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Abstract: This paper brings out a structured methodology for identifying intervals of communication time-delay where consensus

in directed networks of multiple agents with high-order integrator dynamics is achieved. It is built upon the stability analysis of a

transformed consensus problem which preserves all the nonzero eigenvalues of the Laplacian matrix of the associated communication

topology graph. It is shown that networks of agents with first-order integrator dynamics can be brought to consensus independently of

communication delay, on the other hand, for agents with second-order integrator dynamics, the consensus is achieved independently of

communication delay only if certain conditions are satisfied. Conversely, if such conditions are not satisfied, it is shown how to compute

the intervals of communication delay where multiple agents with second-order or higher-order can be brought to consensus. The paper

is ended by showing an interesting example of a network of agents with second-order integrator dynamics which is consensable on

the first time-delay interval, but as the time-delay increases, it loses consensability on the second time-delay interval, then it becomes

consensable again on the third time-delay interval, and finally it does not achieve consensus any more on the fourth time-delay interval.

This example shows the importance of analyzing consensus with time-delay in different intervals.
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1 Introduction

One of the ongoing topics covered by the theory of multi-

agent systems is consensus. The meaning of consensus

problem is to make all the agents in a multi-agent system

achieve an agreement on a variable of interest, assuming

that each agent is able to share and/or acquire information

within a subset of other agents, called neighbors. Applica-

tions of consensus are found in many practical fields, such

as traffic jams in communication networks[1], formation of

autonomous mobile agents[2] and underwater vehicles[3],

robotics[4], etc. Many other results are summarized in [5].

In practice, time-delays are always present in multi-agent

interactions. This is mainly due to computational and

physical limitations in information processing, transmission

channels, time-response of actuators, etc. The presence of

delays has significant impact on consensus problems as it

can make the system oscillate or diverge about the variable

of interest[6]. Based on this fact, consensus problems are

studied considering different forms of time-delays.

The class of delays due to the time spent by an agent

to acquire information from another agent in the network,

which can arise naturally due to physical characteristics of

communication channels or sensing, is called communica-

tion delay. It essentially indicates how old is the informa-

tion received from the neighboring agent. Results from [7]
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showed that a multi-agent system composed of individuals

with a single-integrator dynamics is able to achieve con-

sensus regardless of communication delays, as long as the

information from one of the agents can reach all the other

agents. This network constraint will be presented later as

the existence of a directed spanning tree in the graph that

describes the communication topology. From this result,

most of the results in the literature have dealt only with in-

put delays, which is the class of delays affecting the states

of both local and neighbor agents, and is mainly due to the

time-delay in the control inputs. Note that the term com-

munication delay has been used interchangeably in some

papers to describe input delays. In this paper, we analyze

only communication delays.

In the literature, Munz et al.[8] studied leader-following

consensus for multi-agent systems composed of first-order

and second-order agents with delayed and intermittent com-

munication, and presented sufficient conditions to guar-

antee consensus based on bilinear matrix inequalities. In

[9], second-order dynamics and constant communication de-

lays in undirected topologies were considered, and Cepeda-

Gomez and Olgac presented conditions based on an intro-

duced concept of most exigent and most critical eigenvalues.

For practical applications, communication delays have also

been considered in the problem of platooning of vehicles[10].

In most of these studies, as in the case of input-delays,

the main purpose is to find the upper bounds of the time-

delays such that consensus can still be achieved, with the

usual acceptance that the system can achieve consensus for

any value smaller than the upper bound. This approach is

also applied for time-varying delays as in [11], which shows



14 International Journal of Automation and Computing 15(1), February 2018

an upper bound τ̄ such that the system achieves consensus

for any value of delay τ (t) ∈ [0, τ̄ ]. A more general case is

addressed in [12], which considers directed networks subject

to multiple input time-varying delays belonging to an inter-

val with lower and upper bound [τ1, τ2], where 0 < τ1 ≤ τ2.

In this paper, motivated by [12], we present a methodol-

ogy to identify the time-delay intervals where consensus in

networks of multiple agents is achieved. Nevertheless, we

call attention to the main difference between [12] and the

present paper: In the former, sufficient conditions are pro-

posed for the analysis of consensus of multi-agent systems

subject to input time-varying delays and switching topol-

ogy. On the other hand, the present paper offers necessary

and sufficient conditions for the analysis of consensus of

multi-agent systems subject to communication delay. Al-

though not as general in application as in [12], the present

paper is based on an entirely different framework for assess-

ing exactly the communication time-delay intervals where

consensus in networks of multiple agents is achieved.

Contributions. In this paper, motivated by the anal-

ysis of consensus within intervals, we show that communi-

cation delays do not always degrade the system consens-

ability, actually it may even enable the system to achieve

consensus in given intervals. It is also shown that if a multi-

agent system achieves consensus for a given time-delay, it

may not achieve consensus for any smaller delay. The main

result of consensability switches is presented for directed

networks of agents described by chains of integrators with

communication delay. As particular results, we present con-

sensability conditions for networks of agents with first-order

and second-order dynamics. The methodology for the anal-

ysis is similar to the ones carried out for input-delays in

[13, 14], however considering communication delays. One

application of the proposed results is illustrated in an exam-

ple considering a network of second-order integrator agents

where, based on the proposed consensability conditions, the

consensus protocol gains are designed in order to address

delay-independent or delay-dependent consensability. The

latter case is shown to be more complex due to the fact that

the system achieves consensus in two disconnected delay in-

tervals.

Throughout the text, let N be the set of natural numbers,

R be the set of real numbers, In be an identity matrix of

size n ∈ N, 0n and 1n be column vectors of zeros and ones

of size n, respectively, 0m×n be an m× n zero matrix with

m ∈ N, ⊗ denote the Kronecker product, and λi{·} be the

i-th eigenvalue of a matrix.

2 Preliminaries

2.1 Algebraic graph theory

The information flow in a multi-agent system can be rep-

resented by a graph, following the next terminology and no-

tation. Let the simple weighted directed graph be defined

by the ordered triplet G(V, E, A), where V is a set with

m ∈ N vertices (nodes) arbitrarily labeled as v1, v2, · · · , vm,

ε is a set of the edges connecting the vertices, denoted by

eij = (vi, vj), where the first element vi is said to be the par-

ent node (tail) and the latter vj to be the child node (head),

and A = [aij ] is the adjacency matrix of order m × m re-

lated to the edges, that assigns a real non-negative value

aij for each eji:

aij

{
= 0, if i = j or � eji

> 0, if f ∃ eji. (1)

Related to A, a diagonal degree matrix is defined as Δ =

[Δij ], with elements Δii =
∑m

j=1 aij . The Laplacian matrix

associated with the graph G is thus given by L = Δ − A.

A directed tree is a directed graph with only one node

without parents, called root, and all the other nodes with

exactly one parent. Also, there is a path, a sequence of

edges, connecting the root to any other node in the tree. A

directed spanning tree of a graph is a directed tree that can

be formed from the removal of some of the edges of such

graph, with all the nodes included.

Next lemmas are used in the derivation of the further

analysis.

Lemma 1.[15] The Laplacian matrix L of a given directed

graph G has at least one zero eigenvalue with the associated

eigenvector 1m, and all the nonzero eigenvalues are in the

open right half-plane. Furthermore, L has exactly one zero

eigenvalue if and only if G has a directed spanning tree.

Lemma 2.[16] If a nonnegative matrix M = [mij ] ∈
Rm×m has all the row sums given as the same positive

constant μ > 0, then μ is an eigenvalue of M with an as-

sociated eigenvector 1m and ρ(M) = μ, where ρ(·) denotes

the spectral radius.

3 System dynamics

Consider a multi-agent system composed of

m ∈ N agents with state variables xi(t) =

[xi,1(t) xi,2(t) · · · xi,n(t)]T, for i = 1, 2, · · · , m, with

xi,1(t), xi,2(t), · · · , xi,n(t) ∈ R such that xi(t) ∈ Rn, and

let the dynamics be given by a chain of integrators

ẋi,1(t) = xi,2(t)

...

ẋi,n−1(t) = xi,n(t)

ẋi,n(t) = ui(t) (2)

where ui(t) ∈ R is the control input acting directly on

ẋi,n(t). This agent dynamics can be also written as

ẋi(t) = Axi(t) + Bui(t) (3)

with A =

[
0n−1 In−1

0 0T
n−1

]
and B =

[
0n−1

1

]
.

We thus define consensus for multi-agent systems.

Definition 1. The multi-agent system with state vari-

ables xi(t) ∈ Rn asymptotically achieves consensus if, for



H. J. Savino et al. / Consensus on Intervals of Communication Delay 15

all i �= j, limt→∞ xi(t)− xj(t) = 0 hold for any initial state

conditions. A multi-agent system that is able to achieve

consensus is called consensable.

The following consensus protocol, free of delays, is con-

sidered in order to drive the agents toward consensus:

ui(t) = −
m∑

j=1

aijK
(
xi(t) − xj(t)

)
(4)

with K = [α1 α2 · · · αn], where the real positive scalars

α1, α2, · · · , αn are the consensus protocol gains and aij are

given as in (1) by the elements of the adjacency matrix A

of graph G describing the network topology.

Considering (2) with consensus protocol (4), the closed-

loop dynamics of the whole multi-agent system can be writ-

ten as

ẋ(t) = Γx(t) (5)

where x(t) is a lumped vector with all the agents′ states as

xT = [xT
1 xT

2 . . . xT
m], and

Γ = Im ⊗ A − L ⊗ (BK). (6)

The following lemmas provide important results concern-

ing the multi-agent system in (5).

Lemma 3.[17] Matrix Γ in (5) has at least n zero eigen-

values. It has exactly n zero eigenvalues if and only if the

Laplacian L has a simple zero eigenvalue. Moreover, if L

has a simple zero eigenvalue, the zero eigenvalue of Γ has

geometric multiplicity equal to one.

Lemma 4.[17] The system in (5) achieves consensus

asymptotically if and only if matrix Γ has exactly n zero

eigenvalues and all the other eigenvalues have negative real

parts.

Note that, combining Lemmas 1, 3 and 4, we have that

consensus in directed networks of agents with dynamics

given by high-order integrators (2) and protocol (4), and

free of delays, is achieved if and only if the related graph G

has a directed spanning tree and all the nonzero eigenvalues

of Γ in (6) lie in the open left half-plane.

4 Communication delays

In this section, we consider the presence of a communi-

cation delay τ > 0 in the consensus protocol (4), such that

the information from neighboring agents is delayed. Thus,

the delayed consensus protocol can be written as

ui(t) = −
m∑

j=1

aijK
(
xi(t) − xj(t − τ )

)
(7)

with K = [α1 α2 · · · αn], where the real positive scalars

α1, α2, · · · , αn are the consensus protocol gains and aij are

given as in (1). Moreover, the initial conditions for any

agent i are arbitrary and denoted by

xi(θ) = φi(θ), ∀θ ∈ [−τ, 0], i = 1, 2 · · · , n

where φi belongs to the set of Rn valued continuous func-

tions on [−τ, 0].

The closed-loop dynamics of agents described as in (3)

with the delayed consensus protocol in (7) is given by

ẋ(t) = AMx(t) + BMx(t − τ ) (8)

where AM = (Im ⊗ A) − (Δ ⊗ BK) and BM = (Δ − L) ⊗
BK, with Δ and L are the degree and Laplacian matrices,

respectively, of graph G describing the network topology.

4.1 Transformed system

In [18], it was shown that a single-order consensus prob-

lem can be translated into a stability one using a tree-type

transformation. In [12], this transformation was extended

to general linear dynamics with input delay and here it is

used for the case of communication delay. This is done by

introducing new variables zi(t) representing the disagree-

ment on the state variables, given by

zi(t) = x1(t) − xi+1(t) (9)

for i = 1, 2, · · · , m − 1. The disagreement variables can be

lumped in a vector zT = [zT
1 zT

2 · · · zT
m−1] and we can

write

z(t) = (U ⊗ In)x(t) (10)

x(t) = 1m ⊗ x1(t) + (W ⊗ In)z(t) (11)

where

U = [1m−1 −Im−1] and W = [0m−1 −Im−1]
T . (12)

Proposition 1. The multi-agent system achieves con-

sensus on xi(t) if and only if the lumped disagreement vec-

tor z(t) reaches the origin.

Proof. The multi-agent system is said to be in consensus

when xi(t) = β(t),∀i = 1, · · · , m, with arbitrary β(t) ∈ Rn,

or equivalently x(t) = 1m ⊗β(t). Initially, consider that the

multi-agent system achieves consensus, thus, from (10),

z(t) = (U ⊗ In)(1m ⊗ β(t)) =

(U1m) ⊗ β(t) = 0m−1. (13)

Therefore, if the multi-agent system achieves consensus on

xi(t), then z(t) goes to zero. Conversely, assume that z(t)

reaches the origin, thus, from (11),

x(t) = 1m ⊗ x1(t) + (W ⊗ In)0m−1 =

1m ⊗ β(t). (14)

Then, if z(t) is at the origin, the multi-agent system is in

consensus. �
Based on the disagreement on the state variables, we as-

sess consensus according to Definition 1 by studying the

stability of the disagreement system z(t). In order to derive

the next transformation, consider Assumption 1 regarding

the network topology.
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Assumption 1. The network topology described by the

directed graph G of the multi-agent system with communi-

cation delay is assumed to be a regular graph with Δ = Im.

In this context, we write the dynamics of z(t) by tak-

ing the time-derivative of (10), considering the closed-loop

dynamics of the multi-agent system in (8) with Assump-

tion 1 (i.e., Δ = Im), and the inverse transformation given

by (11). Therefore, we obtain the following reduced-order

system:

ż(t) = (U ⊗ In)(Im ⊗ (A − BK))x(t)+

(U ⊗ In)((Im − L) ⊗ BK)x(t − τ ). (15)

Replacing (11) into (15), it yields:

ż(t) = (U ⊗ In)(Im ⊗ (A − BK))(1m ⊗ x1(t))+

(U ⊗ In)(Im ⊗ (A − BK))((W ⊗ In)z(t))+

(U ⊗ In)((Im − L) ⊗ BK)(1m ⊗ x1(t − τ ))+

(U ⊗ In)((Im − L) ⊗ BK)((W ⊗ In)z(t − τ )).

Since U1m = 0m−1 and L1m = 0m, then the terms with

x1(t) vanish. Finally, the dynamics of z(t) can be written

as

ż(t) = ĀMz(t) + B̄Mz(t − τ ) (16)

where ĀM = Im−1⊗(A−BK) and B̄M = (Im−1−L̄)⊗BK,

with L̄ = ULW .

Related to the transformed Laplacian matrix L̄, consider

Lemma 5.

Lemma 5. Consider the Laplacian matrix L of a graph

that has a directed spanning tree. Then, the eigenvalues of

the transformed matrix L̄ = ULW , with U and W given in

(12), are the nonzero eigenvalues of L, which are all in the

open right half-plane.

Therefore, the main result of this paper follows from the

stability analysis of the delayed system in 16. Stability

conditions for time-delay systems have been studied in the

literature using a myriad of techniques. For instance, the

Lyapunov-Krasovskii theory can be used in the case of time-

varying delays, and many recent and interesting results have

been concerned on efficiently reducing conservativeness of

sufficient conditions, see [19−23] for discrete-time delayed

systems. On the other hand, for constant time-delay, a

method to find the zero-crossing frequencies directly based

on the conjugate symmetry property of the characteristic

equation was presented in [24], Therefore, in the present

paper considering the inherent properties of the consen-

sus problem and following the analytical results in [24], we

present necessary and sufficient conditions for consensus of

the multi-agent system in (8), with Δ = Im. It allows us to

write general results for chains of integrators, and specific

results for first-order and second-order dynamics. These

results are given in Section 5.

4.2 Analysis

Proposition 1 allows to establish that consensus for

agents with high-order integrator dynamics as in (3), sub-

ject to protocol (7) with communication delay, and net-

work topology described by a directed graph containing a

directed spanning tree with Assumption 1 being verified,

can be assessed by studying the stability of the reduced-

dimension transformed system in (16). Note that the sta-

bility of (16) is dictated by the location of the roots of the

transcendental function

Δτ (s) = det(sIn(m−1) − ĀM − B̄Me−sτ ). (17)

Next, we present a proposition that plays a central role

for the further analysis. It establishes that the stability of

the roots of Δτ (s) in (17) is equivalent to the stability of

the roots of a simple set of quasi-polynomials.

Proposition 2. Consider the multi-agent system in (3)

with protocol (7). Assume a network topology described

by a directed graph with Assumption 1 and containing a

directed spanning tree, with associated Laplacian matrix L.

Then, the multi-agent system is consensable according to

Definition 1 in the presence of communication delay τ > 0

if and only if all roots of

pi(s) = sn +
(
1 + (λi{L} − 1)e−sτ

) n∑
p=1

sp−1αp (18)

have negative real parts, for i = 1, 2, · · · , m − 1, such that

λi{L} refers to the nonzero eigenvalues of the Laplacian

matrix L, and αp are the elements of K in (4).

Proof. Based on Proposition 1, we have that the multi-

agent system in (8) asymptotically achieves consensus if and

only if all roots of Δτ (s) have negative real parts. Note that

Δτ (s) in (17) can be rewritten using the Laplace expansion

for computing the determinant as

Δτ (s)=det
(
snIm−1+

n∑
p=1

sp−1αp

(
Im−1−(Im−1−L̄)e−sτ))=

m−1∏
i=1

(
sn + λi

{(
Im−1 − (Im−1 − L̄)e−sτ

)} n∑
p=1

sp−1αp

)
=

m−1∏
i=1

(
sn +

(
1 − (1 − λi{L̄})e−sτ) n∑

p=1

sp−1αp

)
.

Based on Lemma 5, we can directly relate the eigenvalues

of L̄ with the nonzero eigenvalues of L. Then,

Δτ (s) =

m−1∏
i=1

(
sn +

(
1 + (λi{L} − 1)e−sτ

) n∑
p=1

sp−1αp

)

assuming the eigenvalues of L ordered such that the m-th

eigenvalue of L is zero, i.e., λm{L} = 0.

The previous equation shows that, for each nonzero

eigenvalue of L, there are n eigenvalues for the whole sys-

tem dynamics, given by the roots of the quasi-polynomials

in (18). �
In short, Proposition 2 allows us to write the character-

istic (17) as the quasi-polynomials in (18), whose roots dic-

tate consensability of the multi-agent system due to Propo-

sition 1. It is important to note that the quasi-polynomials
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in (18) do not explicitly require any transformation of the

system due to Lemma 5, this fact is given by the adoption

of the tree-type transformation in (9).

5 Main results

The following result is based on the analysis of the roots

location of the quasi-polynomials in (18), which according

to Proposition 2 allows to show consensus if all the roots

have negative real parts. When one varies the constant

value τ of the communication delay, these roots move and

eventually can change from the open-right half plane to

the open-left half plane, or vice-versa, which may cause

consensability switch. This fact is analyzed based on the

direct method for the stability analysis as in [24]. This

method relies on finding a finite number of zero-crossing

frequencies ωij , at which the roots of Δτ (s) in (17) are over

the imaginary axis, i.e., s = jωij . Furthermore, it is known

that if a zero-crossing happens at some τij , other pairs of

roots (ωij , τ
l
ij) of Δτ (s) also cross the imaginary axis with

the same period ωij infinitely many times, at the instants

τ l
ij = τij + 2lω−1

ij π, l = 0,±1,±2, · · · . (19)

Therefore, in this section, we focus on characterizing the

intervals of communication delay in which the multi-agent

system in (8) achieves consensus. The agents′ dynamics are

given as a chain of integrators and network topologies are

given as directed graphs containing a directed spanning tree

in accordance with Assumption 1.

The main result of this paper is stated in Theorem 1.

Theorem 1. Consider the multi-agent system in (3)

with protocol (7). Assume a network topology described

by a directed graph with Assumption 1 and containing a

directed spanning tree, with Laplacian matrix L. Let the

nonzero eigenvalues of L, subtracted by 1, be written in the

exponential form, i.e., λi{L} − 1 = μie
jφi . Compute:

1) NU (τ ) for τ = 0, i.e., the number of unstable roots

of Δτ (s) in (17) with τ = 0. Note that NU (0) can be

determined by the nonzero eigenvalues of Γ in (6).

2) The triplets Ψij = (ωij , τij , Φij), for i = 1, 2, · · · , m−1

and j = 1, 2, · · · , ri, with ri is the number of positive roots

of ω in the equation below for a given i. Thus, ωij , for each

μi, are the positive roots of

ρi(ω) =
∣∣∣(jω)n +

n∑
p=1

(jω)p−1αp

∣∣∣2 − μ2
i

∣∣∣ n∑
p=1

(jω)p−1αp

∣∣∣2.
(20)

Moreover, each τij is any value of τ for a given ωij that

satisfies the system of equations⎧⎪⎨
⎪⎩

sin(ωijτ − φi) =
−a0RaiI + a0IaiR

|ai|2
cos(ωijτ − φi) =

−a0RaiR − a0IaiI

|ai|2 (21)

where a0R(ω) and a0I(ω) are the real and imaginary parts

of a0(ω) ≡ (jω)n +
∑n

p=1(jω)p−1αp, respectively, and sim-

ilarly aiR(ω) and aiI(ω) are the real and imaginary parts

of ai(ω) ≡ μi

∑n
p=1(jω)p−1αp, respectively. Finally, Φij is

calculated for each ωij as the sign of

d

dω
ρi(ω)

∣∣∣∣
ω=ωij

. (22)

Now, define the set

Ψ = {(Ψij) : i = 1, 2, · · · , m − 1 and j = 1, 2, · · · , ri}.
Then, depending on the emptiness of the set Ψ consisting

of all obtained triplets Ψij , there are two possible cases.

Case 1. If Ψ = ∅, no consensability switches occur.

Therefore, if NU (0) = 0, the system achieves consensus for

τ = 0 and is still consensable for any τ > 0, alternatively, if

NU (0) > 0, the system does not achieve consensus for τ = 0

or for any τ > 0.

Case 2. If Ψ �= ∅, consensability switches may occur.

Then, in order to identify the switches, form a table such

that:

1) The first column entries are an arbitrary number of

τ l
ij > 0, given as in (19), for all τij ∈ Ψ, in the ascending

order.

2) The second column entries are the values of ωij ∈ Ψ

associated with each τ l
ij from the first column.

3) The third column entries are the values of Φij ∈ Ψ

associated with each τ l
ij from the first column.

4) The fourth column entries are given by the number of

unstable roots for a specific value of time-delay τ , NU (τ ).

Before proceeding further, add new lines between each line

in the table built so far, the elements in the fourth column

will appear only in the new lines added. The first element

of this column is NU (0), then the next ones are the number

of unstable roots for τ = τ l
ij + ε, 0 < ε 	 1. If Φij = +1

in the line below, then NU (τ ) increases by 2, if Φij = −1,

then NU (τ ) decreases by 2.

Finally, the regions in the time-delay domain where the

multi-agent system is consensable are those where NU (τ ) =

0.

An example of the resulting table described in the pro-

cedure of Case 2 is shown in Table 1.

Proof. Initially, to identify the time-delay inter-

vals of consensability, the zero-crossing frequencies ωij

of the quasi-polynomials (18) are found using the direct

method[24] in the following procedure.

Considering the conjugate symmetry of (18), for some

s = jω, the following holds:

∣∣∣(jω)n +

n∑
p=1

(jω)p−1αp

∣∣∣2 =

∣∣∣(λi{L}−1)e−jωτ
n∑

p=1

(jω)p−1αp

∣∣∣2

and writing the nonzero eigenvalues of L subtracted by 1 in

the exponential form λi{L} − 1 = μie
jφi gives (20).

If there is no solution for (20), then the roots of the poly-

nomials in (18) never cross the imaginary axis. Therefore,
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no consensability switches occur, which concludes Case 1.

On the other hand, if (20) has real solutions ωij > 0,

the associated values of delay τij can be found. We follow

a similar procedure used in [13] by separating the terms of

(18), with s = jω, in real and imaginary parts, as

pi(jω) =
(
a0R(ω) + ja0I(ω)

)
+(

aiR(ω) + jaiI(ω)
)
e−j(ωτ−φi) (23)

where a0R(ω) and a0I(ω) are the real and imaginary parts

of

a0(ω) ≡ (jω)n +
n∑

p=1

(jω)p−1αp (24)

respectively, and similarly aiR(ω) and aiI(ω) are the real

and imaginary parts of

ai(ω) ≡ μi

n∑
p=1

(jω)p−1αp (25)

respectively.

Expanding the exponential term with Euler′s formula, a

value for τij , for each ωij , can be found solving the following

system of equations:{
aiR cos(ωτ − φi) + aiI sin(ωτ − φi) = −a0R

aiI cos(ωτ − φi) − aiR sin(ωτ − φi) = −a0I
(26)

which yields (21).

Note that we can find an infinite number of values for τ

satisfying (21), which is expected due to the periodic prop-

erty of the transcendental function in (17). For each root

on the imaginary axis jωij , there are associated many peri-

odically spaced delays τ l
ij given by (19). Therefore, we can

use (21) to identify one of these time-delay values and a

number of other solutions can be obtained using (21). This

is done in order to obtain all the positive values of delays

where the crossings occur from zero up to a maximum value

of interest.

Next, we analyze the tendency of the roots in (18). This

allows to investigate consensability switches as the value of

the time-delay increases. Then, define the quantity

Φij = sign

(
Re

(
ds

dτ

∣∣∣
s=jωij

))
(27)

which is an indicator of the crossing direction of the imag-

inary root jωij . If Φij = +1, a pair of roots of (18) crosses

the imaginary axis at jωij from left to right. Conversely, if

Φi = −1, a pair of roots of (18) crosses the imaginary axis

at jωij from right to left. From [24], this is given by the

sign of (22).

Finally, it remains to determine the number of roots, if

any, in the right half-plane, when τ = 0. It can be assessed

from the eigenvalues of Γ in (6). Note that, as from [24],

for an infinitesimally small τ , there will be also infinite new

roots of (18) at the infinity of the left half-plane, since the

degree of the polynomial a0(ω) is strictly greater than the

degree of ai(ω).

Then, sorting this data in the ascending order of time-

delays τ l
ij , and considering the increase, or decrease, in the

number NU (τ ) of roots in the open right half-plane, the

multi-agent system is able to achieve consensus whenever

NU (τ ) = 0. This concludes Case 2. �
Theorem 1 brings out a structured methodology for iden-

tifying time-delay intervals where consensus in regular di-

rected networks of multi-agent systems with high-order in-

tegrator dynamics is achieved. However, it can be further

simplified when particular cases are considered.

In the following, particular results are obtained for net-

works of agents with first-order and second-order integrator

dynamics.

Corollary 1. Agents with a single integrator dynamics,

i.e., n = 1 in (3) and in consensus protocol (7), with a regu-

lar directed network according to Assumption 1 containing

a directed spanning tree, achieve consensus independently

of the communication delay.

Proof. For n = 1, matrix Γ in (6) becomes −α1L, and

Lemma 4 is satisfied according to Lemma 1 since the graph

has a directed spanning tree. Thus, the system achieves

consensus for τ = 0, i.e., NU (0) = 0 in Theorem 1. Addi-

tionally, (20) becomes

ω2 + α2
1 − μ2

i α
2
1 = 0 (28)

ω2 = α2
1(μ

2
i − 1). (29)

Note that the eigenvalues of L are related to λi{L} =

λi{Δ − A}, and from Assumption 1 of regular graphs for

networks with communication delay, we have that Δ = Im,

yielding λi{L} = λi{Im − A}, such that

λi{L} − 1 = −λi{A}. (30)

Thus, the spectral radius of λi{L} − 1 gives μ2
i ≤ 1 from

Lemma 2, which yields no solutions for ω > 0 in (29).

Therefore, this is Case 1 in Theorem 1 and no crossings

occur, meaning that consensability is never lost due to uni-

form constant communication delay. �
The result presented by Corollary 1 agrees with the result

presented in [7] for systems composed of agents with single

integrator dynamics, such that consensus can be achieved

regardless of communication delay, as long as the informa-

tion from one of the agents can reach all the other agents,

i.e., the communication graph has a directed spanning tree.

Corollary 2. Agents with second-order integrator dy-

namics, i.e., n = 2 in the dynamics (3) and in the consensus

protocol (7), with a regular directed network according to

Assumption 1 containing a directed spanning tree is delay-

independent if all μi = 1 or

α1 ≤ min
i

μ̄i,α2

(
1 +

∣∣∣√(1 − μ2
i )
∣∣∣)

μ2
i

(31)
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with

μ̄i,α2 = α2
2
(1 − μ2

i )

2
. (32)

If not, crossings occur, and can happen in both directions.

Thus, consensability switches may occur.

Proof. The proof follows from Theorem 1. For second-

order integrator, (20) becomes

| − ω2 + jωα2 + α1|2 − μ2
i |jωα2 + α1|2 = 0 (33)

ω4 + ω2(α2
2(1 − μ2

i ) − 2α1) + α2
1(1 − μ2

i ) = 0 (34)

yielding

ωi =

(
2α1 − α2

2(1 − μ2
i ) ±

√
Ξ

2

) 1
2

(35)

where Ξ = (α2
2(1−μ2

i )−2α1)
2 −4α2

1(1−μ2
i ), Alternatively,

(35) can be written as

ωi =

⎛
⎝α1 − μ̄i,α2 ±

√
(μ̄i,α2 − α1)

2 − 2

(
α1

α2

)2

μ̄i,α2

⎞
⎠

1
2

(36)

with μ̄i,α2 given in (32).

First, in order to exist real ωi > 0, the term in the square-

root in (36) has to be greater than or equal to zero, i.e.,

(μ̄i,α1 − α1)
2 − 2

(
α1

α2

)2

μ̄i,α2 ≥ 0

(μ̄i,α1 − α1)
2 − α2

1(1 − μ2
i ) ≥ 0

(μ̄i,α2)2 − 2μ̄i,α2α1 + α2
1μ

2
i ≥ 0. (37)

Thus, the roots α1 for (37) are

α′
1 =

μ̄i,α2

(
1 −

∣∣∣√(1 − μ2
i )
∣∣∣)

μ2
i

(38)

α′′
1 =

μ̄i,α2

(
1 +

∣∣∣√(1 − μ2
i )
∣∣∣)

μ2
i

. (39)

Next, different hypotheses are considered depending on

the location of α1 in terms of α′
1 and α′′

1 .

Hypothesis 1. If α′
1 < α1 < α′′

1 , it implies that � ωi >

0, ωi ∈ R.

Since μ2
i > 0 in (37), if α′

1 < α1 < α′′
1 , there is no solution

for ωi > 0, ωi ∈ R, and thus no crossings occur.

Next condition for the existence of ωi > 0, ωi ∈ R, in

(36), is that

α1 − μ̄i,α2 ±
∣∣∣∣
√

(μ̄i,α2 − α1)
2 − α2

1(1 − μ2
i )

∣∣∣∣ > 0 (40)

thus, consider Hypotheses 2 and 3.

Hypothesis 2. If α1 < α′
1, it implies that � ωi > 0,

ωi ∈ R.

For an arbitrary α̌′
1 in the interval 0 < α̌′

1 < α′
1, it can be

shown that α̌′
1 < μ̄i,α2 . Thus, for α1 = α̌′

1, it is sufficient

to show

α̌′
1 − μ̄i,α2 +

∣∣∣∣
√

(μ̄i,α2 − α̌′
1)

2 − α̌′2
1 (1 − μ2

i )

∣∣∣∣ > 0∣∣∣∣
√

(μ̄i,α2 − α̌′
1)

2 − α̌′2
1 (1 − μ2

i )

∣∣∣∣ > μ̄i,α2 − α̌′
1.

Since μ̄i,α2 − α̌′
1 > 0, then

(
μ̄i,α2 − α̌′

1

)2 − α̌′2
1 (1 − μ2

i ) > (μ̄i,α2 − α̌′
1)

2

α̌′2
1 (1 − μ2

i ) < 0. (41)

Condition (41) is a contradiction, thus (40) has no solution

for ωi > 0, ωi ∈ R, and thus no crossings occur.

Hypothesis 3. If α1 > α′′
1 , it implies that ∃ ωi > 0,

ωi ∈ R, if and only if μi < 1.

For an arbitrary α̂′′
1 in the interval α̂′′

1 > α′′
1 , it can be

shown that α̂′′
1 > μ̄i,α2 . Thus, for α1 = α̂′′

1 , it is sufficient

to show

α̂′′
1 − μ̄i,α2 +

∣∣∣∣
√

(μ̄i,α2 − α̂′′
1 )2 − α̂′′2

1 (1 − μ2
i )

∣∣∣∣ > 0∣∣∣∣
√

(μ̄i,α2 − α̂′′
1 )2 − α̂′′2

1 (1 − μ2
i )

∣∣∣∣ > μ̄i,α2 − α̂′′
1 .

Since μ̄i,α2 − α̂′′
1 < 0, then

(
μ̄i,α2 − α̂′′

1

)2 − α̂′′2
1 (1 − μ2

i ) < (μ̄i,α2 − α̂′′
1 )2

α̂′′2
1 (1 − μ2

i ) > 0. (42)

Condition (42) is feasible if and only if μi < 1, yielding

solutions ωi > 0, ωi ∈ R, in (40). Therefore crossings occur.

If crossings occur, they occur in both directions, thus con-

sensability switches may occur. For the direction in which

the crossing occurs, (22) becomes

Φij = sgn
(
ω2

ij + μ̄i,α2 − α1

)
. (43)

Inserting (36) into (43) gives

Φij = sgn

⎛
⎝±

∣∣∣∣∣∣
√

(μ̄i,α2 − α1)
2 − 2

(
α1

α2

)2

μ̄i,α2

∣∣∣∣∣∣
⎞
⎠ (44)

which yields both positive and negative results.

From the combination of Hypotheses 1 – 3, crossings oc-

cur only when α1 > α′′
1 and μi < 1. Therefore, there are no

zero-crossing roots if

α1 ≤ min
i

μ̄i,α2

(
1 +

∣∣∣√(1 − μ2
i )
∣∣∣)

μ2
i

(45)

which turns the system into a delay-independent system. �

6 Numerical example

Consider the multi-agent system represented by

the directed network topology depicted in Fig. 1, with
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Fig. 1 Regular directed network with four agents

corresponding adjacency matrix

A =

⎡
⎢⎢⎢⎣

0 0 0 1

0.5 0 0 0.5

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎦ (46)

and Laplacian matrix

L =

⎡
⎢⎢⎢⎣

1 0 0 −1

−0.5 1 0 −0.5

0 −1 1 0

0 0 −1 1

⎤
⎥⎥⎥⎦ . (47)

The agents are considered to have second-order integra-

tor dynamics which can easily describe any mechanical sys-

tem controlled by acceleration. Therefore, we have n = 2

in (3) and (7). The example follows the application of

Corollary 2. First, the eigenvalues of λi{L} − 1 are writ-

ten in the exponential form μie
jφi :

λ1{L} − 1 = 0.647 8 = 0.647 8ej0 (48)

λ2{L} − 1 = 0.176 1 + j0.860 7 = 0.878 5ej1.369 (49)

λ3{L} − 1 = 0.176 1 − j0.860 7 = 0.878 5e−j1.369 (50)

such that

μ1 = 0.647 8, φ1 = 0 (51)

μ2 = 0.878 5, φ2 = 1.369 (52)

μ3 = 0.878 5, φ3 = −1.369. (53)

Applying Corollary 5, since μi �= 1, we set the consensus

protocol gain α2 = 1 to compute (32). Then, the maximum

value of α1 such that consensability is delay-independent is

found using (31), which yields

α1 ≤ min
μ̄i,α2

(
1 +

∣∣∣√(1 − μ2
i )
∣∣∣)

μ2
i

(54)

α1 ≤ min(1.218 3, 0.218 4, 0.218 4) (55)

α1 ≤ 0.218 4. (56)

It means that if α1 is chosen to be α1 ≤ 0.218 4, no crossings

occur and the system achieves consensus independently of

the communication delay.

6.1 Delay-independent consensus

Consider α2 = 0.21 and, for the case of a system free of

delay, consensability is checked by the nonzero eigenvalues

of Γ = Im ⊗ A − L ⊗ (BK) in (6), with A and B given

in (3) with n = 2. For this example, the eigenvalues of Γ

are 0, 0, −0.234 3 ± j0.029 6, −0.247, −0.941 8 ± j0.890 3,

and −1.400 8. The two zero eigenvalues are expected since

the agents are of second-order and the graph has a di-

rected spanning tree, according to Lemma 3. Thus, the sys-

tem achieves consensus asymptotically since all the nonzero

eigenvalues have negative real parts, according to Lemma 4.

Since the system free of delay achieves consensus, and

the value of α2 is chosen such that the system is delay-

independent, the multi-agent system will always be able to

achieve consensus for any value of communication delay τ .

Simulations are carried out for τ = 1 s, τ = 5 s and τ =

10 s, in order to show that the system is indeed consensable

for any of these cases. See the system′s state trajectories

in Figs. 2 to 4, respectively. Additionally, an error metric

given as the norm of the lumped disagreement vector ‖z(t)‖
is introduced in Figs. 2(c), 3 (c) and 4 (c) to check stability

of the transformed system as the error between the agents

decreases.

An interesting fact from Fig. 4 is that the error be-

tween the agents′ states converges to zero asymptotically

in Fig. 4 (c), although the states xi,1(t) in Fig. 2 and xi,2(t)

in Fig. 3 are varying. Note, however, that the states vary

similarly.

Fig. 2 State trajectories and error for τ = 1 s

(Color versions of one or more of the figures in this paper

are available online.)
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Fig. 3 State trajectories and error for τ = 5 s

Fig. 4 State trajectories and error for τ = 10 s

6.2 Consensus on delay intervals

Finally, assume α2 = 0.30. For the dynamics free of de-

lay, consensability is checked by the nonzero eigenvalues of

Γ as: 0, 0, −0.341 6± j0.072 6, −0.394 4, −0.834 5± j0.933 3,

and −1.253 4. The two zero eigenvalues are expected

according to Lemma 3. Since the number of positive

nonzero eigenvalues is null, then, following the procedure

in Theorem 1, we have NU (0) = 0.

Next, the triplets Ψij = (ωij , τij , Φij) are computed and

the set Ψ is written. The elements of Ψ are summarized

in Table 2. Since a nonempty set Ψ �= ∅ is obtained, this

example is the Case 2 in Theorem 1. Then, following the

procedure of Theorem 1, Case 2, Table 1 is built in the

ascending order of τ l
ij > 0.

Table 1 Consensability switches analysis

τ l
ij ωij Φij NU (τ)

2.295 8 0.551 7 1 0

6.335 8 0.259 7 −1 2

7.258 5 0.551 7 1 0

13.684 4 0.551 7 1 2

16.877 3 0.259 7 −1 4

18.647 1 0.551 7 1 2

25.073 0 0.551 7 1 4

30.035 6 0.551 7 1 6

30.526 8 0.259 7 −1 8

.

.

.
.
.
.

.

.

.
.
.
.

Table 2 Elements of Ψ

i j ωij τij Φij

2 1 0.259 7 16.877 3 −1

2 2 0.551 7 7.258 5 +1

3 1 0.259 7 6.335 8 −1

3 2 0.551 7 2.295 8 +1

By looking at Table 1, consensability intervals can be

analyzed. Note that the system is consensable in the first

time-delay interval [0, 2.295 8). As the communication time-

delay increases, the system becomes unable to achieve con-

sensus in the interval τ ∈ [2.295 8, 6.335 8]. However, if

the delay is even greater within τ ∈ (6.335 8, 7.258 5), the

system is able to achieve consensus again, loosing con-

sensability after τ ≥ 7.258 5. Thus, the system is con-

sensable in two disconnected intervals τ ∈ [0, 2.295 8) and

τ ∈ (6.335 8, 7.258 5), because after τ = 7.258 5, there will

be always more roots crossing the imaginary axis from left

to right (Φij = +1) than from right to left (Φij = −1),

which prevents the system for achieving consensus ever

again. In order to illustrate this situation, a simulation is

carried out and the system state trajectories are presented

for τ = 2, τ = 4, τ = 7, and τ = 8, in Figs. 5 to 8, respec-

tively.

This last scenario serves as a counterexample for the

usual claim that the time-delay only degrades system′s per-

formance.
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Fig. 5 State trajectories and error for τ = 2 s

Fig. 6 State trajectories and error for τ = 4 s

Fig. 7 State trajectories and error for τ = 7 s

Fig. 8 State trajectories and error for τ = 8 s
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7 Conclusions

This paper presented a procedure to identify the com-

munication time-delay intervals in which consensus can be

achieved, considering directed network topologies of multi-

agent systems described by high-order integrator dynam-

ics. The special case presented for agents with single inte-

grator dynamics is consistent with previous results in the

literature for communication delay, which shows that the

effect of communication delay can prevent consensus only

for second-order or higher-order. Besides, for second-order

or higher-order, increasing the value of the communication

delay does not always avoid consensus, but it can turn the

system consensable in given intervals, as given in the numer-

ical example. It serves as a counterexample for the usual

acceptance that the time-delay only degrades the system′s
performance. This result makes clear the importance of

analyzing consensus in different intervals of the communi-

cation delay. As illustrated in the numerical example, if a

multi-agent system does not achieve consensus for a given

time-delay, it may achieve consensus for a greater one.
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