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Abstract: The goal of this paper is to propose a unique control method that permits the evolution of both timed continuous Petri

net (TCPN) and T-timed discrete Petri net (T-TDPN) from an initial state to a desired one. Model predictive control (MPC) is a

robust control scheme against perturbation and a consistent real-time constraints method. Hence, the proposed approach is studied

using the MPC. However, the computational complexity may prevent the use of the MPC for large systems and for large prediction

horizons. Then, the proposed approach provides some new techniques in order to reduce the high computational complexity; among

them one is taking constant control actions during the prediction.
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1 Introduction

Petri net (PN) is a mathematical formalism with a graph-

ical paradigm successfully used for modeling, analysis and

control of discrete event systems (DES) such as manufactur-

ing processes[1−6] , telecommunications[7], logistic and traf-

fic systems[8, 9]. When timed discrete Petri nets (TDPN)

are considered, numerous contributions based on schedul-

ing control have been developed. The control sequence is

usually determined thanks to the use of heuristic functions

based on Dijkstra and A* algorithms which just generate

the required portion of the reachability graph that contains

the optimal path from the initial to the final marking[10]. A

hybrid enhanced version of these previous methods called

dynamic look-ahead stage search whose purpose is to reduce

the search space is presented in [3]. In the same context, and

in order to minimize the maximum completion time, reac-

tive graph search algorithm based on real time A* and rule-

based supervision have been applied to TDPN[11]. Another

on-line method is based on several heuristics that reduce the

backtracking and discard unnecessary schedules in order to

find the feasible schedules of real-time systems[12]. Local

suboptimal search methods in reachability graph have been

also proposed in [13]. Unfortunately, the computational ef-

fort required to explore the reachability graph limits the

use of most of the previous methods when real time con-

trol applications are considered. In particular, the methods

are not applicable for systems with a large number of states.

This problem is known as the state explosion problem. Var-

ious studies over the past 30 years have been carried out in
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order to deal with this problem. It has been shown that

an efficient solution to tackle the state explosion problem

consists of “fluidification” (or “continuization”) which rep-

resents a usual technique introduced in [14, 15], to relax

the original integrity constraints[16, 17]. The motivations,

validity, advantages and limitations of the fluidication have

been discussed in detail in [18] (we invite the reader to con-

sider this review paper for a nice discussion). When time

is associated with the firing of the transitions, the result-

ing net is called timed continuous PN (TCPN). The lat-

ter constitutes a continuous approximation of the DES[19].

Many server approximations exist in the literature. In this

paper, we consider TCPN under infinite server semantics.

This latter can be submitted to external control actions in

order to control the system and to reach a desired state.

The resulting PN is called controlled TCPN system. The

crucial question of the control design is how to compute

the control actions. During the last years, various meth-

ods have been developed to design the optimal control un-

der some constraints. As far as the TCPN is concerned,

control structure, which consists of a linear programming

problem, is developed and solved on-line. The authors in

[20] have studied the optimal steady-state control, while in

[21], the goal was to minimize the time of the trajectory

between the initial state to the target one using linear and

bi-linear programming. However, in [22], the desired sta-

tionary marking vector and the desired asymptotic firing

rate vector have been reached thanks to the feedback con-

trol strategy. In [23], piecewise-constant control actions are

proposed according to the regions defined from the synchro-

nizations of the net. In [24], the authors introduce gradient-

based controllers to minimize the quadratic instantaneous

error between the measured output and the desired one.
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Another very attractive strategy is called model predictive

control (MPC). This method is robust against perturbation

and it represents a consistent real-time constraints method.

For these reasons it is usually and widely used in industry.

Its basic idea consists of minimizing, at each time step, a

performance criterion over a future horizon, a sequence of

control actions is then computed and only the first action

is applied to the system[25]. In [16, 26, 27], MPC-based al-

gorithms have been proposed for TCPN. But complexity

issues prevent the use of the MPC approach for large pre-

diction horizons.

In this research work, we consider the MPC-based con-

trol design of TCPN and T-TDPN. The control of DES re-

sults from the fluidification of the T-TDPN that avoids the

exploration of the state graph of the net[28]. Our contribu-

tions aim to reduce the computational complexity by using

constant control actions during the whole prediction hori-

zon, to introduce terminal constraints in the neighborhood

of the reference marking in order to ensure the stability of

the closed-loop system. In summary, this paper develops

an implicit approach called model predictive constant con-

trol (MPCC) under an adaptive prediction horizon. This

contribution is a sequel of our previous studies in [29, 30].

The article is organized as follows: Section 2 presents the

basic concepts about discrete and continuous PN systems

and introduces some notations to be used. In Section 3, the

fundamental idea of MPCC is presented. Section 4 deals

with the application of MPCC to control T-TDPN. Finally,

conclusions and some prospects are drawn in Section 5.

2 Petri nets

The reader is assumed to be familiar with continuous and

discrete Petri nets (for an introduction, we invite the reader

to consider[31−33]).

Let us, first, introduce the following notations:

1) M0: the initial marking.

2) M : the marking in the autonomous PN system.

3) td ∈ T : a discrete transition in the T-TDPN.

4) Md ∈ Nn: a discrete marking in the T-TDPN.

5) tc ∈ T : a continuous transition in the TCPN.

6) Mc ∈ Rn
≥0: a continuous marking in the TCPN.

7) Dmin: the minimal duration of transitions firing.

8) λ: the maximum firing speed.

9) θ: the sampling period.

10) Z: the number of regions.

11) Az: the constraint matrix of a region Rz.

12) N : the prediction horizon of the MPCC.

13) Mref : the desired marking.

14) Xref : the desired flow.

15) (Mref , Xref ): the desired configuration.

16) ε: a small strictly positive parameter that defines a

neighborhood of the desired configuration.

17) td opt ∈ T : the optimal discrete transition in the T-

TDPN.

18) σ: an untimed control sequence.

19) σtimed: a timed control sequence.

20) H : the length of the control sequence.

2.1 Untimed Petri net systems

A PN system is a couple 〈Net, M0〉. The net struc-

ture Net is represented by the quadruplet: 〈P, T, Wpr, Wpo〉
where P = {pi}i=1, ··· , n and T = {tj}j=1, ··· , q are two non-

empty finite sets composed respectively of n = |P | places

and q = |T | transitions. The matrices Wpr and Wpo ∈ Nn×q
≥0

are respectively the input incidence and the output inci-

dence matrices which define the static structure of the net:

∀(pi, tj) ∈ P × T , Wpr(pi, tj) and Wpo(pi, tj) represent re-

spectively the weights of the arcs from pi to tj and from tj

to pi. Let W = Wpo−Wpr denote the incidence matrix. For

each place pi, the current marking is defined by mi ∈ N≥0.

The marking vector is denoted as M ∈ Nn
≥0. M0 ∈ Nn

≥0

denotes the initial marking of the PN. Each node v ∈ P ∪T

has its sets of input and output nodes respectively denoted

as ◦v and v◦. Let η(tj , M) be the enabling degree of a

transition tj . This latter is given by (1):

η(tj , M) = min
pi∈◦tj

{⌊
mi

Wpr(pi, tj)

⌋}
(1)

where �·� is the integer part of (·). A transition tj is en-

abled at M if and only if (iff) η(tj , M) > 0. In this case,

η(tj , M) measures the maximum number (or quantity) of

firings of the enabled transition tj . Hence, the amount in

which tj can fire is restricted to an integer α ∈ N≥0 such

that 0 < α ≤ η(tj , M). The marking variation ΔM result-

ing from the firing of tj is defined by (2):

ΔM = α×W (:, tj) (2)

where W (:, tj) is the j-th column of the incidence matrix

W . The series of transitions which successively fire from an

initial state M0 to another one M is represented by the fir-

ing sequence σ. The mathematical representation is given

by M0 [σ →M ]. Such a sequence is characterized by the

firing count vector Γ = (γj)j=1, ··· , q where γj stands for the

cumulative number of firings of tj in the sequence σ. The

PN reachability set R(Net,M0) denotes the set of all mark-

ings which are reachable from the initial marking through

a finite sequence σ. Thus, if M ∈ R(Net, M0), the state

equation is written as (3):

M = M0 + W × Γ. (3)

Certain useful invariant laws can be found thanks to the

right and left natural annuler of the incidence matrix. If

∃Z ≥ 0 such that Zt ×W = 0, Z is called a P-semi-flow. If

Z > 0, the PN is said to be consistent. Similarly, if ∃Y ≥ 0

such that W × Y = 0, Y is called a T-semi-flow. If Y > 0,

the PN is said to be conservative[32, 34].

2.2 T-timed discrete PN

T-TDPN is a DPN to which a vector of the minimal du-

ration of transitions firing is added. This latter is denoted

as Dmin = (dmin j)j=1, ··· , q ∈ Rq
≥0. Therefore, a T-TDPN

system is represented by a triplet 〈Net, Dmin, M0〉. Each
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transition td
j , j = 1, · · · , q, may fire at a discrete marking

Md and at time τ if it is enabled at Md and if all tokens

required to fire td
j have been reserved, at least, from time

τ − dmin j (i.e., for a duration not less than dmin j)
[31].

2.3 Untimed continuous Petri nets

Unlike DPN, each continuous transition tc
j , j = 1, · · · , q

of a continuous PN is enabled at the continuous marking

Mc iff ∀pi ∈◦ tc
j , m

c
i > 0. Its enabling degree is no longer

restricted to an integer. It is given by (4):

η(tc
j , M

c) = min
pi∈◦tc

j

{
mc

i

Wpr(pi, tc
j)

}
. (4)

Thus, the firing of tc
j from a real amount αc such that

0 < αc ≤ η(tc
j , M

c) leads to a new marking computed with

(2).

Some pioneer works, such as [35], have been performed

to study the conservation of important properties through

the fluidification. What is crucial to underline is that some

properties may be ensured like boundedness and reachabil-

ity (the reachability space of the DPN is included in the

reachability space of the CPN)[35]. However, some others

such as liveness and deadlock-freeness can neither be ob-

served nor analyzed once the relaxation is performed be-

cause the CPN and its corresponding DPN do not have the

same behavior[35]. Consequently, these properties cannot

be ensured. As far as liveness is concerned, structural live-

ness can be ensured but this does not imply liveness[35].

2.4 Timed continuous Petri nets

TCPN is a continuous PN to which a vector denoted by

λ, which contains the maximum firing speed of each tran-

sition tc
j , is added such that λ = (λj)j=1, ··· , q ∈ Rq

≥0 and

λ[tc
j ] = λj . Hence, the TCPN system is given by a triplet

〈Net, λ,M0〉. Explicitly, the state equation of such a system

is defined by (5):

Ṁc(τ ) = W × F (τ ) (5)

where F (τ ) stands for the firing flow such that F (τ ) =(
fj(τ )

)
j=1, ··· , q

. Infinite server semantics are considered

throughout this paper[31, 33, 36]. Thereby, the maximum

flow through each transition tc
j is written in (6) as the prod-

uct of the maximum firing speed and the enabling degree.

It measures the maximum amount of tokens that can pass

through tc
j per time unit (second (s) or another time unit):

fj(τ ) = λj × η
(
tc
j , M

c(τ )
)

= λj × min
pi∈◦tc

j

{
mc

i(τ )

Wpr(pi, tc
j)

}
.

(6)

The reachability set of TCPN is defined by

R(Net, λ, M0). It can be divided into one or several re-

gions as follows: R(Net, λ, M0) = R1 ∪ · · · ∪ Rz ∪ · · · ∪ RZ

such that the total number of regions satisfies (7):

Z ≤
q∏

j=1

|◦tc
j |. (7)

Each region Rz, z = 1, · · · , Z, has a unique configuration

represented by a constraint matrix denoted by Az such that

Az ∈ Rq×n
≥0

[20]. In order to define explicitly these regions

(i.e., the constraint matrices), critical places are defined,

they correspond to the subset of places that limit the flow

of transitions. In the interior of each region, each transition

tc
j has a single critical place pi that satisfies (8):

mc
i (τ )

Wpr(pi, tc
j)

= η
(
tc
j , M

c(τ )
)
. (8)

Note that at the borders of regions, several equivalent criti-

cal places may exist for a same transition, in that case, only

one is selected[21]. Consequently, each row j = 1, · · · , q of

the constraint matrix Az has only one non-null element in

the i-th position:

Az(t
c
j , pi)

⎧⎨
⎩

1

Wpr(pi, tc
j)

, if pi is the critical place of tc
j

0, otherwise.

(9)

Thereby, if Mc(τ ) ∈ Rz, the enabling degrees of all transi-

tions can be explicitly expressed as the product Az×Mc(τ ).

Let Λ be a diagonal matrix such that Λ = diag(λ). In a ma-

trix form, the firing flow F (τ ) can be written as (10):

F (τ ) = Λ×Az ×Mc(τ ). (10)

Moreover, the state (5) is expressed by (11):

Ṁc(τ ) = W × Λ×Az ×Mc(τ ). (11)

Finally, a linear system is obtained in each region Rz.

2.5 Controlled TCPN

The PN systems, which are subjected to an external

control action U = (uj)j=1, ··· , n ∈ Rq
≥0 applied to the

transitions, are called controlled (or forced) PN systems.

Throughout this paper, all transitions are assumed to be

controlled[37]. In [33], the authors have mentioned that

since the transitions model the actuators in real machines

or the servers in a station, then the control actions can only

slow down or stop the firing flow of the controlled transitions

in order to control the system and to reach the steady state

configuration. This latter is defined by (Mref , Xref ) where

Mref corresponds to a desired marking, which is reach-

able from the initial one M0, and Xref defines the desired

flow. It should be pointed out that the desired configura-

tion should be an equilibrium point[20]. Hence, once it is

reached, it should be maintained. Since Ṁ(τ ) = W ×X(τ ),

then Mref and Xref should satisfy the following conditions:⎧⎪⎪⎨
⎪⎪⎩

Xref ≥ 0

Xref ≤ Λ× Az ×Mref

W ×Xref = 0.

(12)

There exist two control approaches either additive[33] or

multiplicative approach[24]. This paper deals with the ad-

ditive approach for which the controlled flow of TCPN de-

noted by X = (xj)j=1, ··· , q is written, for each transition

tc
j , as: xj(τ ) = fj(τ )− uj(τ ), where fj(τ ) is the maximum
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flow of the transition tc
j in the corresponding uncontrolled

system and uj(τ ) stands for the applied control action[33].

If Mc(τ ) ∈ Rz, the matrix form of X(τ ) is expressed by

(13):

X(τ ) = F (τ )− U(τ ) = Λ× Az ×Mc(τ )− U(τ ). (13)

Since the flow can only be slowed down and cannot be neg-

ative, the control action U(τ ) is dynamically bounded as

follows: 0 ≤ U(τ ) ≤ Λ × Az ×Mc(τ ). Consequently, the

overall behavior of the controlled TCPN system, in region

Rz, is ruled by the system (14):{
Ṁc(τ )=W ×X(τ )=W × Λ× Az ×Mc(τ )−W × U(τ )

0 ≤ U(τ ) ≤ Λ× Az ×Mc(τ ).

(14)

A sampled time approximation of the continuous time

system (14) can be obtained with: τk = θ × k, where

k defines the sampling index, θ denotes the sampling pe-

riod and τk corresponds to the discrete time. Hence, a

discrete time approximation of the TCPN is obtained. It

will be referred, throughout this article, by θ−TCPN =

〈Net, λ,M0, θ〉. Given that M0 ≥ 0, the sampling period

should be small enough so that any marking Mc(τk) reach-

able from M0 is non-negative. It has been proved in [34]

that θ must verify:

∀pi ∈ P ,
∑

tc
j
∈p◦

i

λj × θ < 1. (15)

Moreover, let us define R(Net, λ, M0, θ) as the reachabil-

ity space of the θ−TCPN. According to [34], as long as θ

verifies (15), this set coincides with the reachability space

R(Net, λ, M0) of the TCPN. Consequently in order to pre-

serve these properties, it is assumed throughout this paper,

the sampling period verifies the inequality given by (15).

At each discrete time τk, (16) rules the behavior of the

sampled time approximation of (14) in each region Rz:{
Mc(τk+1) = Mc(τk) + θ ×W ×X(τk)

X(τk) = Λ×Az ×Mc(τk)− U(τk).
(16)

Consequently, the marking Mc(τk+1) can be expressed by

(17):

Mc(τk+1) = Bz ×Mc(τk)− θ ×W × U(τk) (17)

where the matrix Bz is given by (18):

Bz = θ ×W × Λ×Az + In (18)

and In denotes the identity matrices of dimension n× n.

The main purpose of the following sections is to reach

and to maintain a desired marking. A new approach, in-

spired from the MPC, is brought out in order to compute,

under some constraints related to the firing flow, the control

actions which achieve that goal.

3 Model predictive constant control

The MPC applied to θ−TCPN optimizes a certain cost
function that permits the evolution of the system from a

current state defined by the initial marking M0 and its cor-
responding unforced flow, to the configuration characterized
by the desired marking Mref ∈ R (Net, λ, M0, θ) and the
desired flow Xref . The standard form of the cost function
used by the on-line MPC algorithm to control θ−TCPN is
given by (19)[34]:

J(τk+N ) =(
Mc(τk+N ) − Mref )t × QM × (

Mc(τk+N ) − Mref

)
+

N−1∑
e=0

((
Mc(τk+e) − Mref

)t × QMI × (
Mc(τk+e) − Mref

)
+

(
X(τk+e) − Xref

)t × QX × (
X(τk+e) − Xref

))

(19)

where
(
Mc(τk+N)−Mref

)t×QM×
(
Mc(τk+N)−Mref

)
rep-

resents the quadratic error between the continuous mark-

ing at the prediction horizon N and the desired one.∑N−1
e=0

(
Mc(τk+e)−Mref

)t×QMI×
(
Mc(τk+e)−Mref

)
and∑N−1

e=0

(
X(τk+e)−Xref

)t×QX ×
(
X(τk+e)−Xref

)
denote

respectively the sum of the quadratic errors between the in-

termediate markings Mc(τk+e) and Mref , and between the

intermediate flows X(τk+e) and Xref . QM , QMI and QX

are positive matrices defining the weight of each term.

For simplicity, throughout this paper they are defined by:

QM = rM × In, QMI = rMI × In and QX = rX × Iq, where

(rM , rMI , rX) ∈ R3
≥0.

In [30], an MPC criterion, which takes into account the

flow variations, has been introduced in order to reduce the

actuator solicitation. The method has been developed for

a single step prediction horizon. In the following para-

graph, an implicit control scheme which limits the com-

putational complexity and which is suitable for larger pre-

diction horizons, is proposed. It will be demonstrated that

such horizons are required to solve control problems with

hill-climbing phases (i.e., phases during which the mark-

ing moves necessarily away from the reference before it

can reach it). Indeed, some configurations are such that

to achieve a goal, the current state must first move away

from the target. In other words, there does not exist any

direct trajectory that systematically decreases the distance

between the initial and the target marking. Thus, if the

prediction horizon is too small, the obtained markings will

be farther than the previous one and consequently the MPC

will not converge to the desired configuration. In that case,

the horizon of prediction has to be increased to predict “far

enough”. The problem of hill-climbing phases depends, on

the one hand, on the structure of the PN and on the other

hand, on the initial and target markings.

Basically, the problem investigated by the authors in [16]

and ours are the same. Indeed, the aim is to find a con-

trol action U optimizing a certain cost function that drives

the system from an initial configuration to a desired one.

Both contributions are also motivated by the same difficulty

which is the computational complexity that prevents the use

of MPC for large systems with large prediction horizons.

This complexity results from the piecewise-affine structure

of the TCPN that multiplies at each step the number of
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quadratic problems to be solved. Two major differences

between our method and that of [16], must be noticed:

1) The authors in [16] have proposed an explicit MPC

scheme that is an alternative to the usual implicit one. It

is composed of on-line and off-line parts. As mentioned in

[16], the most troublesome procedure is done off-line. Its

main idea is to split the controllable set into polytopes de-

scribed by linear inequalities in which the control action U

is described as a piecewise affine function of the state. All

linear and quadratic programs are solved off-line and then

the on-line part applies the adequate feedback depending

on the polytope that the marking belongs to. In contrast,

the approach, proposed throughout this paper, is mainly

based on the implicit scheme, it includes some simplifica-

tions. First, the intermediate markings and flows are no

longer taken into account in the expression of the cost func-

tion J . Second, the control action is assumed to be constant

over the prediction horizon (but it changes from one step

to another). Third, the prediction horizon N is updated

on-line in a given range. These simplifications reduce the

exponential explosion of region switches.

2) The hill-climbing phase problem has not been investi-

gated in [16]. In such problem, a large prediction horizon

is recommended since a small one does not predict “far

enough” to detect the fact that the cost function J will

be reduced after climbing. Consequently, it is necessary

to increase N until the value that ensures the convergence

of the system to the desired configuration. Therefore, if

the explicit or the usual implicit MPC are considered to

resolve the hill-climbing phase problem, we will face two

major difficulties. As far as the explicit MPC is consid-

ered, the computational complexity of the off-line part will

highly increase and it can be prohibitive for certain values

of N [16]. In addition, if the modeled system has many re-

gions, the on-line part will encounter a serious difficulty to

choose the adequate feedback to be applied. Concerning the

usual implicit MPC, the control scheme can no longer be

implementable for large prediction horizons since the com-

putation time required to solve the quadratic problem for

one iteration is larger than the sampling period. Thereby,

the implicit and the explicit schemes are not applicable to

complex systems[16].

In [27], the control method is also based on the MPC.

Fundamentally, the control design problems investigated

by the authors in [27] and ours are quite different. Ob-

viously, both papers use the MPC controller and try to im-

prove asymptotic stability. But we use dissimilar concepts

to reach the aims. First of all, in [27], the authors have

assumed that the system is functionally distributed and

composed of several subsystems interconnected by means

of some places that model buffer in the original system. In

contrast, in the proposed paper, non-distributed systems

have been considered. Secondly, in [27], the aim is, on one

side, to drive all the subsystems from a current marking to

their desired one (the desired flow has not been taken into

account) and on the other side, to ensure the asymptotic

stability of the system. In this regard, the authors have

proposed a centralized MPC controller and they have as-

sumed that, during the prediction, the obtained markings

belong to a closed convex subset of the reachability space.

Then, they have focused on the local control of distributed

systems and they have applied the developed MPC con-

troller as a local controller for each subsystem. However,

in the proposed control method, the desired configuration

is a steady state composed of desired marking and flow.

Besides, the MPCC, with constant control actions during

the prediction, reduces the computational complexity. The

adaptive prediction horizon solves the problem of the hill-

climbing-phases. To ensure stability, we suppose that, in

the β neighborhood of the desired marking, a terminal con-

straint is added. This constraint ensures that the marking

belongs to a straight line Mc(τk)−Mref
[34].

3.1 Model predictive constant control for
θθθ-TCPN

In order to avoid the computational complexity, the com-

binatorial explosion problem of the constraints and of the

search space, the idea is to develop MPC with constant

control sequences over an adaptive prediction horizon that

depends on the variation of J and on the region switches.

The proposed approach is called MPCC. The considered

problem is to minimize the cost function (20) which is a

simplified form of (19):

J(τk+N) = JM (τk+N) + JX(τk+N−1) (20)

where JM (τk+N) and JX(τk+N−1) are respectively defined
by (21) and (22):

JM (τk+N ) =
(
Mc(τk+N )−Mref

)t ×QM × (
Mc(τk+N )−Mref

)
(21)

JX(τk+N−1) =
(
X(τk+N−1)−Xref

)t×QX×(
X(τk+N−1)−Xref

)
(22)

so that at each prediction step e = 1, · · · , N , the flow

X(τk+e−1) must verify the following constraints:

0 ≤ X(τk+e−1) ≤ F (τk+e−1) (23)

where F (τk+e−1) is the corresponding unforced flow.

The control actions are assumed to be constant over the

prediction horizon. Consequently, taking into account the

intermediate markings and flow will not change significantly

the computation of U and the obtained results in both cases

will be almost the same. Moreover, it should be pointed

that even if the proposed approach computes a control ac-

tion U such that the intermediate markings are not taken

into consideration in the cost function J , they satisfy all

constraints (in term of region and of positivity of the firing

speeds).

Proposition 1 shows that the optimization of cost func-

tion (20) under the constraints (23) may be transformed

into a quadratic optimization problem[38].

Proposition 1. Let 〈Net, λ, M0, θ〉 be a θ−TCPN sys-

tem such that all the transitions are controllable. Let N > 0

and assume that (Mref , Xref ) is a reachable configuration
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that verifies (12) and that the marking Mc(τk) stays in

the same region Rz during the interval [τk, τk+N [. Then,

the constant control U(τk) that minimizes the cost func-

tion (20), under the constraints (23), is the solution of the

quadratic optimization problem (24) under the constraints

(25):

U(τk)=arg min
U

{
1

2
× U(τk)t ×Ω×U(τk) + ρ(τk)t ×U(τk)

}

(24)

∀e = 1, · · · , N,
a)Se−1 × U(τk) ≥ 0

b)Se−1 × U(τk) ≤ Λ × Az × (Bz)e−1 × Mc(τk).
(25)

Note that the inequalities (25) are considered element-wise.
Ω and ρ(τk) are respectively defined by (26) and (27):

Ω = θ2 ×W t ×Σt
N ×QM ×ΣN ×W +St

N−1 ×QX ×SN−1 (26)

ρ(τk) = θ × W t × Σt
N × QM × (

Mref − BN
z × Mc(τk)

)
+

St
N−1 × QX × (

Xref − Λ × Az × (Bz)N−1 × Mc(τk)
)
(27)

such that Bz is defined by (18) and:

Σ0 = 0, Σe =

e−1∑
j=0

(Bz)
j , ∀e = 1, · · · , N (28)

Se = θ × Λ× Az × Σe ×W + Iq,∀e = 0, · · · , N. (29)

Proof. Under the assumption that, the control action

is constant and the markings stay in the same region Rz

during the interval [τk, τk+N [, the markings Mc(τk+e) and

the forced flows X(τk+e−1), ∀e = 1, · · · , N are iteratively

obtained from (16). They are respectively expressed by (30)

and (31):

Mc(τk+e) = Be
z ×Mc(τk)− θ × Σe ×W × U(τk) (30)

X(τk+e−1) = Λ×Az×Be−1
z ×Mc(τk)−Se−1×U(τk). (31)

When e = N , Mc(τk+e) and X(τk+e−1) are used to rewrite

the criteria JM (τk+N) and JX (τk+N). All constant terms

with regard to U(τk) are removed. Thereby, simplified

forms of these criteria are introduced as JM,U (τk+N) and

JX,U (τk+N−1) which are given by (32) and (33):

JM,U (τk+N) =θ2 × U(τk)t ×W t × Σt
N ×QM × ΣN ×W×

U(τk) + 2× θ × (
Mref −BN

z ×Mc(τk)
)t×

QM ×ΣN ×W × U(τk)

(32)

JX,U (τk+N−1) =U(τk)t × St
N−1 ×QX × SN−1 × U(τk)+

2× (
Xref−Λ× Az×BN−1

z ×Mc(τk)
)t×

QX × SN−1 × U(τk).

(33)

Hence, the cost function is reduced to JU (τk+N) (34) which

depends on the control action U(τk):

JU (τk+N) =
1

2
× (

JM,U (τk+N) + JX,U (τk+N−1)
)
. (34)

JU (τk+N) is rewritten by (35):

JU (τk+N) =
1

2
×U(τk)t×Ω×U(τk)+ ρ(τk)

t×U(τk) (35)

such that the terms Ω and ρ(τk) are defined by (26) and

(27). Given that, ∀e = 1, · · · , N , F (τk+e−1) = Λ × Az ×
Be−1

z ×Mc(τk), the constraints (25) on the control action

U(τk) are obtained by substituting, X(τk+e−1) by (31) in

(23). �
Note that the optimization problem (24) is always fea-

sible, for any Mc(τk) ≥ 0, as it admits at least one so-

lution (U(τk) =
[
0 · · · 0

]t

is a trivial solution that

satisfies all the constraints given by (25)). Notice that

∀e = 1, · · · , N, F (τk+e−1) = Λ×Az ×Be−1
z ×Mc(τk) ≥ 0.

Asymptotic convergence and stability of MPC can be ob-

tained by adding a terminal constraint (TC)[39]. This

method has been adapted for θ−TCPN in order to en-

sure the convergence of the system toward the desired

marking[34]. The terminal constraint ensures that the con-

tinuous marking Mc(τk+1) belongs to the straight line from

Mc(τk) to Mref
[34]. It is given by (36):

Mc(τk+1) = Mc(τk) + α× (Mref −Mc(τk))

e.g., 0 < α ≤ 1. (36)

Let us first define a δ neighborhood of the desired mark-

ing as an area for which JM (τk) ≤ δ, where δ > 0. In that

neighborhood, if J decreases, N will also decrease. The

marking reaches a β neighborhood when N = 1 (β ≤ δ). In

this last phase of the trajectory, the linear constraint, given

by (36), is introduced as long as the desired configuration

is not obtained (i.e., J(τk) > ε). In contrast, the terminal

constraint is not used during the first part of the trajectory

when N is larger than 1. Consequently, the constraint to

be satisfied by the control actions is expressed as (37):

θ ×W × U+α× (
Mref −Mc(τk)

)
= (Bz − In)×Mc(τk)

e.g., 0 < α ≤ 1.
(37)

The Lyapunov stability implies that solutions that start

close enough to the equilibrium point remain also close

enough. Asymptotic stability includes Lyapunov stabil-

ity but it requires that the solutions converge to the equi-

librium. Hence, to prove the asymptotic stability of the

TCPN, a Lyapunov function must be found, and then it

must be proved that it is a strictly decreasing function.

Proposition 2 proves the asymptotic stability of the

closed-loop system thanks to the use of the terminal con-

straint.

Proposition 2. Let 〈Net, λ, M0, θ〉 be a θ-TCPN

system such that all transitions are controllable. Let

(Mref , Xref ) be a reachable configuration that verifies (12).

Assuming that there exists an instant τk from which the

β neighborhood is reached (N = 1), then the closed-loop

system is asymptotically stable.

Proof. If N = 1, the terminal constraint (36) is ap-

plied and the marking Mc(τk+1) is forced to belong to the
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straight line Mc(τk)−Mref . Equation (36) is rewritten as:

Mc(τk+1)−Mref = Mc(τk)+α× (
Mref −Mc(τk)

)−Mref

which leads to: Mc(τk+1) −Mref = (1 − α) × (
Mc(τk) −

Mref

)
. Hence, JM (τk+1), defined by (21), is reformulated

as:

JM (τk+1) = (1− α)2 × JM (τk). (38)

If 0 < α ≤ 1, the criterion JM (τk) could be used as a

Lyapunov function, since it is defined positive and strictly

decreasing (i.e., JM (τk+1) < JM (τk)). �
The previous results are used to propose a control design

encoded in Algorithm 2. Let N0 and Nmax be respectively

the initial and the maximum values of the prediction hori-

zon N . The main Algorithm 1, which controls the θ−TCPN

to reach the desired configuration, consists of computing,

at each sampling step, the control action U(τk) that mini-

mizes (35) under the constraints (25) such that the mark-

ing stays in the same region. In order to alleviate possible

hill-climbing phases, N may grow, during the iterations,

until Nmax, as long as the cost function does not decrease

(i.e., J(τk) − J(τk+N ) ≤ 0) and while the first predicted

N − 1 markings stay in the same region. When the current

marking Mc(τk) reaches a δ neighborhood of Mref and as

long as the cost function J is strictly decreasing, the pre-

diction horizon should decrease. This procedure has been

added in order to decrease the prediction horizon to N = 1

and to promote the use of the terminal constraint in the

β neighborhood.

Algorithm 1. Control of θ−TCPN using MPCC (In-

puts: M0, N0, δ, ε. Outputs: U and Mc)

1) Parameter initialization: τk ← 0, Mc(τk)←M0,

N ← N0, TC ← 0, Mc ←Mc(τk), U ← ∅

2) Compute J(τk)

3) While J(τk) > ε

4) Compute U(τk) using Algorithm 2

5) U ← U ∪ U(τk)

6) Compute X(τk), Mc(τk+1) and J(τk+1)

7) Mc ←Mc ∪Mc(τk+1)

8) If JM (τk+1) ≤ δ, then

9) If J(τk+1) < J(τk), then

10) N ← max(N − 1, 1)

11) End if

12) If N = 1, then

13) TC ← 1

14) End if

15) End if

16) τk ← τk+1

17) End while

Algorithm 2. MPCC quadratic optimization (Inputs:

Mc(τk), N , Nmax and J(τk). Outputs: U(τk) and N)

1) Parameter initialization: Nlimit ← Nmax, flag ← 0

2) While flag = 0

3) flag ← 1

4) Determine the region R
(
Mc(τk)

)
of Mc(τk)

5) If TC = 0, then

6) Compute U(τk) that minimizes (24) under

the constraints (25)

7) Compute J(τk+N )

8) Determine the region R
(
Mc(τk+e)

)
of the markings

Mc(τk+e), ∀e = 1, · · · , N − 1

9) If ∃e < N − 1 such that

R
(
Mc(τk+e)

) �= R
(
Mc(τk)

)
, then

10) Nlimit ← e

11) N ← e

12) flag ← 0

13) Else if J(τk)− J(τk+N) ≤ 0 and N < Nlimit

then

14) Increase N

15) flag ← 0

16) End if

17) Else if

18) Compute U(τk) that minimizes (24)

under the constraints (25) and (36)

19) End if

20) End while

3.2 Computational complexity

In order to compare our approach with the existing ones

and in particular with [16], Tables 1−4 determine, for each

case, the resulting computational efforts for a prediction

horizon with N steps. Different cases are distinguished ac-

cording to the definition of the performance criterion J (the

standard form 20) in Tables 3 and 4 and the simplified one

(19) in Tables 1 and 2, to the region switches (that could

be considered or not during the prediction) and finally to

the control action U (that may be constant or not). The

complexity is evaluated wrt the number of variables, the

number of constraints and wrt the number of required ele-

mentary operations to compute the cost function over the

considered prediction horizon.

One may observe that when the control action is variable,

the number of variables is multiplied by N and taking into

account a changing of regions increases the complexity by

a factor ZN−1 (where Z represents the number of regions).

We draw the attention of the readers that our approach

presents a lower cost than that of [16].

The parameter Nmax is extremely important in the pre-

dictive control. It should be carefully chosen in order to en-

sure that the computational time required at each step by

the MPCC does not exceed the sampling period of the con-

troller. For that reason, Proposition 3 provides an upper-

bound for this parameter. Consequently this result ensures

that the approach is consistent with real-time constraints.

Proposition 3. Let 〈Net, λ, M0, θ〉 be a θ−TCPN sys-

tem such that all transitions are controllable. The maximal

value Nmax of the prediction horizon N should satisfy:

Nmax ≤
⌊

θ

Ψ(1)

⌋
(39)

where Ψ(1) is the computational time required to solve the

quadratic problem (24) under the constraints (25), for a

prediction horizon of size N = 1.

Proof. In our approach, the intermediate markings and

flows are not considered for the computation of the cost
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function and the control action is supposed to be constant

over the prediction horizon. Moreover, the marking is not

supposed to leave the current region. In that case, the com-

plexity wrt the constraints is O(N×q) where q is the number

of control actions and wrt the cost function is O
(
N×(n+q)

)
where n is the dimension of the marking. Consequently, the

complexity of the cost function is linear wrt the prediction

horizon. Thereby, the time required to compute the cost

function, at each time step τk of Algorithm 1 is linear wrt

the prediction horizon. For Nmax prediction steps, it is

given by Ψ(Nmax) = Ψ(1) × Nmax. The MPCC is imple-

mentable for Nmax if the computational time for one itera-

tion (i.e., Ψ(Nmax)) is smaller than the sampling period θ.

Thus, the inequality (39) is obtained. �

3.3 Example

Let us consider the TCPN system shown in Fig. 1 such

that the initial marking and the firing rate vector are re-

spectively M0 =
[
1 0 0

]t

and λ =
[
1 1 1 1

]t

:

Fig. 1 Example of PN system with M0 =
[
1 0 0

]t

(PN1)

Two cycles can be distinguished, namely if the transition

t1 is fired and t2 is blocked a token producer cycle is trig-

gered. Otherwise, a token consumer cycle starts. Numer-

ical simulations have been performed using the following

values: the desired configuration is
(
Mref =

[
3 0 0

]t

,

Xref =
[
0 0 0 0

]t)
the weighting factors are rM = 1

and rX = 0.1 (in order to give more importance to the

marking with regard to the flow) and the sampling pe-

riod is θ = 0.2 s (the maximum value that verifies the in-

equality given by (15)). Finally, the initial and the max-

imum prediction horizons satisfy respectively N0 = 1 and

Nmax = 25. The marking trajectory, the performance cri-

terion, the marking and the control action variations are

respectively given by Figs. 2−5.

Fig. 2 shows that Mref cannot be reached directly from

M0. At first, the marking trajectory moves away from the

desired marking, then from τk ≈ 2.6 s, it comes closer to

the target. Therefore, to decrease the performance crite-

rion J , a transient increase of J (hill-climbing phase shown

in Fig. 5) is required. The only solution to compute cor-

rectly the control action is to predict the marking over an

horizon larger than the hill-climbing phase. The adaptive

prediction horizon given by Algorithm 2, at each instant

τk is N = 13 which exactly corresponds to the duration in

which the marking approaches Mref . From τk ≈ 9.4 s,

Fig. 2 Marking trajectory of PN1

Fig. 3 Marking variations of PN1

Fig. 4 Control action of PN1

Fig. 5 Performance criterion of PN1
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Table 1 Complexity of cost function (19) without changing of region

U constant (our approach) U variable

Number of variables q N × q

Complexity wrt constraints O(N × q) O(q × N)

Complexity wrt the cost function O(N × (n + q)) O(N × (n + q))

Table 2 Complexity of cost function (19) with changing of region

U constant U variable

Number of variables q N × q

Complexity wrt constraints O(ZN−1 × N × q) O(ZN−1 × q × N)

Complexity wrt the cost function O(ZN−1 × N × (n + q)) O(ZN−1 × N × (n + q))

Table 3 Complexity of cost function (20) without changing of region

U constant U variable

Number of variables q N × q

Complexity wrt constraints O(N × q) O(q × N)

Complexity wrt the cost function O(N2 × (n + q)) O(N2 × (n + q))

Table 4 Complexity of cost function (20) with changing of region

U constant U variable (approach [16])

Number of variables q N × q

Complexity wrt constraints O(ZN−1 × N × q) O(ZN−1 × q × N)

Complexity wrt the cost function O(ZN−1 × N2 × (n + q)) O(ZN−1 × N2 × (n + q))

the δ neighborhood of the desired marking has been

reached. Consequently, the prediction horizon starts to de-

crease until τk ≈ 11.6 s. In that instant, the β neighborhood

has been reached (N = 1) and thereby the terminal con-

straint has been applied which manifests by a linear con-

tinuous trajectory shown in Fig. 2.

Let us point out that the MPC and the MPCC are

two constrained control methods. Hence, some properties

like boundedness and deadlock-freeness can be ensured by

adding suitable constraints. As far as the deadlock-freeness

is concerned, assuming that the list of deadlocks is already

known, then it can be avoided during the optimization.

Each deadlock can be encoded with a set of linear con-

straints on the marking. Adding these constraints in the

MPCC makes the deadlocks forbidden. The constrained

MPCC will act in a similar way as the monitor places used

in supervisory control methods[13]. Note that fluidifica-

tion does not preserve the deadlock-freeness in the general

case. For this reason, we prefer to keep the assumption

of deadlock-free T-TDPN in the following section. Further-

more, boundedness may be also guaranteed by adding linear

constraints to upper bound the marking of each place.

4 Model predictive constant control for

T-TDPN

The motivation of this part is to determine a control se-

quence of sub-minimal duration, which allows a T-TDPN to

reach a desired marking, without exploring the reachability

graph that may suffer from state explosion problem.

When the nets are heavily loaded, θ−TCPN systems have

been proved to be adequate approximation of T-TDPN[18].

For weakly loaded nets, the approximation may be correct

(it is not always the case[40]). In this section, it is assumed

that the θ−TCPN approximation is acceptable. Then, the

control sequence of the T-TDPN will be deduced from the

corresponding θ−TCPN controlled via the MPCC.

The proposed approach is suitable to solve scheduling

problems, in particular when makespan optimization is

concerned[11].

4.1 MPCC for T-TDPN

In this section, only deadlock-free T-TDPN with non-

immediate transition firings (dmin j �= 0,∀j = 1, · · · , q)

are considered. All discrete transitions are assumed to be

controlled. Consequently, at each instant τk, the enabled

discrete transitions, at the current discrete marking Md,

can be enforced or avoided. In other words, they are not

necessarily fired (i.e., the firing of some discrete transitions

can be delayed).

The main idea is to design the control sequence of the T-

TDPN according to the control actions generated from its

equivalent θ−TCPN (same net structure, same initial mark-

ing, same time specifications and same control goal). In-

deed, a T-TDPN system 〈Net, Dmin, M0〉 and its continuous

approximation defined by 〈Net, λ, M0, θ〉, are considered
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such that λj = 1
dmin j

. The desired marking Mref ∈ Nn
≥0

is assumed to be reachable from the initial one M0.

For each instant τk, the MPCC will be performed on

the θ−TCPN in order to compute the control action U(τk),

which minimizes the cost function JU (τk+N) under the con-

straints given by (25) and (36). Then, the instantaneous

flow X(τk) is computed. The cumulative flow multiplied

by θ, denoted as Xsum(τk) = (xsumj(τk))j=1, ··· , q and given

by (40), corresponds to the number of all tokens that have

moved through each transition tc
j until the instant τk:

Xsum(τk) = θ ×
k∑

i=0

X(τi). (40)

The link between the T-TDPN and the θ−TCPN is made

from the cumulative flow point of view. Hence, when a com-

ponent of Xsum reaches 1 for a given continuous transition

tc
j (i.e., xsum j(τk) = 1), this means that one token, at least,

has moved through the equivalent discrete transition td
j in

the T-TDPN. Two cases may occur; first, td
j is not enabled

at the current marking Md; in that case no solution could

be found, the method fails. Second, td
j is enabled and is

fired.

Let Φ be the quadratic distance between the continuous

and the discrete markings. It is defined by (41):

Φ = (Md −Mc)t × (Md −Mc). (41)

This criterion will be evaluated for each enabled discrete

transition. Let td opt be the discrete transition that min-

imizes φ (i.e., the resulting discrete marking Md moves

closer to the continuous one Mc). Two other sub-cases

have to be distinguished. On the one hand, if the transi-

tions td
j corresponds to transition td opt, then the component

of Xsum that corresponds to td
j (tc

j in the θ−TCPN) is re-

set to zero. On the other hand (if td
j does not correspond

to td opt), the continuous trajectory is cut at Mc, a new

continuous trajectory is initialized at the marking Md that

results from the firing of td
j (the initial continuous marking

is assumed to be equal to Md) and the vector Xsum is reset

to zero.

Note that, sometimes, there is more than one component

of Xsum that reaches 1. In that case, there is also more than

one possibility for the transition td
j . Thereby, the enabled

one that minimizes the criterion Φ is selected and assigned

to td
j .

Consequently, the proposed approach, encoded in

Algorithm 3, ensures that the discrete marking is as close

as possible to the continuous trajectory, as detailed in

Proposition 4. Let us point out that Algorithm 3 gives an

ordered control sequence σ of length H and a sequence Md
tot

of the successive discrete markings.

Algorithm 3. Control of T-TDPN using MPCC (In-

puts: M0, N0, δ and ε. Outputs: σ, H , Md
tot)

1) Parameter initialization: τk ← 0, h← 0, Mc(τk)←
M0, σ ← ∅, N ← N0, flag ← 1, Md

tot(h)←
Md, Md

tot ← ∅, TC ← 1, Xsum ← 0

2) Compute X(τk) and J(τk)

3) While J(τk) > ε and flag = 1

4) Compute the control action U(τk) using Algorithm 2

5) Compute X(τk), Xsum(τk), Mc(τk+1) and J(τk+1)

6) If ∃tc
j such that xsum j(τk) ≥ 1, then

7) h← h + 1

8) Determine the discrete transition td
j

9) If td
j is enabled at Md

tot(h− 1), then

10) flag ← 1

11) Compute the new discrete marking Md

12) Md
tot ←Md

tot ∪Md

13) σ ← σ ∪ td
j

14) Determine the optimal discrete transition td opt

15) If td
j = td opt, then

16) xsum j ← 0

17) Else

18) Reinitialize the continuous trajectory by Md

(i.e., Mc(τk+1)←Md
tot(h))

19) Reset Xsum(τk) to zero

20) End if

21) Else

22) flag ← 0

23) End If

24) End If

25) If JM (τk+1) ≤ δ, then

26) If J(τk+1) < J(τk), then

27) N ← max(N − 1, 1)

28) End if

29) If N = 1, then

30) TC ← 1

31) End if

32) End if

33) τk ← τk+1

34) End while

35) If flag = 1, then

36) H ← h

37) End if

Notice that the firing of each transition td
j ∈ σ respects

the temporal constraints given by Dmin. In other words,

the firing occurs as soon as possible. Then, the firing dates

are computed and stored in the temporal control sequence

σtimed.

The obtained control sequence σ leads, most of the time,

to Mref . Indeed, at any step h = 1, · · · , H , the continuous

marking can be written by Mc = Md
0 + W × Xsum where

Md
0 stands for the last discrete marking which was used

to reinitialize the continuous trajectory and Xsum is con-

sidered since that last reset. This latter can be expressed

as: Xsum = �Xsum� + {Xsum} such that �·� and {·} de-

note respectively the integer and the fractional parts of (·).
Note that �Xsum� corresponds to the firing vector of the T-

TDPN. Consequently, Md = Md
0 +W×�Xsum� = Mc−W×

{Xsum}. When θ−TCPN reaches the desired configuration,

Mc = Mref and {Xsum} = Xref . Then, the fundamental

equation of the T-TDPN is given by Md = Mref−W×Xref

with W ×Xref = 0. Consequently, Md = Mref .

Proposition 4 gives some properties satisfied by the dis-

crete trajectory of the T-TDPN which is obtained according
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to the MPCC approach. To the best of our knowledge, it is

the first attempt to derive directly a discrete MPC schema

from a continuous one.

Proposition 4. Let 〈Net, Dmin, M0〉 be a deadlock-free

T-TDPN system such that all transitions are controlled and

non-immediate. Let 〈Net, λ, M0, θ〉 be its discrete time con-

tinuous approximation such that λj = 1
dmin j

. Mref ∈ Nn
≥0.

(Mref , Xref ) is supposed to be a reachable configuration

that verifies (12). If Algorithm 3 returns a sequence Md
tot

of discrete markings that converges to Mref , then the fol-

lowing properties hold:

1) ∀h = 1, · · · , H , the discrete marking Md
tot(h −

1) is reachable from Md
tot(h) and the discrete trajectory

M0

[
σ(1) > Md

tot(1), · · · , Md
tot(H − 1) [σ(H) > is feasible

from M0 where σ(h) stands for the h-th discrete transition

of the sequence σ.

2) ∀h = 1, · · · , H , Md
tot(h) is the closest discrete mark-

ing from Mc.

Proof.

1) ∀h = 1, · · · , H , σ(h) is selected among the transi-

tions which are enabled at Md
tot(h − 1). By construction

the trajectory is feasible.

2) According to Algorithm 3, σ(h) corresponds to the

transition tc
j such that xsum j = 1. If the resulting dis-

crete marking Md
tot(h) minimizes Φ, then property 2 is sat-

isfied. Otherwise, the continuous trajectory is reinitialized

by Md
tot(h) and the property 2 is also satisfied. �

At this stage, it appears interesting to point out some dif-

ferences and limitations of the proposed approach in com-

parison with approaches, in particular, those proposed in

[1 − 6]. In [5, 6], a heuristic search based on some exten-

sions of the A* algorithm with various heuristic functions is

studied in order to design control sequences for flexible man-

ufacturing systems represented with a particular subclass

of T-TDPN named Buffer-nets. These latter nets exclude

the modeling of all assembling and disassembling operations

because the number of input and output buffers is limited

to one for each transition. This limitation does not hold

with the proposed approach. However, the main limitation

in [5, 6] concerns the search method by itself. Indeed, the

performance of the heuristic approach strongly depends on

the choice of the function that estimates the makespan. In

[5], good results are provided because it is assumed that the

selected function is the optimal one, that supposes to solve

first the problem and so the method is no longer required.

In [6], improved heuristic functions based on a resource cost

reachability matrix are proposed. Such functions provide

good results with an acceptable complexity as long as the

complete system is considered as a DES. Hence, this ap-

proach concerns only discrete event systems and cannot be

applied with fluid models. Concerning [1, 2, 4], the authors

are interested in the synthesis of a PN-based supervisor to

model automated manufacturing systems (AMS) using only

particular structures of the DPN such as feedback system

of sequential systems with shared resources (FS4R) or sys-

tem of simple sequential processes with resources (S3PR)

whereas all deadlock-free DPN are concerned by our pro-

posed method. Besides, their main purposes concerned live-

ness and deadlock-avoidance. The synthesis of such a su-

pervisor is based on a partial reachability analysis due to

a distributed control technique. Then, they have extended

their results to large scale AMS where the problem is sim-

plified by restricting the behavior of the concerned DPN

to live trajectories and deadlock-free. In other words, the

proposed algorithm has to compute only acceptable trajec-

tories that lead to the desired destination[2]. In our ap-

proach, deadlock-freeness assumption is made concerning

the T-TDPN and the developed control has to minimize

a given cost function and is realized thanks to the corre-

sponding TCPN, obtained through fluidification. In both

papers the maximal permissiveness is not ensured.

4.2 Example

In order to illustrate the proposed method, let us consider

the T-TDPN shown in Fig. 6 with M0 =
[
2 4 1 4

]t

,

Dmin =
[
1 1 1

]t

and λ =
[
1 1 1

]t

.

Numerical simulations have been performed using the

following values: the desired configuration is
(
Mref =[

7 0 0 3
]t

, Xref =
[
0 0 0

]t)
, rM = 1, rX = 0.1 (as

in the previous example), θ = 0.1 s, N0 = 1 and Nmax = 10.

The quadratic marking error JM , Xsum and the marking

trajectories (continuous and discrete one) are respectively

given by Figs. 7−9.

Fig. 6 Example of deadlock-free PN system with M0 =[
2 4 1 4

]t

(PN2)

Fig. 7 Quadratic marking error of PN2
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Fig. 8 Flow cumulative sum of PN2

Fig. 9 summarizes the obtained results. It displays the

continuous and the discrete marking trajectories which are

respectively represented by the solid and the dashed lines.

In addition, it illustrates the timed control sequence σtimed

which is identified by the circle marks. The continuous tra-

jectory is reinitialized once, which explains the discontinuity

of the quadratic marking error JM (Fig. 7).

The MPCC is applied to the TCPN and Xsum is com-

puted at each sampling period. At τk = 0.2 s, xsum 2 ≈ 1,

then tc
2 is the first selected continuous transition (see Fig. 8).

The corresponding transition td
2 is enabled at M0 in the T-

TDPN. Hence, σ(1) = td
2 and Md

tot(1) =
[
3 3 1 3

]t

.

Since td
2 minimizes the criterion Φ (td opt = td

2), xsum 2 ← 0.

The same procedure is done for the step h = 2. For h = 3,

tc
2 is also selected to fire (i.e., xsum 2 ≈ 1) and it is enabled

at Md
tot(2). However, this transition does not minimize Φ.

Therefore, the continuous trajectory is reinitialized by the

obtained discrete marking Md
tot(3) =

[
5 1 1 1

]t

that

results from the firing of td
2 (see Figs. 7 and 9), σ(3) = td

2,

Xsum is reset to zero for all transitions (see Fig. 8) and the

optimization problem is repeated. At the end of the simu-

lation, the obtained control sequence is σ = td
2 td

2 td
2 td

3 td
2.

The temporal control sequence, with respect to time con-

straints, is given by σtimed = (td
2, 1)(t

d
2, 1)(t

d
2, 1)(t

d
3, 1)(t

d
2, 1)

such that:

⎡
⎢⎢⎢⎣
2

4

1

4

⎤
⎥⎥⎥⎦

(td
2 ,1)→

⎡
⎢⎢⎢⎣

3

3

1

3

⎤
⎥⎥⎥⎦

(td
2 ,1)→

⎡
⎢⎢⎢⎣
4

2

1

2

⎤
⎥⎥⎥⎦

(td
2 ,1)→

⎡
⎢⎢⎢⎣
5

1

1

1

⎤
⎥⎥⎥⎦

(td
3 ,1)→

⎡
⎢⎢⎢⎣

6

1

0

4

⎤
⎥⎥⎥⎦

(td
2 ,1)→

⎡
⎢⎢⎢⎣
7

0

0

3

⎤
⎥⎥⎥⎦ .

(42)

5 Conclusions

This article has proposed a new approach entitled MPCC

with an aim of controlling the T-TDPN thanks to θ−TCPN.

This approach represents an extension of MPC under con-

stant control actions. It has been developed, at first, in

order to limit the computational complexity resulting from

the use of a large prediction horizon with θ−TCPN. As

a consequence, the proposed method is suitable to control

θ−TCPN with hill-climbing phases that require at first to

move away from the reference before reaching it. In ad-

dition, in order to ensure the closed-loop stability in the

neighborhood of the desired marking, a terminal constraint

has been added. Then, in a systematic way, the control

sequence that drives a deadlock-free T-TDPN, from an ini-

tial marking to the desired one has been determined thanks

to the algorithm driven by the control of the equivalent

θ−TCPN. Such an algorithm does not require the compu-

tation of the reachability graph. But, due to the local op-

timization, one should notice that the obtained control of

the T-TDPN (if it exists) is not necessarily a global optimal

control. In addition, no formal convergence proof has been

provided since the proposed approach ensures convergence

only when the conditions of Proposition 4 are satisfied. In

our future work, the proposed approach will be extended to

take into consideration the case when the selected transition

to fire is not enabled at the discrete marking. Other deci-

sions could be explored in order to improve Algorithm 3.

For instance, since the T-TDPN is deadlock-free, there is

always, at least, an enabled transition. Thereby, the control

action will be selected among the enabled transitions such

that it leads to the closest discrete marking from the con-

tinuous trajectory. The convergence of the T-TDPN will

be investigated in that case. Moreover, an enhanced study

on the conservation of some properties, like liveness and

boundedness, of the T-TDPN via the fluidification and the

MPCC will be carried out. Finally, the rejection of per-

turbations (i.e., the firing of unexpected transitions) will

be studied in order to consider discrete control problems in

uncertain functioning conditions.

Fig. 9 Marking trajectories of the TCPN and the T-TDPN de-

picted in Fig. 6
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[21] H. Apaydin-Ózkan, J. Júlvez, C. Mahulea, M. Silva. Ap-
proaching minimum time control of timed continuous Petri
nets. Nonlinear Analysis: Hybrid Systems, vol. 5, no. 2,
pp. 136–148, 2011.

[22] R. Kara, M. Ahmane, J. J. Loiseau, S. Djennoune. Con-
strained regulation of continuous Petri nets. Nonlinear
Analysis: Hybrid Systems, vol. 3, no. 4, pp. 738–748, 2009.

[23] E. Leclercq, D. Lefebvre. Feasibility of piecewise-constant
control sequences for timed continuous Petri nets. Auto-
matica, vol. 49, no. 12, pp. 3654–3660, 2013.

[24] D. Lefebvre, E. Leclercq, F. Druaux, P. Thomas. Gradient-
based controllers for timed continuous Petri nets. Interna-
tional Journal of Systems Science, vol. 46, no. 9, pp. 1661–
1678, 2015.

[25] J. Richalet, A. Rault, J. L. Testud, J. Papon. Model predic-
tive heuristic control: Applications to industrial processes.
Automatica, vol. 14, no. 5, pp. 413–428, 1978.

[26] J. J. Julvez, R. K. Boel. A continuous Petri net approach for
model predictive control of traffic systems. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A: Systems
and Humans, vol. 40, no. 4, pp. 686–697, 2010.

[27] L. W. Wang, C. Mahulea, M. Silva. Distributed model pre-
dictive control of timed continuous Petri nets. In Proceed-
ings of the 52nd IEEE Conference on Decision and Control,
IEEE, Firenze, Italy, pp. 6317–6322, 2013.

[28] M. Taleb, E. Leclercq, D. Lefebvre. Control design of timed
Petri nets via model predictive control with ContPNs. In
Proceedings of the 12th International Workshop on Discrete
Event Systems, IFAC, Paris, France, pp. 149–154, 2014.

[29] M. Taleb, E. Leclercq, D. Lefebvre. Limitation of flow vari-
ation of timed continuous Petri nets via model predictive
control. In Proceedings of American Control Conference,
IEEE, Portland, Oregon, pp. 4919–4924, 2014.

[30] M. Taleb, E. Leclercq, D. Lefebvre. Limitation of flow vari-
ation of timed continuous Petri nets via model predictive
control and Lyapunov criterion. In Proceeding of European
Control Conference, IEEE, Strasbourg, France, pp. 1825–
1830, 2014.

[31] R. David, H. Alla. Petri Nets and Grafcet: Tools for Mod-
elling Discrete Event Systems, New York, USA: Prentice
Hall, 1992.

[32] M. Silva. Introducing Petri nets. Practice of Petri Nets in
Manufacturing, Springer, Netherlands, pp. 1–62, 1993.

[33] M. Silva, L. Recalde. On fluidification of Petri nets: From
discrete to hybrid and continuous models. Annual Reviews
in Control, vol. 28, no. 2, pp. 253–266, 2004.

[34] C. Mahulea, A. Giua, L. Recalde, C. Seatzu, M. Silva. Opti-
mal model predictive control of timed continuous Petri nets.
IEEE Transactions on Automatic Control, vol. 53, no. 7,
pp. 1731–1735, 2008.

[35] M. Silva, L. Recalde. Continuization of timed Petri nets:
From performance evaluation to observation and control.
In Proceedings of the 26th International Conference, Lec-
ture Notes in Computer Science, Springer, Miami, USA,
vol. 3536, pp. 26–47, 2005.



38 International Journal of Automation and Computing 15(1), February 2018

[36] C. Mahulea, A. Giua, L. Recalde, C. Seatzu, M. Silva. On
sampling continuous timed Petri Nets: Reachability “equiv-
alence” under infinite servers semantics. In Proceeding of
the 2nd IFAC Conference on Analysis and Design of Hybrid
Systems, IFAC, Hotel Calabona, Italy, pp. 37–43, 2006.

[37] E. Jimenez, J. Julvez, L. Recalde, M. Silva. On control-
lability of timed continuous Petri net systems: The join
free case. In Proceedings of the 44th IEEE Conference on
Decision and Control, IEEE, Seville, Spain, pp. 7645–7650,
2005.

[38] A. Geletu. Solving Optimization Problems Using the Mat-
lab Optimization Toolbox – A Tutorial, 2007.

[39] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert.
Constrained model predictive control: Stability and opti-
mality. Automatica, vol. 36, no. 6, pp. 789–814, 2000.
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