
skin surface temperature, no prior related research has
been conducted. Thus, there is a limitation of comparing
the results of the proposed methodology with existing
studies in the context of emphasizing the impact of the
thermographic features. Nonetheless, for the complete-
ness of the study, a comparison with the classification
results of related ASD classification approaches is shown
in Table 4 indicating the diverse settings such as dataset,
features and classifiers. The accuracy field represents the
highest accuracy of each related study and the classifier
field shows the learning algorithm/s used to achieve the
highest accuracy, with the considered number of subjects.

Here, the number of channels used for the classifica-
tion, can be taken as the comparison factor. The pro-
posed study needs only 3 channels to obtain the highest
classification accuracy, which is the significant contribu-
tion of the ASDGenus DSS. The optimal number of chan-
nels can be obtained from either FS1 or FS2. Specifically,
the feature set FS1 consists of the three channels P3, O1,
C4 and FS2 contains the channels C3, P3, FC6 as de-
scribed in Section 3.3.2, and has given the highest classi-
fication accuracy of 94% with the incorporation of ther-
mographic features using the logistic regression classifier,

as shown in Table 3. In contrast, as shown in Table 4, all
the other related studies have used more channels for the
classification process.

Another significant observation of the related studies
is the diversity in extracted features and the classifiers
which were employed in acquiring the highest accuracies.
Nevertheless, the features used in this research, statistic-
al methods and entropy, were commonly utilized in the
related works as well. Different kinds of neural networks,
logistic regression, and Naive Bayes classifiers have often
given the highest accuracy values.

Considering the datasets used in the studies, precise
observation is the usage of a different number of chan-
nels. This causes a significant change in the amount of
data employed for the research. Another limitation in
most of the studies including the proposed approach, ex-
cept for [32] and [40], is the low number of subjects in the
dataset because of the difficulty in getting participants
for the data acquisition. The low number of subjects in
the dataset may not fully capture the heterogeneity of the
population. At the same time, having a larger dataset
would reduce the impact of noise, which is a major prob-
lem in EEG data. Large datasets also enable the utiliza-
tion of modern learning approaches such as deep learning,
which can enhance the performance of the learning pro-
cess with large datasets.

For instance, we have applied deep learning classifiers
in an experimental setup for the combination of facial
thermography and EEG data. However, high accuracies
were not obtained as the size of the dataset is not suffi-
cient for deep learning. Therefore, the proposed methodo-
logy can be extended in the future with large datasets to
increase the generalizability and the performance of this
classification approach.

In addition, although the eye blink artifact was detec-
ted and removed with an algorithm in the proposed solu-
tion, muscle and cardiac artifacts were not identified. The
requirement of expert knowledge for manual region selec-
tion of the thermograms is an existing limitation of the
proposed ASDGenus DSS.

Moreover, the proposed DSS can be extended with
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Table 4 Accuracy comparison of related work with ASDGenus

Description of the related

study Dataset

Subjects

Features

No. of EEG
channels used for
classification

Classifier Accuracy

ASD classification[32] EEG (64/128

Multiscale entropy, recurrence
188 quantitative analysis, detrended 19 SVM 100%

channels) fluctuation analysis
EEG (128 Logistic
ASD classification[28] channels), eye 34 Shannon entropy, statistical methods 128 regression, Naive 100%
movement data Bayes
ASD classification using
MS-ROM/I-FAST EEG (19 channels) 35 Multiscale entropy 19 Random forest 100%

algorithm/29]

An objective measure of EEG (32 channels) 17

Shannon entropy, statistical methods,

19 JRip 98.06%

ASDI41] fast Fourier transform
Enhanced
ASD diagnosis!33] EEG (19 channels) 18 Fuzzy synchronization likelihood 19 probabilistic 95.5%
neural network
Visibility graph fractalit P f scale-f f the visibilit Enhanced
1SIDU Yy 81D h Hactd Y pRG (19 channels) 17 ower of scale-treeness of the visibity 19 probabilistic 95.5%
for ASD diagnosis[43] graph
neural network
ASD ClaSSlﬁ.Ca‘?lon.Wlt.h EEG (32 channels) 17 Statistical methods 5 Random forest 93.3%
channel optimization![s]
Biomarker for ASD[*)l EEG (64 channels) 143 Modified multiscale entropy 64 k-NN, Naive Bayes  90%
ASD diagnosis using Radial basis
) . 5 EEG (19 channels) 17 Higuchi’s/Katz's fractal dimension 19 function neural 90%
fractal dimensions[42]
network
EEG (32
channels), - e .
Proposed ASDGenus DSS . 17 Shannon entropy, statistical methods 3 Logistic regression 94%
thermographic
data

further research to support different neurological dis-
orders that address comorbidity. The processing of sever-
al psychophysiological data types such as EEG[], thermal
images, fMRI[2 60, 61] and eye-movement datal2l, with dif-
ferent feature extractions, classification and analysis
methods can be integrated into a generic DSS framework.
For instance, the classification process can be performed
using deep probabilistic programming that uses deep
learning with probabilistic modeling to perform computa-
tions efficiently and flexiblyl62l,

The quality attributes such as accuracy, reliability
and user-friendliness can be incorporated in future com-
putational solutions. Thus, a generic framework with a
combination of support tools is beneficial for researchers
and practitioners in clinical practice.

6 Conclusions

ASD is a complex neurodevelopmental disorder, af-
fecting social, communicative, and repetitive behavior.
Although early intervention can improve the behavior of
persons with ASD, the unknown etiology of the disorder
and absence of diagnostic medical tests challenge the
early diagnosis of ASD. Designing an objective measure
to classify ASD, based on acquired physiological data
could enhance the diagnostic process. Even though the re-
lationship between ASD and temperature regulation re-
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mains inconclusive, past observations and studies have
presented evidence for the potential existence of such a
relationship. In this study, we have taken the first step
towards evaluating differences in skin surface temperat-
ure as a potential biomarker for ASD classification, which
is an original contribution of this study.

This paper proposes a prototype named ASDGenus, a
tool to support the clinical diagnosis of ASD. It consists
of three modules for pre-processing, feature extraction
and classification. The pre-processing module filters
baseline drift, AC powerline and eye blink noises from the
raw EEG signal. We extracted statistical (mean and
standard deviation) and entropy values as the features
and insignificant features were removed in the feature ex-
traction and feature selection modules. Finally, four dif-
ferent machine learning algorithms were used for classific-
ation and models were evaluated using leave-one-out
cross-validation. We were able to indicate a noteworthy
improvement of the ASD classification with the addition
of thermographic features, with eight of 12 models show-
ing improvement and only one deterioration. The highest
performing models for each learning algorithm: Naive
Bayes, logistic regression, MLP, and random forest,
achieved the accuracies of 82%, 94%, 94%, and 88%, re-
spectively, with the addition of thermographic features.
With the assumption that the data in the medical do-
main give better results by minimizing the false negative



D. Haputhanthri et al. / Integration of Facial Thermography in EEG-based Classification of ASD 851

values, for the combination of EEG with thermographic
data, the logistic regression method gives the best results
for the selected statistical features and the random forest
model gives the best results for the selected entropy fea-
tures. The high accuracies confirm the existence of a cor-
relation between skin surface temperature measurements
and ASD. The promising results illustrate that thermo-
graphic features may be used with EEG as a potential
biomarker for ASD classification. In addition, further re-
search associating ASD and differences in temperature
regulation may unveil new possibilities regarding the eti-
ology and treatment of ASD.
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