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Abstract: Boundary control for a class of partial integro-differential systems with space and time dependent coefficients is consid-

ered. A control law is derived via the partial differential equation (PDE) backstepping. The existence of kernel equations is proved.

Exponential stability of the closed-loop system is achieved. Simulation results are presented through figures.
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1 Introduction

A chemical reaction or biological fermentation needs the

stability of the temperature. The temperature is modeled

by the reaction-diffusion equation

ut(x, t) = uxx(x, t) + h(x, t, u, ux)

where u(x, t) is the temperature, and h denotes the strength

of heat source. For each engineering problem, the function h

has its own form[1]. To stabilize the temperature, boundary

control is a feasible and economical setting in engineering.

However, the boundary control design for the general form

of the heat source h has not been developed.

Recently, Krstic et al.[2−6] developed a boundary control

design procedure, the partial differential equation (PDE)

backstepping, which was applied to establish the bound-

ary control laws for the reaction-diffusion equations that

the strength of heat source h does not depend on time t.

Krstic et al.[7] and Meurer et al.[8] considered cases that

the function h depends on the time t with boundary con-

trol. However, the function h only had a simple form. Wang

et al.[9, 10] considered the time dependent systems by track-

ing control method, and solved some nonlinear problems.

Meurer et al.[8, 11] considered a new method to deal with

this type of problems, and Yu[12] provided another method

to solve a class of nonlinear systems as well.

Motivated by the research of Krstic et al.[7] and Meurer

et al.[8], in this paper the control design and stabilization

of the following system is considered

ūt(x, t) = ūxx(x, t) + h̄(x, t, ū, ūx), 0 < x < 1 (1)

ūx(0, t) = 0 (2)

ū(1, t) = Ū(t) (3)
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where

h̄(x, t, ū, ūx) = b(x, t)ūx(x, t) + λ̄(x, t)ū(x, t)+∫ x

0

ḡ(x, y, t)ū(y, t)dy

the coefficient b(x, t) is bounded with respect to x, t, func-

tions λ̄(x, t) and ḡ(x, y, t) are smooth with respect to x, y

and t, ū(x, t) is the system signal, Ū(t) is the control input

to be determined, the Neumann boundary condition (2)

comes from the Fourier law of heat transformation. This

system models the physical phenomenons like burning pro-

cess with a chemical reaction[3]. The integral term means

that the system has memory function with spatial variable.

It is known that the open-loop is unstable (see Fig. 1).

So, the control objective is to design a control law Ū(t)

such that the closed-loop is exponentially stable.

The system (1)−(3) is more general than that considered

by Krstic et al.[3, 5−7] and Meurer et al.[8] The functions b,

λ̄ and ḡ depend on the time t, which result in difficulties

in mathematical computation. By a proper assumption on

the coefficients about the increase order of t, a control law

is established via the PDE backstepping. The existence

of kernel is proved, and the stability of the closed-loop is

shown, which are the contributions of this paper. Simu-

lation results are presented by the knowledge of numerical

solution of partial differential equation[13].

By the change of variables

λ(x, t) = λ̄(x, t) − 1

4
b2(x, t) − 1

2
bx(x, t) +

1

2

∫ x

0

bt(s, t)ds

g(x, y, t) = ḡ(x, y, t)e
1
2

∫ x
y

b(s,t)ds

u(x, t) = ū(x, t)e−
1
2

∫ x
0 b(s,t)ds

U(t) = Ū(t)e−
1
2

∫ 1
0 b(s,t)ds

then system (1)−(3) is transformed into

ut(x, t) = uxx(x, t) + h(x, t, u), 0 < x < 1 (4)

ux(0, t) = 0 (5)

u(1, t) = U(t) (6)
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where

h(x, t, u) = λ(x, t)u(x, t) +

∫ x

0

g(x, y, t)u(y, t)dy.

Therefore, it is enough to consider the stability of system

(4)−(6).

This paper is organized as follows. In Section 2, kernel

equation and control law are obtained. The kernel equation

is converted to an integral equation, and the existence of the

integral equation is proved. In Section 3, the inverse trans-

formation is established. The stability of the closed-loop

system is proved. In Section 4, simulations are presented.

2 Control law

Motivated by the assumption of Meurer et al.[8], in this

paper, it is assumed that the functions λ and g satisfy the

following assumption.

Assumption 1. For the system (4)−(6), assume that

the functions λ(x, t) and g(x, y, t) are differentiable with re-

spect to t up to any order, and there exist positive constants

ρ and θ such that for i = 0, 1, 2, · · · , it holds that

sup
t>0

∣∣∣∂i
tλ(x, t)

∣∣∣ ≤ ρi+1i!

sup
t>0

∣∣∣∂i
tg(x, y, t)

∣∣∣ ≤ θi+1i! (7)

where ∂i
t denotes ∂i

∂ti .

This assumption is important while discussing the exis-

tence of the kernel (13)−(15). The condition (7) restricts

the growth order of functions. This condition is also pre-

sented in the paper of Zhou[11]. The condition (7) for the

functions λ(x, t) and g(x, y, t) restricts the growth order

with respect to t. Whereas, with respect to x and y, conti-

nuity is enough since x and y belong to the closed interval

[0, 1]. Many functions in t, e.g., trigonometric functions,

polynomial functions, satisfy this requirement.

2.1 Backstepping transformation

The main idea of PDE backstepping comes from Krstic

et al.[5−6].

Firstly, choose the following target system

wt(x, t) = wxx(x, t) − cw(x, t), 0 < x < 1 (8)

wx(0, t) = 0 (9)

w(1, t) = 0 (10)

where the constant c is positive. This system is stable and

the proof is given in Section 3.2.

Secondly, consider the following Volterra-type integral

transformation[14]

w(x, t) = u(x, t) −
∫ x

0

k(x, y, t)u(y, t)dy (11)

where k(x, y, t) is the kernel function to be determined.

Choose the kernel function k(x, y, t) such that if the signal

u(x, t) is the solution of the system (4)–(6) then the signal

w(x, t) is the solution of the system (8)–(10). A control law

is obtained by the transformation (11) and the boundary

condition (10).

To determine the kernel function k(x, y, t), by (11), it is

obtained that

wt(x, t) = ut(x, t)−∫ x

0

kt(x, y, t)u(y, t)dy −
∫ x

0

k(x, y, t)ut(y, t)dy =

uxx(x, t) + ky(x, x, t)u(x, t) − ky(x, 0, t)u(0, t)−
k(x, x, t)ux(x, t) + k(x, 0, t)ux(0, t) + λ(x, t)u(x, t)−∫ x

0

(
kyy(x, y, t) + λ(y, t)k(x, y, t)

)
u(y, t)dy−

∫ x

0

kt(x, y, t)u(y, t)dy +

∫ x

0

g(x, y, t)u(y, t)dy−
∫ x

0

∫ y

0

k(x, y, t)g(y, z, t)u(z, t)dzdy

and

wx(x, t) = ux(x, t) − k(x, x, t)u(x, t)−∫ x

0

kx(x, y, t)u(y, t)dy. (12)

wxx(x, t) = uxx(x, t) − ∂xk(x, x, t)u(x, t) − k(x, x, t)×

ux(x, t) − kx(x, x, t)u(x, t) −
∫ x

0

kxx(x, y, t)u(y, t)dy

where

∂xk(x, x, t) = kx(x, x, t)|y=x + ky(x, x, t)|y=x.

Thus

wt(x, t) −wxx(x, t) + cw(x, t) =(
λ(x, t) + c+ 2∂xk(x, x, t)

)
u(x, t)+

k(x, 0, t)ux(0, t) − ky(x, 0, t)u(0, t)+∫ x

0

(
kxx(x, y, t) − kyy(x, y, t) − kt(x, y, t)−

(λ(y, t) + c) k(x, y, t) + g(x, y, t)−∫ x

y

g(z, y, t)k(x, z, t)dz
)
u(y, t)dy.

Let k(x, y, t) satisfy the following conditions

kxx(x, y, t) − kyy(x, y, t) − kt(x, y, t)−
(λ(y, t) + c) k(x, y, t) + g(x, y, t)−∫ x

y

g(z, y, t)k(x, z, t)dz = 0 (13)

ky(x, 0, t) = 0 (14)

∂xk(x, x, t) = −1

2
(λ(x, t) + c) (15)

then (8) is satisfied. Let

k(0, 0, t) = 0 (16)

then, by (5) and (12), the boundary condition (9) is satis-

fied. Moreover, the condition (15) is equivalent to

k(x, x, t) = −1

2

∫ x

0

(λ(s, t) + c) ds (17)
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since (16). By (11), take the control law as

U(t) =

∫ 1

0

k(1, y, t)u(y, t)dy (18)

then the boundary condition (10) is satisfied. Now, it re-

mains to solve the kernel (13)–(14) and (17).

2.2 Existence of the kernel function

There exists a mathematical difficulty to solve the kernel

(13)−(14) and (17) analytically. Alternately, the existence

of a solution is shown.

To show the existence of the solution, there is a need

to transform the PDE problem (13)−(14) and (17) into an

integral equation. Let

ξ = x+ y, η = x− y (19)

and write

φ (ξ, η, t) = k

(
ξ + η

2
,
ξ − η

2
, t

)

λ̃(x, t) = λ
(x

2
, t

)
+ c, x ∈ [0, 1]

it is known that λ̃(x, t) satisfies Assumption 1 as well.

From (13)−(14) and (17), it is obtained that

φξη(ξ, η, t) =
1

4
φt(ξ, η, t) +

1

4
λ̃(ξ − η, t)φ(ξ, η, t)+

1

4

∫ ξ+η
2

ξ−η
2

φ
( ξ + η

2
+ z,

ξ + η

2
− z, t

)
×

g

(
z,
ξ − η

2
, t

)
dz−

1

4
g
( ξ + η

2
,
ξ − η

2
, t

)
(20)

φ(ξ, 0, t) = −1

4

∫ ξ

0

λ̃(s, t)ds (21)

φξ(ξ, ξ, t) = φη(ξ, ξ, t). (22)

Integrate both sides of (20) with respect to η from 0 to

η, noting (21), then it holds

φξ(ξ, η, t) =
1

4

∫ η

0

φt(ξ, s, t)ds+

1

4

∫ η

0

λ̃(ξ − s, t)φ(ξ, s, t)ds−
1

4
λ̃(ξ, t) − 1

4

∫ η

0

g

(
ξ + s

2
,
ξ − s

2
, t

)
ds+

1

4

∫ η

0

∫ ξ+s
2

ξ−s
2

φ

(
ξ + s

2
+ z,

ξ + s

2
− z, t

)
×

g

(
z,
ξ − s

2
, t

)
dzds. (23)

Integrate both sides of (23) with respect to ξ from η to

ξ, it yields

φ(ξ, η, t) =φ(η, η, t) − 1

4

∫ ξ

η

∫ η

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ−

1

4

∫ ξ

η

λ̃(s, t)ds+
1

4

∫ ξ

η

∫ η

0

φt(σ, s, t)dsdσ+

1

4

∫ ξ

η

∫ η

0

λ̃(σ − s, t)φ(σ, s, t)dsdσ+

1

4

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

φ
(σ + s

2
+ z,

σ + s

2
− z, t

)
×

g
(
z,
σ − s

2
, t

)
dzdsdσ. (24)

Now it needs to write φ(η, η, t) into an integral of func-

tions. First

∂ηφ(η, η, t) = φξ(η, η, t) + φη(η, η, t).

Then by (22), it is obtained that

∂ηφ(η, η, t) = 2φξ(η, η, t).

By (21), it is obtained that φ(0, 0, t) = 0. Thus

φ(η, η, t) = 2

∫ η

0

φξ(σ, σ, t)dσ. (25)

Hence, by (23) and (25), it holds that

φ(η, η, t) = − 1

2

∫ η

0

λ̃(σ, t)dσ +
1

2

∫ η

0

∫ σ

0

φt(σ, s, t)dsdσ−
1

2

∫ η

0

∫ σ

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ+

1

2

∫ η

0

∫ σ

0

λ̃(σ − s, t)φ(σ, s, t)dsdσ+

1

2

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

g
(
z,
σ − s

2
, t

)
×

φ
(σ + s

2
+ z,

σ + s

2
− z, t

)
dzdsdσ. (26)

Then, by (24) and (26), it is obtained that

φ(ξ, η, t) = φ0(ξ, η, t) + Φ(φ)(ξ, η, t) (27)

where φ0(ξ, η, t) and Φ[φ](ξ, η, t) are defined by

φ0(ξ, η, t) = − 1

2

∫ η

0

λ̃(σ, t)dσ − 1

4

∫ ξ

η

λ̃(s, t)ds−

1

2

∫ η

0

∫ σ

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ−

1

4

∫ ξ

η

∫ η

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ (28)
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and

Φ[φ](ξ, η, t) =
1

4

∫ ξ

η

∫ η

0

φt(σ, s, t)dsdσ+

1

4

∫ ξ

η

∫ η

0

λ̃(σ − s, t)φ(σ, s, t)dsdσ+

1

2

∫ η

0

∫ σ

0

λ̃(σ − s, t)φ(σ, s, t)dsdσ+

1

2

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

g
(
z,
σ − s

2
, t

)
×

φ
(σ + s

2
+ z,

σ + s

2
− z, t

)
dzdsdσ+

1

4

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

g
(
z,
σ − s

2
, t

)
×

φ
(σ + s

2
+ z,

σ + s

2
− z, t

)
dzdsdσ+

1

2

∫ η

0

∫ σ

0

φt(σ, s, t)dsdσ. (29)

Therefore, the PDE problem (13)−(14) and (17) is trans-

formed into the integral equation (27).

It is easy to show that any solution of the integral equa-

tion (27) is also a solution of the PDE problem (13)−(14)

and (17) if φ(ξ, η, t) is twice differentiable with respect to

ξ, η, and differentiable with respect to t up to any order.

Thus, there is the following lemma.

Lemma 1. Any function φ(ξ, η, t) which satisfies (20)–

(22) also satisfies the integral equation (27), and vice versa

if φ(ξ, η, t) is twice differentiable with respect to ξ, η and

differentiable with respect to t up to any order.

Now it remains to show the existence of solution of the

integral equation (27).

Lemma 2. Under Assumption 1, the integral equation

(27) has a solution which is twice continuously differentiable

with respect to ξ, η and differentiable with respect to t up

to any order.

Proof. The method of successive approximation is ap-

plied to show this lemma.

Define a sequence as

φn+1(ξ, η, t) = φ0(ξ, η, t)+Φ[φn](ξ, η, t), n = 0, 1, · · · (30)

Denote that

Γ = {(ξ, η)|0 < η < 1, η < ξ < 2 − η}.
If this sequence {φn(ξ, η, t)} is uniformly convergent as n

approaches to the infinity, then the limit function φ(ξ, η, t)

is the solution of the integral (27), and is twice continuously

differentiable with respect to ξ, η, and differentiable with

respect to t up to any order.

To show the uniform convergence of the sequence

{φn(ξ, η, t)}, denote

�φn+1(ξ, η, t) = φn+1(ξ, η, t) − φn(ξ, η, t).

By (29) and (30), it holds that

�φn+1(ξ, η, t) = Φ[�φn](ξ, η, t) (31)

since Φ is linear. Then

φn+1(ξ, η, t) =
n+1∑
j=1

�φj(ξ, η, t) + φ0(ξ, η, t). (32)

Thus, the convergence of the sequence {φn(ξ, η, t)} is

equivalent to that of the series
∑∞

n=1 �φn(ξ, η, t). So, it

only needs to show that the series
∑∞

n=1 �φn(ξ, η, t) is uni-

formly convergent. To this end, it is to show

|�φn(ξ, η, t)| ≤Mγ2n+1 (ξ + η)n

n!
(33)

where γ = max{3, ρ, θ}, ρ and θ are the constants in the

Assumption 1, and M is defined by

M = max
(ξ,η)∈Γ

(
3

4
+

1

4
(1 + |η|) (|ξ + η|)

)
.

It is trivial that

Mγ2n+1 (ξ + η)n

n!
≤M

γ3n+1

n!

since 0 ≤ ξ ≤ 2, 0 ≤ η ≤ 1. Then, by the Weierstrass

M-test, it is known that the series
∑∞

n=1 �φn(ξ, η, t) is ab-

solutely uniformly convergent if (33) holds.

In order to construct (33), first, it is to prove the following

inequality

sup
t∈R+

∣∣∂i
t�φn(ξ, η, t)

∣∣ ≤

Mγ2n+i+1 (n+ i)!

n!

(ξ + η)n

n!
(34)

for i = 0, 1, 2, · · · , where R+ denotes the interval (0,+∞),

and ∂i
t = ∂i

∂ti . Then (33) is the special case that i = 0

in (34). Now it is to establish (34) via the mathematical

induction.

By (7) and (28), it is obtained that

sup
t∈R+

∣∣∣∂i
tφ0 (ξ, η, t)

∣∣∣ ≤
1

2

∫ η

0

sup
t∈R+

∣∣∣∂i
tλ̃(σ, t)

∣∣∣ dσ +
1

4

∫ ξ

η

sup
t∈R+

∣∣∣∂i
tλ̃(σ, t)

∣∣∣ dσ+

1

4

∫ ξ

η

∫ η

0

sup
t∈R+

∣∣∣∂i
tg

(σ + s

2
,
σ − s

2
, t

)∣∣∣ dsdσ+

1

2

∫ η

0

∫ σ

0

sup
t∈R+

∣∣∣∂i
tg

(σ + s

2
,
σ − s

2
, t

)∣∣∣ dsdσ ≤

γi+1i!

(
3

4
+

1

4
(1 + |η|) |ξ + η|

)
≤

Mγi+1i!. (35)

For convenience, denote

φ̃n(σ, s, t) = λ̃(σ − s, t)φn(σ, s, t)

and

φ̂n(σ, s, z, t) = g
(
z,
σ − s

2
, t

)
φn

(σ + s

2
+ z,

σ + s

2
− z, t

)
.

Then it holds that

�φ̃n(σ, s, t) = λ̃(σ − s, t)�φn(σ, s, t) (36)
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and

�φ̂n(σ, s, z, t) = g
(
z,
σ − s

2
, t

)
�φn

(σ + s

2
+z,

σ + s

2
−z, t

)
.

From (31) and (35), it is obtained that

sup
t∈R+

∣∣∣∂i
t�φ1(ξ, η, t)

∣∣∣ ≤
1

4

∫ ξ

η

∫ η

0

sup
t∈R+

∣∣∣∂i+1
t φ0(σ, s, t)

∣∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

sup
t∈R+

∣∣∣∂i+1
t φ0(σ, s, t)

∣∣∣dsdσ+

1

4

∫ ξ

η

∫ η

0

sup
t∈R+

∣∣∣∂i
tφ̃0(σ, s, t)

∣∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

sup
t∈R+

∣∣∣∂i
t φ̃0(σ, s, t)

∣∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

sup
t∈R+

∣∣∣∂i
tφ̂0(σ, s, z, t)

∣∣∣dzdsdσ+

1

4

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

sup
t∈R+

∣∣∣∂i
tφ̂0(σ, s, z, t)

∣∣∣dzdsdσ. (37)

By the Leibniz′ differentiate formula in calculus tutorial,

it holds that

sup
t∈R+

∣∣∣∂i
t φ̃0(σ, s, t)

∣∣∣ =

sup
t∈R+

∣∣∣∂i
t

(
λ̃(σ − s, t)φ0(σ, s, t)

)∣∣∣ ≤

sup
t∈R+

∣∣∣
i∑

j=0

Cj
i ∂

j
t λ̃(σ − s, t)∂i−j

t φ0(σ, s, t)
∣∣∣ ≤

i∑
j=0

Cj
i sup

t∈R+

∣∣∣∂j
t λ̃(σ − s, t)

∣∣∣ sup
t∈R+

∣∣∣∂i−j
t φ0(σ, s, t)

∣∣∣ ≤
i∑

j=0

Cj
i γ

j+1j!Mγi−j+1(i− j − 1)! ≤

Mγi+2
i∑

j=0

Cj
i j!(i− j − 1)! ≤

Mγi+2(i+ 1)! (38)

where Cj
i denotes number of combinations, and the fact

i∑
j=0

Cj
i j!(i− j − 1)! = (i+ 1)!

is applied.

By the similar mathematical derivation, the following re-

sult can be established

sup
t∈R+

∣∣∣∂i
t φ̂0(σ, s, z, t)

∣∣∣ =

sup
t∈R+

∣∣∣∂i
t

(
g
(
z,
σ − s

2
, t

)
φ0

(σ + s

2
+ z,

σ + s

2
− z, t

))∣∣∣ ≤Mγi+2(i+ 1)!. (39)

From (35) and (37)−(39), it is obtained that

sup
t∈R+

∣∣∂i
t�φ1(ξ, η, t)

∣∣ ≤
∫ ξ

η

∫ η

0

2 × 1

4
×Mγi+2(i+ 1)!dsdσ+

∫ η

0

∫ σ

0

2 × 1

2
×Mγi+2(i+ 1)!dsdσ+

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

1

2
×Mγi+2(i+ 1)!dzdsdσ+

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

1

4
×Mγi+2(i+ 1)!dzdsdσ ≤

M × 3γi+2(i+ 1)!(ξ + η) =

Mγi+3(i+ 1)!(ξ + η) (40)

since 0 ≤ ξ ≤ 2, 0 ≤ η ≤ 1, which shows that (34) holds for

n = 1.

The next step is to prove that if (34) holds for 1, 2, · · · , n,

then (34) also holds for n + 1. Through the process which

is similar to that to obtain (37), it is established that

sup
t∈R+

∣∣∂i
t�φn+1(ξ, η, t)

∣∣ ≤
1

4

∫ ξ

η

∫ η

0

sup
t∈R+

∣∣∂i+1
t �φn(σ, s, t)

∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

sup
t∈R+

∣∣∂i+1
t �φn(σ, s, t)

∣∣dsdσ+

1

4

∫ ξ

η

∫ η

0

sup
t∈R+

∣∣∂i
t�φ̃n(σ, s, t)

∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

sup
t∈R+

∣∣∂i
t�φ̃n(σ, s, t)

∣∣dsdσ+

1

2

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

sup
t∈R+

∣∣∣∂i
t�φ̂n(σ, s, z, t)

∣∣∣dzdsdσ+

1

4

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

sup
t∈R+

∣∣∣∂i
t�φ̂n(σ, s, z, t)

∣∣∣dzdsdσ. (41)

On the other hand, by (36), it holds that

sup
t∈R+

∣∣∣∂i
t�φ̂n(σ, s, z, t)

∣∣∣ = sup
t∈R+

∣∣∣∂i
t

(
g
(
z,
σ − s

2
, t

)
×

�φn

(σ + s

2
+ z,

σ + s

2
− z, t

))∣∣∣ ≤
i∑

j=0

Cj
i

(
sup

t∈R+

∣∣∣∂j
t g

(
z,
σ − s

2
, t

) ∣∣∣×

sup
t∈R+

∣∣∣∂i−j
t �φn

(σ + s

2
+ z,

σ + s

2
− z, t

) ∣∣∣
)
≤

Mγ2n+i+2
i∑

j=0

Cj
i j!(n+ i− j)!

(σ + s)n

(n!)2
≤

Mγ2n+i+2 (n+ i+ 1)!

(n+ 1)

(σ + s)n

(n!)2
(42)

since

i∑
j=0

Cj
i j!(n+ i− j)! =

(n+ i+ 1)!

(n+ 1)
.
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By the same method, it is obtained that

sup
t∈R+

∣∣∣∂i
t�φ̃n(σ, s, t)

∣∣∣ =

sup
t∈R+

∣∣∣∂i
t

(
λ̃(σ − s, t)�φn(σ, s, t)

)∣∣∣ ≤

Mγ2n+i+2 (n+ i+ 1)!

(n+ 1)

(σ + s)n

(n!)2
. (43)

Therefore, from (34) and (42)−(43), (41) is rewritten as

sup
t∈R+

∣∣∣∂i
t�φn+1(ξ, η, t)

∣∣∣ ≤

Mγ2n+i+2 (n+ i+ 1)!

(n+ 1)!

(ξ + η)n+1

(n+ 1)!

( 2

n
+ 1

)
≤

Mγ2(n+1)+i+1 (n+ i+ 1)!

(n+ 1)!

(ξ + η)n+1

(n+ 1)!
(44)

which shows that (34) holds for n+1. Thus, by mathemat-

ical induction, (34) holds for all positive integers.

Let i = 0 in (34), (33) is obtained, which shows that the

series
∑∞

n=1 �φn(ξ, η, t) is uniformly convergent, namely,

the sequence {φn(ξ, η, t)} is convergent and the limit is the

solution of (27). �

3 Stability of the closed-loop

The stability of the closed-loop system under the control

law (18) is shown in this section. In order to establish the

stability of the closed-loop, an inverse transformation of

(11) is investigated first.

3.1 Inverse transformation

Since (11) is a Volterra-type integral transformation, it

is possible that it has an inverse transformation in the fol-

lowing form

u(x, t) = w(x, t) +

∫ x

0

l(x, y, t)w(y, t)dy (45)

where the kernel l(x, y, t) is to be determined. Suppose that

w(x, t) is the signal of the target system (8)–(10), then de-

termine the kernel l(x, y, t) such that u(x, t), which is gen-

erated through (45), is the signal of the closed-loop system

(4)–(5) under the control law (18).

From (45), it is obtained that

ut(x, t) =wt(x, t) +

∫ x

0

lt(x, y, t)w(y, t)dy+

∫ x

0

l(x, y, t)wt(y, t)dy =

wxx(x, t) − cw(x, t) + l(x, x, t)wx(x, t)−
l(x, 0, t)wx(0, t) − ly(x, x, t)w(x, t)+∫ x

0

(
lyy(x, y, t) − cl(x, y, t)

)
w(y, t)dy+

ly(x, 0, t)w(0, t) +

∫ x

0

lt(x, y, t)w(y, t)dy (46)

and

ux(x, t) =wx(x, t) + l(x, x, t)w(x, t)+∫ x

0

lx(x, y, t)w(y, t)dy (47)

uxx(x, t) =

wxx(x, t) + ∂xl(x, x, t)w(x, t) + l(x, x, t)wx(x, t)+

lx(x, x, t)w(x, t) +

∫ x

0

lxx(x, y, t)w(y, t)dy. (48)

By (46) and (48), it holds that

ut(x, t) − uxx(x, t) − h(x, t, u) =

−
(
λ(x, t) + c+ 2∂xl(x, x, t)

)
w(x, t) + ly(x, 0, t)×

w(0, t) −
∫ x

0

(
lxx(x, y, t) − lyy(x, y, t) − lt(x, y, t)+

(
λ(x, t) + c

)
l(x, y, t) + g(x, y, t)+

∫ x

y

g(x, z, t)l(z, y, t)dz
)
w(y, t)dy. (49)

Let l(x, y, t) satisfy the following equation

lxx(x, y, t) − lyy(x, y, t) − lt(x, y, t)+(
λ(x, t) + c

)
l(x, y, t) + g(x, y, t)+∫ x

y

g(x, z, t)l(z, y, t)dz = 0 (50)

ly(x, 0, t) = 0 (51)

∂xl(x, x, t) = −λ(x, t) + c

2
(52)

then u(x, t) satisfies (4). By (9) and (47), it is obtained

that

ux(0, t) = l(0, 0, t)w(0, t).

Let

l(0, 0, t) = 0

then (5) is satisfied, and (52) is rewritten as

l(x, x, t) = −1

2

∫ x

0

(
λ(s, t) + c

)
ds. (53)

As to (6), it is satisfied by the control law (18).

There are also mathematical difficulties to solve the ker-

nel equations (50)−(51) and (53). So, it needs to show the

existence of the kernel equations.

Denote

ψ(ξ, η, t) = l

(
ξ + η

2
,
ξ − η

2
, t

)
.
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Then (50)−(51) and (53) are written as

4ψξη(ξ, η, t) = ψt(ξ, η, t) − λ̃(ξ + η, t)ψ(ξ, η, t)−
∫ ξ+η

2

ξ−η
2

g
( ξ + η

2
, z, t

)
ψ

(
z +

ξ − η

2
,

z − ξ − η

2
, t

)
dz − g

(
ξ + η

2
,
ξ − η

2
, t

)
(54)

ψξ(ξ, ξ, t) = ψη(ξ, ξ, t) (55)

ψ(ξ, 0, t) = −1

4

∫ ξ

0

λ̃(s, t)ds. (56)

Further, (54)−(56) are written as the integral equation

ψ(ξ, η, t) = ψ0(ξ, η, t) + Ψ[ψ](ξ, η, t) (57)

where ψ0(ξ, η, t) and Ψ[ψ](ξ, η, t) are defined by

ψ0(ξ, η, t) = −1

4

∫ ξ

η

λ̃(σ, t)dσ − 1

2

∫ η

0

λ̃(σ, t)dσ−

1

2

∫ η

0

∫ σ

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ−

1

4

∫ ξ

η

∫ η

0

g
(σ + s

2
,
σ − s

2
, t

)
dsdσ (58)

Ψ[ψ](ξ, η, t) =
1

4

∫ ξ

η

∫ η

0

ψt(σ, s, t)dsdσ−

1

4

∫ ξ

η

∫ η

0

λ̃(σ + s, t)ψ(σ, s, t)dsdσ−

1

2

∫ η

0

∫ σ

0

λ̃(σ + s, t)ψ(σ, s, t)dsdσ−

1

2

∫ η

0

∫ σ

0

∫ σ+s
2

σ−s
2

g
(σ + s

2
, z, t

)
×

ψ
(
z +

σ − s

2
, z − σ − s

2
, t

)
dzdsdσ−

1

4

∫ ξ

η

∫ η

0

∫ σ+s
2

σ−s
2

g
(σ + s

2
, z, t

)
×

ψ
(
z +

σ − s

2
, z − σ − s

2
, t

)
dzdsdσ+

1

2

∫ η

0

∫ σ

0

ψt(σ, s, t)dsdσ. (59)

Equation (57) is similar to (27), thus it has the same

result as Lemma 2 which is stated as follows.

Lemma 3. Under Assumption 1, the integral equation

(57) has a solution which is twice continuously differentiable

with respect to ξ, η and differentiable with respect to t up

to any order.

3.2 Stability

The stability of the closed-loop system can be established

through the boundedness of the transformation (11) and its

inverse (45). In this paper, the symbol ‖ · ‖ denotes the L2-

norm, which is defined as follows

‖ϑ‖ =

(∫ 1

0

ϑ2(x)dx

) 1
2

where ϑ is a function in L2[0, 1].

Theorem 1. Consider the system (4)−(5) under the

control law (18). Then

‖u(t)‖ ≤ ρ‖u0‖e−(c+ 1
4 )t (60)

where ρ is a positive constant defined by (67), and c is

the positive constant in the target system (8)−(10), and

u0 = u(x, 0) denotes the initial data of the system (4)−(6).

Namely, the closed-loop system is exponentially stable in

L2-norm.

Proof. For the target system (8)–(10), consider the Lya-

punov function[12, 15]

V (t) =
1

2

∫ 1

0

w2(x, t)dx =
1

2
‖w(t)‖2 (61)

then it is desire to show its stability in the sense of L2-norm.

Calculate the derivative of V , it is obtained that

V̇ (t) =

∫ 1

0

w(x, t)wt(x, t)dx =

∫ 1

0

w(x, t)(wxx(x, t) − cw(x, t))dx =

w(x, t)wx(x, t)
∣∣∣1
0
−

∫ 1

0

w2
x(x, t)dx−

c

∫ 1

0

w2(x, t)dx =

− c‖w(t)‖2 − ‖wx(t)‖2

where the conditions (9) and (10) are utilized. From the

Poincaré inequality[5], it is obtained that

−
∫ 1

0

w2
x(x, t)dx ≤ −1

4

∫ 1

0

w2(x, t)dx

since w(1, t) = 0. Thus

V̇ (t) ≤ −c‖w(t)‖2 − 1

4
‖w(t)‖2 = −

(
2c+

1

2

)
V (t).

Therefore

V (t) ≤ V (0)e−(2c+ 1
2 )t. (62)

From (61) and (62), it is obtained that

‖w(t)‖2 ≤ ‖w0‖2e−(2c+ 1
2 )t (63)

where w0 = w(x, 0) is the initial data of the system

(8)−(10), which shows that the target system is stable.

From (11), via the Cauchy-Schwarz inequality[5], it can

be obtained that

‖w(t)‖2 ≤ 2(1 + α2
1)‖u(t)‖2 (64)

where the positive constant α1 is defined by

α1 = sup
(x,y)∈D,t∈R+

|k(x, y, t)|

where R denotes whole real numbers, and

DDD = {(x, y) ∈ R|0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
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From (45), it can be obtained that

‖u(t)‖2 ≤ 2(1 + β2
1)‖w(t)‖2 (65)

where positive constant β1 is defined by

β1 = sup
(x,y)∈D,t∈R+

|l(x, y, t)|.

Therefore, by (63)–(65), it is obtained that

‖u(t)‖2 ≤ ρ2‖u0‖2e−(2c+ 1
2 )t (66)

where ρ is defined by

ρ =
√

4(1 + α2
1)(1 + β2

1). (67)

Thus, the theorem is proved. �

4 Simulation

In this section, simulation results are presented in order

to verify the design. Considering the purpose of this work is

not to get the numerical solution of PDE, but verify the de-

sign, the situation that g(x, y, t) ≡ 0 is simulated. The other

parameters of the system (1)–(3) are given as follows. The

constant c = 50, the initial state u0(x) = 5(1 − 2sin( 3π
2
x)),

and the coefficient λ(x, t) = cos(x)− sin(t) + 15, which sat-

isfies Assumption 1 with respect to time t.

Simulation results of the plant (4)–(6) are as follows.

Fig. 1 shows that the open-loop is unstable. Fig. 2 shows

that closed-loop is stable. Fig. 3 shows that the control in-

put is bounded. Fig. 4 shows that the L2-norm of u(x, t)

goes to zero as time increases.

Fig. 1 Simulation result of the plant (4)–(6) of the open-loop

Fig. 2 Simulation result of the plant (4)–(5) with control law

(18)

Fig. 3 The control input (18) of the system (4)–(5)

Fig. 4 The L2-norm of closed-loop

5 Conclusions

Although the systems (4) and (5) are complicated, they

can be stabilized by boundary control. Besides, a con-

trol law can established. The parameters in this paper are

space- and time-dependent. As a result, the kernel functions

are Volterra integral differential equations. So, Assumption

1 is required for the proof of existence of the kernel func-

tions k(x, y, t) and l(x, y, t) by the method of mathematical

induction. Although it is not necessary, it is difficult to



102 International Journal of Automation and Computing 15(1), February 2018

establish existence of the kernel functions without this as-

sumption.
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